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ABSTRACT
In this paper, we propose a predictive network representation learn-
ing (PNRL) model to solve the structural link prediction problem.
The proposed model de�nes two learning objectives, i.e., observed
structure preservation and hidden link prediction. To integrate the
two objectives in a uni�ed model, we develop an e�ective sampling
strategy to select certain edges in a given network as assumed hid-
den links and regard the rest network structure as observed when
training the model. By jointly optimizing the two objectives, the
model can not only enhance the predictive ability of node repre-
sentations but also learn additional link prediction knowledge in
the representation space. Experiments on four real-world datasets
demonstrate the superiority of the proposed model over the other
popular and state-of-the-art approaches.
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1 INTRODUCTION
Many social, physical and information systems in the world exist
as networks. Predicting missing or promising candidate links on
these networks is of great importance. For example, new friend
recommendation by inferring potential friendships enhances user
experience in on-line social media services and interaction discov-
ery by identifying the latent links on protein-protein network saves
large amount of human e�ort on blindly checking. The link predic-
tion problem has drawn much attention from researchers [1, 7, 10].
Existing researches are often categorized as temporal link predic-
tion which predicts potential new links on an evolving network,
and structural link prediction which infers missing links on a static
network. In this paper, we focus on structural link prediction. Given
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the partially observed structure of a network, the goal of it is to
discover the unobserved hidden links.

How to represent network nodes with a set of carefully designed
features is critical for link prediction. In the previous work, most
node features are manually devised based on the graph topology.
However, the hand-crafted features can only represent limited in-
formation of nodes yet require large amount of computation or
manual e�ort. Recently, Network Representation Learning (NRL)
models [2, 6, 9] are proposed to learn the latent representations of
nodes, which can embed the rich structural information into the
latent space. Most of these NRL models are learned in an unsuper-
vised manner. They are hence more concerned with the descriptive
ability of the representations. Such a learning paradigm limits their
predictive ability on inferring hidden links due to the lack of the
supervision on learning the prediction knowledge.

It is nontrivial to explore the learning model that can enhance
the predictive ability of network representation that is speci�c for
structural link prediction. To achieve this goal, we propose a predic-
tive network representation learning model. The idea of this model
is to learn node representations with two objectives. One is the abil-
ity to preserve the structural information of the observed structure.
The other is the ability to discover the unobserved hidden links. The
model is trained to learn both the predictive representations and
the link prediction knowledge simultaneously. The two learning
objectives in�uence each other interactively and progressively. The
learned link prediction knowledge gives feedback to representation
learning such that the learned representations tend to be more pre-
dictive. Meanwhile, the prediction knowledge is updated to �t the
learned representations more. In this sense, the proposed model is a
representation-based link prediction model. To optimize these two
objectives jointly, we develop an e�ective algorithm with a well-
designed hidden link sampling strategy to automatically remove
certain observed links such that the assumed hidden links can be
introduced into the learning process. The experimental results on
various real-world datasets demonstrate that our model is more
predictive than the state-of-the-art NRL models and other popular
approaches.

2 METHOD
Formally, we denote a partially observed network as G = (V ,E),
whereV = {vi }

|V |
i=1 is the node set and E = E+ ∪E− ∪E? represents

the node-pair set with di�erent link status in the network. Note that
we focus on undirected networks in this paper. For each node-pair
(u,v) ∈ E+, the link status is known present; For each node-pair
(u,v) ∈ E−, the link status is known absent; while for E?, the link
status is unknown. Given a such network G, the goal of structural
link prediction is to infer link status of node-pairs in E?. Network
representation learning aims at embedding each node vi ∈ V into
a low-dimensional representation xi ∈ Rn , which can be treated as
features for prediction task.
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Figure 1: PNRL Model Overview

To solve structural link prediction problem, we propose the Pre-
dictive Network Representation Learning (PNRL) model. The main
idea can be illustrated as Fig.1. The input network is �rstly sampled
as two components, i.e., observed structure (E+o ) and hidden link set
(E+h ). The PNRL model de�nes a structural information preservation
objective for the observed component and a representation-based
hidden link prediction objective for the hidden component. By
jointly optimizing the two objectives with shared embedding layer
in the uni�ed model, the learned node representations tend to be
more predictive for link prediction. Additionally, this representation
learning model can be directly used for link prediction based on the
learned representations and prediction “knowledge” (classi�cation
hyperplane or ranking weight matrix).

2.1 Network Representation Learning for
Observed Structure Preservation

The learning objective of observed structure is to preserve struc-
tural proximities among nodes in latent space. The neighbor set
of a node has proven an important index for inferring pair-wise
structural proximity. Therefore, node representations should be con-
strained within their neighbors. This is similar to the Skip-Gram
word embedding model [6], where word representations can predict
frequent surrounding words (context). In our scenario, neighbors of
a node can be treated as frequent “context” and the representation
learning objective is to maximum the likelihoods that each node
generates its neighbors for observed edges in E+o . Therefore, each
node vi should have two representations, i.e., node representation
xi when it is target node and context representation x′i when it is
treated as “context” for other nodes.

Based on the above idea, we de�ne the network representation
learning objective for E+o as minimizing the following negative-log
loss function:

Lo = −
∑
(i, j)∈E+o

logp(vj |vi ) = −
∑
(i, j)∈E+o

log
exp(−x′j

T xi )∑ |V |
h=1 exp(−x

′
h
T xi )

(1)

where p(vj |vi ) represents the probability of “context” vj generated
by node vi for (i, j) ∈ E+o . For the sake of improving computation
e�ciency, we apply a approximation method called Negative Sam-
pling (NEG)[6], then the above loss function can be formulated as

follow:

Lo = −
∑
(i, j)∈E+o

(logσ (x′j
T
·xi )+

K∑
k

Evk∼Pn (vi )[logσ (−x
′
k
T
·xi )]) (2)

where σ (·) denotes the sigmoid function, K is the number of nega-
tive samples and Pn (vi ) is the noise distribution. For each (i, j) ∈ E+o ,
K negative samples are randomly drawn from Pn (vi ) ∼ (dvi )

3/4,
where dvi is the degree of vi in G.

2.2 Network Representation Learning for
Hidden Link Prediction

The objective of this component is to improve predictive ability of
node representations for link prediction and directly learn the link
prediction model (either classi�cation or ranking model) based on
such representations.

Hidden Link Classification. Hidden link prediction can be re-
garded as a binary classi�cation problem, i.e., classifying linked
node-pairs in E+h and unlinked node-pairs in E− based on feature set
of node-pair. In our model, the latent representation space naturally
forms the feature space and we can derive features (embeddings)
of node-pairs by using composition approach: dmn = f (xm , xn ).
Following edge feature learning approaches used in previous work
[2], we de�ne the composition function as f (xm , xn ) = xm � xn ,
where � is Hadamard product. To formulate the hidden link classi-
�cation objective, we introduce a classical max-margin classi�er
L2-SVM, which minimizes the following loss function:

Lch = C
∑

(m,n)∈E+h∪E
−

max(1 − ymnα
T dmn , 0)2 +

1
2
αTα (3)

where C is the regularization parameter and α is the hyperplane
that the classi�er seeks for. ymn is the link status label of node-
pair (m,n), if (m,n) ∈ E+h , ymn = 1, otherwise ymn = 0. Network
representation learning on this objective will not only make repre-
sentations tend to be discriminative but also learn the “knowledge”
α for link classi�cation in the representation space.

Hidden Link Ranking. Link prediction can also be considered
as a ranking problem. The idea is that node-pairs with hidden links
should have higher rank than those without hidden links. From
per-node view, the ranking score of node vn who has hidden link
with node vm should be greater than vl who has no hidden link
with vm . The above idea can be formulated as following constraint:

rm,n > rm,l , i f (m,n) ∈ E+h and (m, l) ∈ E−

We employ the bilinear product on node representations to derive
the ranking score of node-pairs as rm,n = xTmWxn , where W is
a weight matrix that will be learned. For the sake of de�ning the
ranking objective based on the above constraint, we apply the
classical squared hinge loss function as follow:

Lrh =
∑

(m,n)∈E+h,(m,l )∈E−
max(1 − xTmW(xn − xl ), 0)2 +

λW
2
‖W‖22 (4)

where λW is a regularization parameter. In this learning objective,
node representations tend to �t the ranking criterion and additional
link ranking “knowledge” W will be learned.
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Algorithm 1: PNRL Model Learning Algorithm
Input :Training network G = (V ,Et ), Et = E+ ∪ E−;
Output :Node embedding matrix X, context embedding

matrix X′, hyperplane α or weight matrix W
1 Initialize X, X′, α or W (uniformly random), E+r ← E+;
2 while E+r , ∅ do
3 E+h ← randomly sample β |E+ | edges from E+r ;
4 E−h ← randomly sample β |E+ | edges from E−;
5 E+r ← E+r − E

+
h , E+o ← E+ − E+h ;

6 repeat
7 for each node vi do
8 Optimization on Lo :
9 Randomly sample vj that (i, j) ∈ E+o ;

10 Randomly draw K negative nodes from Pn (vi );
xi ← xi − e1η

∂Lo
∂xi

, x′j ← x′j − e1η
∂Lo
∂x′j

;

11 for each vk in K negative samples do
12 x′k ← x′k − e1η

∂Lo
∂x′k

;

13 Optimization on Lh :
14 if Lh = Lch (PNRL-C) then
15 Sample vl that (i, l) ∈ E+h ∪ E

−
h ;

16 xi ← xi − e2
∂Lch
∂xi

, xl ← xl − e2
∂Lch
∂xl

,

α ← α − e2
∂Lch
∂α ;

17 if Lh = Lrh (PNRL-R) then
18 Sample vm , vn that (i,m) ∈ E+h and (i,n) ∈ E−;

19 xi ← xi − e2
∂Lrh
∂xi

, xm ← xm − e2
∂Lrh
∂xm

,

xn ← xn − e2
∂Lrh
∂xn

, W←W − e2
∂Lch
∂W ;

20 until Convergence;

2.3 Uni�ed Model and Joint Learning
By incorporating the above learning objectives into the uni�ed
framework (Fig.1), we can derive our Predictive Network Represen-
tation Learning model with the following optimization objective:

minL = min(ηLo + Lh ) (5)

where η is a weight parameter for balancing the importance of the
two learning objectives. Lh can be either Lch and Lrh , hence our
model has two variants: PNRL-C (link classi�cation) and PNRL-R
(link ranking). In order to optimize the above problem e�ciently,
we propose an algorithm framework represented as Algorithm 1.

• Hidden Link Sampling (line 2-5). Before parameters learning, the
algorithm �rstly samples the hidden link set E+h (with the ratio β)
and the observed set E+o from input graph. This sampling process
will be repeated until all edges have been trained as hidden
links in the whole learning process. Additionally, we employ the
under-sampling strategy in this process for PRNL-C to handle
the inevitable imbalance problem resulted by |E− | � |E+h |. The
under-sampling draws a subset E−h ⊆ E− such that |E−h | = |E

+
h |

(line 4). As for PRNL-R, it can naturally overcome imbalance due
to the property of pair-wise ranking loss.

• Parameter Learning (line 6-20). We adopt the classical stochastic
gradient decent (SGD) method for parameter learning and design
a per-node learning strategy to guarantee a balanced update on
node representations. In a single learning iteration, we update
representations and corresponding parameters for each node by
optimizing the two objectives sequentially. Representations are
�rstly updated on Lo with learning rate e1, where a linked pair
and k negative pairs of current node vi are sampled from E+o .
Then updating is conducted to optimize Lh with learning rate
e2. In this step, a node-pair of vi is sampled from E+h ∪ E−h for
PNRL-C, while for PNRL-R two node-pairs of vi are drawn from
E+h and E− separately. If the convergence condition is satis�ed or
a max number of learning iteration is reached for current E+o and
E+h , the algorithm will stop current learning process and conduct
a new hidden link sampling.

3 EXPERIMENTS
3.1 Experimental Setup

Data. We evaluate the performance of proposed methods on
four di�erent types of datasets, all of which are widely used for link
prediction evaluation. The statistic of these datasets are summarized
in Table.1. Facebook [4] is a sample of online social network, where
nodes represent users and edges represent friendships. Email [3]
is an email communication network. Nodes in this network are
email addresses and each edge represents that at least one email
was sent. PowerGrid [10] is a sampled infrastructure network of
high-voltage power grid, where nodes are power stations and links
are high-voltage transmission lines. Condmat [7] is a scienti�c
collaboration network. Authors of papers on condensed matter
physics are treated as nodes and edges represent their co-author
relationships.

Table 1: The Statistics of Experimental Data
Dataset Nodes Edges Avg. Degree
Facebook 4,024 87,887 43.68
Email 1,133 5,451 9.62

PowerGrid 4,941 6,594 2.67
Condmat 16,264 47,594 5.85

Baselines. We evaluate our methods against both popular link
prediction algorithms and state-of-the-art network representation
learning methods. As for link prediction algorithms, we mainly
consider popular heuristic methods with three handcraft indexes,
i.e., Adamic-Adar Score (AA) [1], Jaccard’s Coe�cient (JC) and
Preferential Attachment (PA). Besides, we compare performance
with a matrix factorization based algorithm (MF) [5], which also
learns node latent representations. All these algorithms can achieve
state-of-the-art performance in link prediction. In terms of network
representation learning models, three state-of-the-art models are
evaluated in the experiments. Both Deepwalk [8] and node2vec
[2] employ random walk to sample structural information and
node representations are learned to preserve pairwise similarities
of close nodes on these walks. Line [9] aims at preserving �rst-
order and second-order proximities in concatenated embeddings.
These models were reported to have better performance than above
heuristic link prediction methods [2].
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Table 2: AUC Scores for Link Prediction
Methods Facebook Email PowerGrid CondMat

JC 0.925 ± 0.001 0.821 ± 0.008 0.600 ± 0.005 0.904 ± 0.007
AA 0.927 ± 0.001 0.827 ± 0.007 0.600 ± 0.006 0.903 ± 0.006
PA 0.733 ± 0.002 0.662 ± 0.019 0.555 ± 0.009 0.817 ± 0.006
MF 0.967 ± 0.009 0.814 ± 0.028 0.627 ± 0.027 0.936 ± 0.017

Deepwalk 0.953 ± 0.004 0.719 ± 0.036 0.608 ± 0.030 0.934 ± 0.005
Line 0.928 ± 0.006 0.721 ± 0.042 0.603 ± 0.026 0.917 ± 0.004

Node2Vec 0.951 ± 0.003 0.742 ± 0.046 0.628 ± 0.017 0.943 ± 0.008
PNRL-C 0.994 ± 0.001∗∗ 0.870 ± 0.025∗ 0.664 ± 0.014∗∗ 0.966 ± 0.004∗∗
PNRL-R 0.990 ± 0.001∗∗ 0.882 ± 0.010∗∗∗ 0.668 ± 0.009∗∗ 0.968 ± 0.002∗∗

(*, **, *** indicate signi�cantly better than best baseline at 0.01, 0.001, 0.0001 level in paired t-test.)

Se�ing. Given above four networks, we draw a �xed proportion
of existed edges for training all models, and treat the rest of edges as
test set. We set a �xed training split ratios for all datasets, i.e., 80%
for training and 20% for testing. The prediction quality is measured
by a standard metric, the area under the receiver operating charac-
teristic curve (AUC). The calculation of AUC requires prediction
scores (probabilities) of each node-pairs in test set. Our models
and link prediction baselines can output prediction scores directly.
As for network representation learning baselines, we extract edge
features by utilizing the same composition approach on learned
representations and train a L2-SVM classi�er with under-sampling
to get prediction scores.

To guarantee fairness, the dimension size for all latent repre-
sentation learning models is set as 64. Other relevant parameter
settings are also kept similar. For DeepWalk and node2vec, window
size is 5, walk length is 40 and walks per node is 10; the number
of NEG is set as 5 for both Line and our models; regularization
parameter in PNRL-C is C = 1 as that in the L2-SVM trained for
other representation learning methods. In terms of speci�c param-
eters in our models, we �x η = 1, λW = 0.01, set learning rates as
e1 = 0.001, e2 = 0.001 (with linearly decrease), sampling ratio for
hidden link creation as β = 0.2 in all experiments.
3.2 Evaluation Results
As reported in Table 2, we summarize the average evaluation results
after 5-cross-validation for each method on each dataset. Besides,
we conduct paired t-test to verify the signi�cance of result di�erence
between our models and best performing baselines. The prediction
performance is a�ected by both data sparsity and network type.

Averagely, network representation learning (NRL) baselines out-
perform heuristic link prediction baselines on most datasets. How-
ever, NRL baselines only have similar or even worse performance
compared with MF. Besides, in spite of employing under-sampling,
NRL baselines only achieve second worst performance on Email
dataset and gain similar AUC scores with heuristic methods on
PowerGrid dataset. This demonstrates that the predictive ability of
NRL baselines is still limited.

Compared with NRL baselines, the proposed PNRL models suc-
ceed to improve the predictive ability of network representations
with 2.7%-18.9% higher performance. In particular, PNRL-C achieves
5.7% and 17.3% improvements over the best performing NRL base-
line on PowerGird and Email respectively, and PNRL-R gains 6.4%
and 18.9% higher AUC scores on these two datasets. Meanwhile,
our methods are superior to the best heuristic baseline and MF
method with 7.1%-11.3% and 2.8%-9.6% improvements respectively.

Overall, the proposed PNRL models signi�cantly outperform all
the baselines on the four datasets.

Additionally, PNRL-R performs better than PNRL-C on Email,
PowerGrid and CondMat datasets. It indicates that the ranking
objective better overcomes imbalance than classi�cation objective
with under-sampling on sparse networks.

4 CONCLUSION
In this paper, we propose the predictive network representation
learning model for solving structural link prediction problem. This
model de�nes two objectives for representation learning, i.e., ob-
served structure preservation and hidden link prediction. By jointly
optimizing the two objectives with shared node embeddings, the
learned representations are more predictive and additional link
prediction knowledge are learned. Experiments on the di�erent
types of classical datasets witness the superior performance of the
proposed methods over the other state-of-the art approaches. In
the future work, the prior knowledge of link formation (e.g., social
theory) is expected to be incorporated in sampling strategy, which
will give better supervision for predictive representation learning.
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