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ABSTRACT

The entity set expansion problem is to expand a small set of seed
entities to a more complete set of similar entities. It can be ap-
plied in applications such as web search, item recommendation
and query expansion. Traditionally, people solve this problem by
exploiting the co-occurrence of entities within web pages, where
latent semantic correlation among seed entities cannot be revealed.
We propose a novel approach to solve the problem using knowl-
edge graphs, by considering the deficiency (e.g., incompleteness)
of knowledge graphs. We design an effective ranking model based
on the semantic features of seeds to retrieve the candidate entities.
Extensive experiments on public datasets show that the proposed
solution significantly outperforms the state-of-the-art techniques.
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1 INTRODUCTION

The entity set expansion (ESE) problem is to find similar entities to
a given small set of seed entities. For example, given the seed en-
tities Barack_Obama, John_Kennedy and Franklin_Roosevelt, we
may expect to find entities such as Bill_Clinton and Jimmy_Carter
because they are all US presidents from the Democratic Party. It
can be widely used in many applications such as web search (search
by examples), item recommendation and query expansion [10].
Traditionally, people solve this problem using a web corpus (e.g.,
SEAL [9] and BBR [2]), by evaluating the similarities between can-
didate entities and the seeds based on their surrounding contexts
within the corpus. Entities that co-occur more frequently with the
seeds are likely to have higher similarities. Unfortunately, these
methods are time-consuming since both web crawling and entity
extraction are costly. Moreover, common features shared by the
seeds cannot be revealed by these methods. There have been a
number of path-based similarity measures [7, 8] to evaluate the
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similarity between a pair of entities in knowledge graphs (KGs)
which can be adopted to solve the ESE problem. Metzger et al.
[6] propose a solution to ESE called QBEES based on the common
features shared by the seeds. It however ignores the deficiency
(incompleteness) of the KGs which affects the precision. The associ-
ation rule mining (ARM) algorithm [1] can also be adapted to solve
the ESE problem. However, it lacks of an effective ranking model,
which cannot distinguish the importance of the common features
shared among seeds.

Knowledge graphs such as DBpedia and Freebase are widely
used in the fields of web search and question answering. The facts
in KGs are typically represented by triples (< s, p, 0 >) describing
the properties of the subjects as well as the relations among entities.
We utilize p~ to represent the inverse relation of the predicate p.
The whole KGs can be represented as directed and labeled graphs.
Figure 1 shows an example of a KG. Although huge, exsting KGs
are still incomplete. For example, 71% of people in Freebase lack
place of birth information [4].
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Figure 1: A running example, where a dashed triple <
Apollo_13_(film), starring, Tom_Hanks > is missed.

In this paper, We propose a ranking model to effectively evaluate
the similarity of entities to a small number of given seeds, according
to the semantic correlations (called k-relaxed common semantic fea-
tures) among entities in knowledge graphs. The model is designed
to handle the incompleteness of knowledge graphs. We use an ex-
ample of Figure 1 to give a quick view of the idea. Suppose the user’s
intention is Tom Hanks movies where he plays a leading role and he
issues a query of three seeds, Forrest_Gump, Apollo_13_(film), and
Philadelphia_(film). We may find that two seeds have the same
predicate starring to the same entity Tom_Hanks, which implies
that Tom_Hanks played a role in them. We therefore can apply the
label starring and the entity Tom_Hanks as a 1-relaxed common
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feature among the given seeds. Based on this common feature, we
can find some other entities (e.g. Cast_Away) sharing the same
common feature as the majority of the seeds, and it therefore can
be applied for ranking candidate entities.

2 COMMON SEMMANTIC FEATURE

Definition 2.1 (Semantic Feature). A semantic feature = = eq : P
in a KG K is composed of an anchor entity e,, and a sequence of
labels P = 11 /15/. .. /1.

A semantic feature (SF) is used to represent a common fea-
ture shared by a set of target entities. For example, to describe
the movies where Tom_Hanks played a role, we can apply the SF
mi=Tom_Hanks:starring™. For another example, if we want to de-
fine people who directed movies where Tom_Hanks played a role,
the SF can then be written as: mp=Tom_Hanks:starring™ /director,
which has two predicates to define the relation. The length of a SF
is the number of labels (predicates) in P. It can be larger than one
when P is a tandem of several predicates (e.g., 72), although the
cases of length one (a direct relation) are used more often.

If an entity e has a relation P with the anchor entity e,, we say
that e is a target entity of 7=e4:P, which is denoted as e |= 7. The
set of target entities of a SF w=e,:P is denoted as E(r) = {ele |= 7}.
For a given set of seed entities, we may find some SFs whose target
entities contain all those seed entities. They are defined as the
common semantic features (shorted as CSFs) of the seeds. We use
®(Q) to denote the set of CSFs for the seeds in a query Q. For
example, for the seed entity set { Forrest_Gump, Apollo_13_(film),
Philadelphia_(film)}, SFs m3=Film:type~ and my=
American_films:subject™ are their CSFs.

To overcome the deficiency of KGs, we relax the definition of
CSFs as follows.

Definition 2.2 (k-relaxed CSF). A semantic feature 7 is a k-relaxed
CSF to a set of m entities in Q, if |[E(x) N Q| > m — k.

A k-relaxed CSF r requires that at least m—k entities of the seeds
are target entities of r, i.e., |[E(rr) N Q| = m — k. We use k-CSF to
denote a k-relaxed CSF, and ®F (Q) to represent the set of k-relaxed
CSFs of the seed set Q. To solve the ESE problem using KGs, we
need to follow two steps to rank entities based on the proposed CSF:
1) compute the set of CSFs (&(Q)) according to the given query Q;
2) retrieve and rank the candidate entities (target entities excluding
the seeds) satisfying the detected CSFs in d(Q).

As discussed above, due to the limits of the coverage of KGs, there
may be a very small number (or even not any) of CSFs (of length
one) shared by all the seeds in Q, we therefore apply the relaxation
of CSFs by allowing some seeds not satisfying the CSFs. Moreover,
the length of CSFs can be extended to be larger than one, so as to
include more CSFs indicating indirect common features. However,
the relaxation and extension of CSFs will of course generate more
false positives of common features that may not be desired by the
user. In addition, more CSFs will reduce the search performance as
well. The selection of CSFs for ranking entities, therefore has to be
carefully designed.

Let @ﬁ(Q) be the set of k-CSFs of Q whose length is no more
than h, where k > 0 and A > 1. In our solution, we apply the
union of two sets for ranking entities, i.e., d(Q) = (le ou CD(;I (0),

where @’f (Q) includes k-CSFs of length one, and CD%(Q) includes
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CSFs whose length is extended up to h. However, those CSFs longer
than one will not be relaxed to avoid generating too many false
positive CSFs.

3 RANKING MODEL

The ranking model of entities is designed as follows:

re= Y, dm)xr(rQ)

7e®(Q) A el=rr

1)

It is basically an aggregation of the score of each CSF 7 € ®(Q)
that e satisfies, which is further evaluated as the product of two
components d(r), and r(r, Q), where d(r) is the discriminability
of 7, and r(r, Q) is the relevance of 7 to Q.

3.1 Discriminability of CSFs

It is likely that many CSFs can be found from KGs, although only
some of them are useful for finding similar entities of seeds. For
example, to characterize the seeds, m; is more specific than 3
because |[E(rr1)| < |E(73)|. We therefore need a measure to evaluate
the discriminability of CSFs on finding similar entities. Intuitively,
the discriminability of 7 is then defined as:

@)

Larger |E(r)| means that entities in E(rr) are more loosely corre-
lated in terms of the constraint of . It therefore has a smaller
discriminability of the relevant entities.

3.2 Relevance of CSFs

The relevance of a CSF r to the query Q, is evaluated as:

r(r,Q) = [ | ple.x)
ecQ

where p(e, ) is the probability of e satisfying n. For e |= 7, p(e, )
is naturally evaluated as 1. However, for a relaxed k-CSF, there can
be at most k seeds that do not satisfy x, which may be caused by
the deficiency of the KGs. We therefore need to evaluate p(e, rr) for
those seeds that do not satisfy . Borrowing the idea of collabora-
tive filtering in recommendation systems, we evaluate p(e, 7) by
considering the likelihood of e satisfying similar CSFs of 7.

©)

1 ifel=nx

I(e,n/)w(n/,ﬂ) .
7 otherwise
w(x', 1)

p(ev 7[) = Zn/e‘l’(n)

Z;'r/ e¥(r)

where I(e,7') = 1ife |= «, otherwise I(e, 7 ) = 0; w(rr ,7) =
|EGx )nE(r)|
[E(m)] o
eq : Px} U{r |mr = ex : P} with 7 = e, : P and the length of Py
is one. Obviously, the set of similar CSFs of x, ¥(r), is derived by
substituting the anchor entity (from e, to any other ey) or the path
(from P to any other Py of length one) of = = e, : P respectively.

, which determines the weight of 7 Y(r) = {rr’ |7[’

4 EXPERIMENTS

The DBpedia v3.9 is applied as the KGs of our experiments. Two
test datasets are used in our study. QALD [5], the Question Answer-
ing over Linked Data campaign, aims to answer natural language
questions using linked data sources. After removing the redundant
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Table 1: Comparison on the QALD dataset

solution | seeds | p@5 p@10 p@20 MRR R-pre
SEAL 2 377 .290 .208 .550 .269
BBR 2 340 305 245 446 263
LDSD 2 147 122 .100 .264 113
QBEES 2 507 .400 320 .654 .369
ARM 2 .503 422 322 .662 377
ESER 2 | .547° .460° .372° .699° .457°
SEAL 3 453 363 .267 591 .340
BBR 3 393 335 276 505 298
LDSD 3 170 143 127 270 131
QBEES 3 557 440 362 .688 423
ARM 3 .550 468 372 .665 446
ESER 3 | .613° .498° .387° .773° .501°
SEAL 4 420 350 270 539 354
BBR 4 363 312 .270 .526 .302
LDSD 4 197 .163 138 .308 153
QBEES 4 .557 .453 362 .668 452
ARM 4 527 430 348 716 .420
ESER 4 | .613° .502° .392° .801° .525°
SEAL 5 410 317 .247 .535 .352
BBR 5 .350 323 273 515 .304
LDSD 5 173 145 127 282 153
QBEES 5 520 428 348 .638 .449
ARM 5 .503 418 342 .665 426
ESER 5 | .563° .465° .381° .726° .515°
SEAL mix .447 .347 .249 592 335
BBR mix 373 328 262 477 298
LDSD mix 183 155 137 .292 141
QBEES mix 517 408 328 .626 412
ARM mix .537 443 337 .646 433
ESER | mix |.633% .510° .403% .799° .559°

topics, we get a dataset of 60 topics from QALD-2, QALD-3 and
QALD-4. In INEX-XER 2009 (shorted as INEX with 55 topics) [3],
a topic contains a natural language question asking for a list of
entities. In addition, it also provides several seed entities as the
examples of the desired entities. We use the label ESER (for testID)
to indicate that the test is under the default setting. All significant
tests are conducted using a one-tailed t-test at a significance level
of p = 0.05.

4.1 An Overall Comparison

We first test the performance of the compared solutions using 5
groups of different numbers of seeds. Note that the mix group
contains topics whose numbers of seeds are between 2 to 5. In
general, LDSD [7] performs worse than the others on both datasets,
which shows that a simple semantic distance approach on entities
of KGs is far from judging effective semantic correlations among
entities. Generally, ESER performs the best on almost all the test
cases, with two exceptions beaten by SEAL [9] on the INEX dataset
when the query contains only 2 or 3 seeds. SEAL benefits a lot from
the usage of Google search engine. The way of using frequent item
sets on predicate-object pairs serves the purpose of finding common
features of seeds. However, the lack of an effective ranking model
causes that ARM [1] performs worse than ESER. The notation
denotes significant difference over ARM, the notation ® denotes
significant difference over QBEES [6] in Table 1, and the notation
* denotes significant difference over SEAL in Table 2.
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Table 2: Comparison on the INEX dataset

solution | seeds | p@5 p@10 p@20 MRR R-pre
SEAL 2 412, 388, 331, 542, .327,
BBR 2 304 248 213 418 209
LDSD 2 219 200 .153 461 166
QBEES 2 392 338 288 556  .282
ARM 2 319 287 231 496 244
ESER 2 400, 383, 287, .551, .304.
SEAL 3 462, 433, .354, 547, 377,
BBR 3 292 246 211 470 208
LDSD 3 227 210 172 401 184
QBEES 3 362 317 255 532256
ARM 3 281 260 216 435 224
ESER 3 500, 415, 311, .684F 340,
SEAL 4 423, 383, 319, 530,  .339.
BBR 4 277 235 210 447 213
LDSD 4 246 235 176 408 179
QBEES 4 362 312 234 451 229
ARM 4 292 256 216 493 222
ESER 4 504 446  .341F  .633F  .376F
SEAL 5 377 340 284 418 311
BBR 5 300 250 208 530 219
LDSD 5 300 292 203 535 .208
QBEES 5 246 215 169 342 169
ARM 5 315 267 211 484 239
ESER 5 A492F 4337 336 .629F .381F
SEAL | mix | 473, 398, .305, .644, .330.
BBR mix | 323 277 221 504 251
LDSD | mix | .262  .227  .164 496  .204
QBEES | mix | .423  .371 276 591 .299
ARM mix | 350 304 239 535 273
ESER mix | .515F .440F .350F .701F .409F

When looking into the impact of the number of seeds m on the
performance of the different solutions, we find that most solutions
perform worst when m = 2, which means that there are not enough
seeds to distinguish the common features shared among the seeds.
When m is enlarged from 2 to 5, the performance of SEAL and ESER
basically increases. However, the growth rate is not significant
when m > 3. For ESER, it benefits more from the enlargement of m
on the INEX dataset than on the QALD dataset. This is reasonable
because more seeds help ESER to discover more CSFs in the INEX
dataset which are more implicit than those in QALD.

4.2 Effectiveness of The Ranking Model

Two components of ESER affect the performance of its ranking
model: d(rr) and r(sr, Q). This experiment is designed to look into
the performance of individual components by varying the overall
ranking model. When a component is not applied in the ranking
model, we simply set it 1. The results of the tests on two datasets are
shown in Table 3 and Table 4 respectively. We apply 4 variations of
the 2 components, with none of them applied as the baseline (in this
case, candidate entities are ranked simply based on the number of k-
CSFs they satisty). Note that this experiment is conducted over the
mix of QALD and the mix of INEX datasets individually. The results
show that the 2 individual components can improve the search
performance over the baseline approach (the first row of the two
tables). The best performance is achieved when both components
are applied (ESER), which is exactly the proposed ranking model.
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Table 3: Alternative ranking models on the QALD

testID | d(7) |r(m, Q)| p@5 p@10 p@20 MRR R-pre
ql 1 1 493 403 326 .695 399
q2 |Eqn.2 1 560% 452 359 739 453
q3 1 Eqn. 3 | 550% 442« 350% .771% .462x
ESER [Eqn. 2| Eqn. 3 [.633% .510% .403+ .799% .559x
Table 5: Strategies of picking CSFs on QALD
testID Q) p@5 p@10 p@20 MRR R-pre
q5 2%(Q) 560 462 371 663 .498
q6 1(0Q) 593 478 383 .719%  .525
q7 %(Q) 613« 490 384 .769% 534
q8 3(Q) 623% .493% 386 .783% 537
9 |PUQ)UDQ)[ 583 482+« 394x .714x 527«
q10 |21(Q)UPY(Q) [ 607+ 498+ .401x .739% .549«
q11 |21(Q)UPL(Q) [ 640+ .520% 418+ .789% .548x
q12 [ ®2(Q)UPNQ) | .623% 507+ .402% .786% .556%
q13 [®%(Q)UPL(Q) | .640« 515+ 408+ .801x .553x
q14 [PHQ)U2(Q) [ 643+ 518+ 408 793+ .547x
ESER | ®3(Q)UP)(Q) | 633« 510« .403x 799+ .559%
qle |2}(Q)UPL(Q) [ 647+ 517x .410% .812x .556%
q17 [®3(Q)UP2(Q) | 650+ 520+ 410+ 804+ .551x
q18 | ®3(Q)UPQ) |.657+ .523x .412x .812% .552%

4.3 Impacts of Selecting CSFs

ESER has two parameters that determine the set ®(Q) of CSFs
used for retrieving and ranking entities, and therefore affect the
search performance. One is the parameter k used in discovering
k-CSFs. The other is the parameter h used for constraining the
length of CSFs. In this experiment, we test the impacts of these two
parameters using the mix of QALD and the mix of INEX. The results
are shown in Table 5 and Table 6. The significant tests are compared
with the baselines (q5 and i5) where k = 0 and h = 1. For q5~q8
and i5~i8, we set h = 1, and enlarge k from 0 to 3. According to
the results, the performance basically increases when k is enlarged,
showing the effectiveness of k-relax CSFs for picking CSFs when
the length of CSFs is limited to one.

When studying the impacts of relaxing 2-hop CSFs, we find that
it may slightly reduce the search performance (e.g., q13 and q14
v.s. q12) on the QALD dataset. However, for INEX dataset, a small
relaxation (k = 1) of 2-hop CSFs is helpful. This is also because
INEX has a lower mapping quality and the relaxation does help
to retrieve more CSFs. Considering that the relaxation of 2-hop
CSFs often incurs more false positive CSFs, and therefore drops the
search performance, we apply CID? @uU CDg(Q) as the default setting

of ®(Q) for picking CSFs.

5 CONCLUSIONS

In this paper, we address the problem of entity set expansion by
using KGs. We propose a concept called common semantic feature,
to describe the common features shared by the seed entities, as
the basis of discovering and ranking candidate entities. Through
extensive experimental studies, we find that the proposed solution
is very suitable for ESE topics which have good coverage of entities
and predicates (relations) in the KGs. Even for those topics that
do not have good information coverage in KGs, our noise-resistant
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Table 4: Alternative ranking models on the INEX

testiD | d(x) | r(m, Q) | p@5 p@10 p@20 MRR R-pre
i1 1 1 435 350 271 661 309
i2 |Eqn.2 1 454 410%  313% .689  .362
i3 1 Eqn. 3 | 496« .427x .319% .725% .365%
ESER |Eqn. 2| Eqn. 3 |.515% .440% .350% .701 .409%
Table 6: Strategies of picking CSFs on INEX
testID D(Q) p@5 p@10 p@20 MRR R-pre
i5 29(Q) 458 392 299 578  .349
i6 21(Q) 500 .433% .328% .672% .387x
i7 22(Q) 492 429%  332% 697+ .390%
i8 3(Q) 512 448+« 344% 717 396%
i9 [o0(QUPNQ)[ 485+ 412 324 611 .381x
i10 [21(Q)U®Y(Q) | 519+ .442x 347 .675% .408x
i11 | ®{(Q)UPL(Q)|.538+ .473x 345+ 696+ .418x
i12 [®2(Q)UPNQ)| 508 437 .350% .701x .409x
i13 [@X(Q)UPL(Q) [ 527+ 469+ 349+ .721x .421=
i14 |0H(Q)UPS(Q) [ 519% 469+ 347x .720% .418x
ESER | @3(Q)UPY(Q) [ 515+ .440% 350% .701x 409+
ile [2I(Q)UPLQ) | .531% 471x 349+ 721 .421x
i17 | 0J(Q)UPL(Q) [ 519%  469x  347x  .720% 418«
i18 [ @I(Q)UPHQ) | 527+ .471% .346% .720% .416x

solution may also work by discovering some common semantic
features shared by the seeds.
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