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ABSTRACT
�e entity set expansion problem is to expand a small set of seed
entities to a more complete set of similar entities. It can be ap-
plied in applications such as web search, item recommendation
and query expansion. Traditionally, people solve this problem by
exploiting the co-occurrence of entities within web pages, where
latent semantic correlation among seed entities cannot be revealed.
We propose a novel approach to solve the problem using knowl-
edge graphs, by considering the de�ciency (e.g., incompleteness)
of knowledge graphs. We design an e�ective ranking model based
on the semantic features of seeds to retrieve the candidate entities.
Extensive experiments on public datasets show that the proposed
solution signi�cantly outperforms the state-of-the-art techniques.
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1 INTRODUCTION
�e entity set expansion (ESE) problem is to �nd similar entities to
a given small set of seed entities. For example, given the seed en-
tities Barack Obama, John Kennedy and Franklin Roosevelt , we
may expect to �nd entities such as Bill Clinton and Jimmy Carter
because they are all US presidents from the Democratic Party. It
can be widely used in many applications such as web search (search
by examples), item recommendation and query expansion [10].

Traditionally, people solve this problem using a web corpus (e.g.,
SEAL [9] and BBR [2]), by evaluating the similarities between can-
didate entities and the seeds based on their surrounding contexts
within the corpus. Entities that co-occur more frequently with the
seeds are likely to have higher similarities. Unfortunately, these
methods are time-consuming since both web crawling and entity
extraction are costly. Moreover, common features shared by the
seeds cannot be revealed by these methods. �ere have been a
number of path-based similarity measures [7, 8] to evaluate the
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similarity between a pair of entities in knowledge graphs (KGs)
which can be adopted to solve the ESE problem. Metzger et al.
[6] propose a solution to ESE called QBEES based on the common
features shared by the seeds. It however ignores the de�ciency
(incompleteness) of the KGs which a�ects the precision. �e associ-
ation rule mining (ARM) algorithm [1] can also be adapted to solve
the ESE problem. However, it lacks of an e�ective ranking model,
which cannot distinguish the importance of the common features
shared among seeds.

Knowledge graphs such as DBpedia and Freebase are widely
used in the �elds of web search and question answering. �e facts
in KGs are typically represented by triples (< s,p,o >) describing
the properties of the subjects as well as the relations among entities.
We utilize p− to represent the inverse relation of the predicate p.
�e whole KGs can be represented as directed and labeled graphs.
Figure 1 shows an example of a KG. Although huge, exsting KGs
are still incomplete. For example, 71% of people in Freebase lack
place of birth information [4].

producer

subject

Forrest_Gump

Tom_Hanks

Gary_Sinise

Robert_Zemeckis

Steve_Starkey

Film

Apollo_13_(film)

Ron_Howard

director

Brian_Grazer

producer

Philadelphia_(film)

type

Jonathan_Demme

Edward_Saxon

Cast_Away

director type

starringproducer

director

starring
starring

type

Jack_Rapke

director

producer

American_films

subject

subject

subject

Films_directed_by

_Robert_Zemeckis

subject

subject

Contact

director

type

starring

starring

producer

Figure 1: A running example, where a dashed triple <
Apollo 13 (f ilm), starrinд,Tom Hanks > is missed.

In this paper, We propose a ranking model to e�ectively evaluate
the similarity of entities to a small number of given seeds, according
to the semantic correlations (calledk-relaxed common semantic fea-
tures) among entities in knowledge graphs. �e model is designed
to handle the incompleteness of knowledge graphs. We use an ex-
ample of Figure 1 to give a quick view of the idea. Suppose the user’s
intention is Tom Hanks movies where he plays a leading role and he
issues a query of three seeds, Forrest Gump,Apollo 13 (f ilm), and
Philadelphia (f ilm). We may �nd that two seeds have the same
predicate starrinд to the same entity Tom Hanks , which implies
that Tom Hanks played a role in them. We therefore can apply the
label starrinд and the entity Tom Hanks as a 1-relaxed common
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feature among the given seeds. Based on this common feature, we
can �nd some other entities (e.g. Cast Away) sharing the same
common feature as the majority of the seeds, and it therefore can
be applied for ranking candidate entities.

2 COMMON SEMMANTIC FEATURE
De�nition 2.1 (Semantic Feature). A semantic feature π = ea : P

in a KG K is composed of an anchor entity ea , and a sequence of
labels P = l1/l2/. . . /ln .

A semantic feature (SF) is used to represent a common fea-
ture shared by a set of target entities. For example, to describe
the movies where Tom Hanks played a role, we can apply the SF
π1=Tom Hanks:starrinд−. For another example, if we want to de-
�ne people who directed movies where Tom Hanks played a role,
the SF can then be wri�en as: π2=Tom Hanks:starrinд−/director ,
which has two predicates to de�ne the relation. �e length of a SF
is the number of labels (predicates) in P . It can be larger than one
when P is a tandem of several predicates (e.g., π2), although the
cases of length one (a direct relation) are used more o�en.

If an entity e has a relation P with the anchor entity ea , we say
that e is a target entity of π=ea :P , which is denoted as e |= π . �e
set of target entities of a SF π=ea :P is denoted as E(π ) = {e |e |= π }.
For a given set of seed entities, we may �nd some SFs whose target
entities contain all those seed entities. �ey are de�ned as the
common semantic features (shorted as CSFs) of the seeds. We use
Φ(Q) to denote the set of CSFs for the seeds in a query Q . For
example, for the seed entity set {Forrest Gump, Apollo 13 (f ilm),
Philadelphia (f ilm)}, SFs π3=Film:type− and π4=
American f ilms:subject− are their CSFs.

To overcome the de�ciency of KGs, we relax the de�nition of
CSFs as follows.

De�nition 2.2 (k-relaxed CSF). A semantic feature π is a k-relaxed
CSF to a set ofm entities in Q , if |E(π ) ∩Q | ≥ m − k .

A k-relaxed CSF π requires that at leastm−k entities of the seeds
are target entities of π , i.e., |E(π ) ∩Q | ≥ m − k . We use k-CSF to
denote a k-relaxed CSF, and Φk (Q) to represent the set of k-relaxed
CSFs of the seed set Q . To solve the ESE problem using KGs, we
need to follow two steps to rank entities based on the proposed CSF:
1) compute the set of CSFs (Φ̃(Q)) according to the given query Q ;
2) retrieve and rank the candidate entities (target entities excluding
the seeds) satisfying the detected CSFs in Φ̃(Q).

As discussed above, due to the limits of the coverage of KGs, there
may be a very small number (or even not any) of CSFs (of length
one) shared by all the seeds in Q , we therefore apply the relaxation
of CSFs by allowing some seeds not satisfying the CSFs. Moreover,
the length of CSFs can be extended to be larger than one, so as to
include more CSFs indicating indirect common features. However,
the relaxation and extension of CSFs will of course generate more
false positives of common features that may not be desired by the
user. In addition, more CSFs will reduce the search performance as
well. �e selection of CSFs for ranking entities, therefore has to be
carefully designed.

Let Φkh (Q) be the set of k-CSFs of Q whose length is no more
than h, where k ≥ 0 and h ≥ 1. In our solution, we apply the
union of two sets for ranking entities, i.e., Φ̃(Q) = Φk1 (Q)

⋃
Φ0
h (Q),

where Φk1 (Q) includes k-CSFs of length one, and Φ0
h (Q) includes

CSFs whose length is extended up to h. However, those CSFs longer
than one will not be relaxed to avoid generating too many false
positive CSFs.

3 RANKING MODEL
�e ranking model of entities is designed as follows:

r (e) =
∑

π ∈Φ̃(Q ) ∧ e |=π
d(π ) ∗ r (π ,Q) (1)

It is basically an aggregation of the score of each CSF π ∈ Φ̃(Q)
that e satis�es, which is further evaluated as the product of two
components d(π ), and r (π ,Q), where d(π ) is the discriminability
of π , and r (π ,Q) is the relevance of π to Q .

3.1 Discriminability of CSFs
It is likely that many CSFs can be found from KGs, although only
some of them are useful for �nding similar entities of seeds. For
example, to characterize the seeds, π1 is more speci�c than π3
because |E(π1)| � |E(π3)|. We therefore need ameasure to evaluate
the discriminability of CSFs on �nding similar entities. Intuitively,
the discriminability of π is then de�ned as:

d(π ) = 1
|E(π )| (2)

Larger |E(π )| means that entities in E(π ) are more loosely corre-
lated in terms of the constraint of π . It therefore has a smaller
discriminability of the relevant entities.

3.2 Relevance of CSFs
�e relevance of a CSF π to the query Q , is evaluated as:

r (π ,Q) =
∏
e ∈Q

p(e,π ) (3)

where p(e,π ) is the probability of e satisfying π . For e |= π , p(e,π )
is naturally evaluated as 1. However, for a relaxed k-CSF, there can
be at most k seeds that do not satisfy π , which may be caused by
the de�ciency of the KGs. We therefore need to evaluate p(e,π ) for
those seeds that do not satisfy π . Borrowing the idea of collabora-
tive �ltering in recommendation systems, we evaluate p(e,π ) by
considering the likelihood of e satisfying similar CSFs of π .

p(e,π ) =


1 if e |= π∑
π ′ ∈Ψ(π ) I (e,π

′ )w (π ′,π )∑
π ′ ∈Ψ(π )w (π

′
,π ) otherwise

where I (e,π ′) = 1 if e |= π
′ , otherwise I (e,π ′) = 0; w(π ′ ,π ) =

|E(π ′ )∩E(π ) |
|E(π ) | , which determines the weight of π ′ ; Ψ(π ) = {π ′ |π ′ =

ea : Px }
⋃{π ′ |π ′ = ex : P} with π = ea : P and the length of Px

is one. Obviously, the set of similar CSFs of π , Ψ(π ), is derived by
substituting the anchor entity (from ea to any other ex ) or the path
(from P to any other Px of length one) of π = ea : P respectively.

4 EXPERIMENTS
�e DBpedia v3.9 is applied as the KGs of our experiments. Two
test datasets are used in our study. QALD [5], the�estion Answer-
ing over Linked Data campaign, aims to answer natural language
questions using linked data sources. A�er removing the redundant

Short Research Paper SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1102



Table 1: Comparison on the QALD dataset
solution seeds p@5 p@10 p@20 MRR R-pre
SEAL 2 .377 .290 .208 .550 .269
BBR 2 .340 .305 .245 .446 .263
LDSD 2 .147 .122 .100 .264 .113
QBEES 2 .507 .400 .320 .654 .369
ARM 2 .503 .422 .322 .662 .377
ESER 2 .547•∗ .460•∗ .372•∗ .699•∗ .457•∗
SEAL 3 .453 .363 .267 .591 .340
BBR 3 .393 .335 .276 .505 .298
LDSD 3 .170 .143 .127 .270 .131
QBEES 3 .557 .440 .362 .688 .423
ARM 3 .550 .468 .372 .665 .446
ESER 3 .613•∗ .498•∗ .387•∗ .773•∗ .501•∗
SEAL 4 .420 .350 .270 .539 .354
BBR 4 .363 .312 .270 .526 .302
LDSD 4 .197 .163 .138 .308 .153
QBEES 4 .557 .453 .362 .668 .452
ARM 4 .527 .430 .348 .716 .420
ESER 4 .613•∗ .502•∗ .392•∗ .801•∗ .525•∗
SEAL 5 .410 .317 .247 .535 .352
BBR 5 .350 .323 .273 .515 .304
LDSD 5 .173 .145 .127 .282 .153
QBEES 5 .520 .428 .348 .638 .449
ARM 5 .503 .418 .342 .665 .426
ESER 5 .563•∗ .465•∗ .381•∗ .726•∗ .515•∗
SEAL mix .447 .347 .249 .592 .335
BBR mix .373 .328 .262 .477 .298
LDSD mix .183 .155 .137 .292 .141
QBEES mix .517 .408 .328 .626 .412
ARM mix .537 .443 .337 .646 .433
ESER mix .633•∗ .510•∗ .403•∗ .799•∗ .559•∗

Table 2: Comparison on the INEX dataset
solution seeds p@5 p@10 p@20 MRR R-pre
SEAL 2 .412∗ .388∗ .331∗ .542∗ .327∗
BBR 2 .304 .248 .213 .418 .209
LDSD 2 .219 .200 .153 .461 .166
QBEES 2 .392 .338 .288 .556 .282
ARM 2 .319 .287 .231 .496 .244
ESER 2 .400∗ .383∗ .287∗ .551∗ .304∗
SEAL 3 .462∗ .433∗ .354∗ .547∗ .377∗
BBR 3 .292 .246 .211 .470 .208
LDSD 3 .227 .210 .172 .401 .184
QBEES 3 .362 .317 .255 .532 .256
ARM 3 .281 .260 .216 .435 .224
ESER 3 .500∗ .415∗ .311∗ .684?∗ .340∗
SEAL 4 .423∗ .383∗ .319∗ .530∗ .339∗
BBR 4 .277 .235 .210 .447 .213
LDSD 4 .246 .235 .176 .408 .179
QBEES 4 .362 .312 .234 .451 .229
ARM 4 .292 .256 .216 .493 .222
ESER 4 .504?∗ .446?∗ .341?∗ .633?∗ .376?∗
SEAL 5 .377 .340 .284 .418 .311
BBR 5 .300 .250 .208 .530 .219
LDSD 5 .300 .292 .203 .535 .208
QBEES 5 .246 .215 .169 .342 .169
ARM 5 .315 .267 .211 .484 .239
ESER 5 .492?∗ .433?∗ .336?∗ .629?∗ .381?∗
SEAL mix .473∗ .398∗ .305∗ .644∗ .330∗
BBR mix .323 .277 .221 .504 .251
LDSD mix .262 .227 .164 .496 .204
QBEES mix .423 .371 .276 .591 .299
ARM mix .350 .304 .239 .535 .273
ESER mix .515?∗ .440?∗ .350?∗ .701?∗ .409?∗

topics, we get a dataset of 60 topics from QALD-2, QALD-3 and
QALD-4. In INEX-XER 2009 (shorted as INEX with 55 topics) [3],
a topic contains a natural language question asking for a list of
entities. In addition, it also provides several seed entities as the
examples of the desired entities. We use the label ESER (for testID)
to indicate that the test is under the default se�ing. All signi�cant
tests are conducted using a one-tailed t-test at a signi�cance level
of p = 0.05.

4.1 An Overall Comparison
We �rst test the performance of the compared solutions using 5
groups of di�erent numbers of seeds. Note that the mix group
contains topics whose numbers of seeds are between 2 to 5. In
general, LDSD [7] performs worse than the others on both datasets,
which shows that a simple semantic distance approach on entities
of KGs is far from judging e�ective semantic correlations among
entities. Generally, ESER performs the best on almost all the test
cases, with two exceptions beaten by SEAL [9] on the INEX dataset
when the query contains only 2 or 3 seeds. SEAL bene�ts a lot from
the usage of Google search engine. �e way of using frequent item
sets on predicate-object pairs serves the purpose of �nding common
features of seeds. However, the lack of an e�ective ranking model
causes that ARM [1] performs worse than ESER. �e notation ∗
denotes signi�cant di�erence over ARM, the notation • denotes
signi�cant di�erence over QBEES [6] in Table 1, and the notation
? denotes signi�cant di�erence over SEAL in Table 2.

When looking into the impact of the number of seedsm on the
performance of the di�erent solutions, we �nd that most solutions
perform worst whenm = 2, which means that there are not enough
seeds to distinguish the common features shared among the seeds.
Whenm is enlarged from 2 to 5, the performance of SEAL and ESER
basically increases. However, the growth rate is not signi�cant
whenm > 3. For ESER, it bene�ts more from the enlargement ofm
on the INEX dataset than on the QALD dataset. �is is reasonable
because more seeds help ESER to discover more CSFs in the INEX
dataset which are more implicit than those in QALD.

4.2 E�ectiveness of �e Ranking Model
Two components of ESER a�ect the performance of its ranking
model: d(π ) and r (π ,Q). �is experiment is designed to look into
the performance of individual components by varying the overall
ranking model. When a component is not applied in the ranking
model, we simply set it 1. �e results of the tests on two datasets are
shown in Table 3 and Table 4 respectively. We apply 4 variations of
the 2 components, with none of them applied as the baseline (in this
case, candidate entities are ranked simply based on the number of k-
CSFs they satisfy). Note that this experiment is conducted over the
mix of QALD and the mix of INEX datasets individually. �e results
show that the 2 individual components can improve the search
performance over the baseline approach (the �rst row of the two
tables). �e best performance is achieved when both components
are applied (ESER), which is exactly the proposed ranking model.
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Table 3: Alternative ranking models on the QALD

testID d (π ) r (π , Q ) p@5 p@10 p@20 MRR R-pre
q1 1 1 .493 .403 .326 .695 .399
q2 Eqn. 2 1 .560∗ .452 .359 .739 .453
q3 1 Eqn. 3 .550∗ .442∗ .350∗ .771∗ .462∗

ESER Eqn. 2 Eqn. 3 .633∗ .510∗ .403∗ .799∗ .559∗

Table 4: Alternative ranking models on the INEX

testID d (π ) r (π , Q ) p@5 p@10 p@20 MRR R-pre
i1 1 1 .435 .350 .271 .661 .309
i2 Eqn. 2 1 .454 .410∗ .313∗ .689 .362
i3 1 Eqn. 3 .496∗ .427∗ .319∗ .725∗ .365∗

ESER Eqn. 2 Eqn. 3 .515∗ .440∗ .350∗ .701 .409∗

Table 5: Strategies of picking CSFs on QALD

testID Φ̃(Q ) p@5 p@10 p@20 MRR R-pre
q5 Φ0

1(Q ) .560 .462 .371 .663 .498
q6 Φ1

1(Q ) .593 .478 .383 .719∗ .525
q7 Φ2

1(Q ) .613∗ .490 .384 .769∗ .534
q8 Φ3

1(Q ) .623∗ .493∗ .386 .783∗ .537
q9 Φ0

1(Q )
⋃

Φ0
2(Q ) .583 .482∗ .394∗ .714∗ .527∗

q10 Φ1
1(Q )

⋃
Φ0
2(Q ) .607∗ .498∗ .401∗ .739∗ .549∗

q11 Φ1
1(Q )

⋃
Φ1
2(Q ) .640∗ .520∗ .418∗ .789∗ .548∗

q12 Φ2
1(Q )

⋃
Φ0
2(Q ) .623∗ .507∗ .402∗ .786∗ .556∗

q13 Φ2
1(Q )

⋃
Φ1
2(Q ) .640∗ .515∗ .408∗ .801∗ .553∗

q14 Φ2
1(Q )

⋃
Φ2
2(Q ) .643∗ .518∗ .408∗ .793∗ .547∗

ESER Φ3
1(Q )

⋃
Φ0
2(Q ) .633∗ .510∗ .403∗ .799∗ .559∗

q16 Φ3
1(Q )

⋃
Φ1
2(Q ) .647∗ .517∗ .410∗ .812∗ .556∗

q17 Φ3
1(Q )

⋃
Φ2
2(Q ) .650∗ .520∗ .410∗ .804∗ .551∗

q18 Φ3
1(Q )

⋃
Φ3
2(Q ) .657∗ .523∗ .412∗ .812∗ .552∗

Table 6: Strategies of picking CSFs on INEX

testID Φ̃(Q ) p@5 p@10 p@20 MRR R-pre
i5 Φ0

1(Q ) .458 .392 .299 .578 .349
i6 Φ1

1(Q ) .500 .433∗ .328∗ .672∗ .387∗
i7 Φ2

1(Q ) .492 .429∗ .332∗ .697∗ .390∗
i8 Φ3

1(Q ) .512 .448∗ .344∗ .717∗ .396∗
i9 Φ0

1(Q )
⋃

Φ0
2(Q ) .485∗ .412 .324 .611 .381∗

i10 Φ1
1(Q )

⋃
Φ0
2(Q ) .519∗ .442∗ .347∗ .675∗ .408∗

i11 Φ1
1(Q )

⋃
Φ1
2(Q ) .538∗ .473∗ .345∗ .696∗ .418∗

i12 Φ2
1(Q )

⋃
Φ0
2(Q ) .508 .437∗ .350∗ .701∗ .409∗

i13 Φ2
1(Q )

⋃
Φ1
2(Q ) .527∗ .469∗ .349∗ .721∗ .421∗

i14 Φ2
1(Q )

⋃
Φ2
2(Q ) .519∗ .469∗ .347∗ .720∗ .418∗

ESER Φ3
1(Q )

⋃
Φ0
2(Q ) .515∗ .440∗ .350∗ .701∗ .409∗

i16 Φ3
1(Q )

⋃
Φ1
2(Q ) .531∗ .471∗ .349∗ .721∗ .421∗

i17 Φ3
1(Q )

⋃
Φ2
2(Q ) .519∗ .469∗ .347∗ .720∗ .418∗

i18 Φ3
1(Q )

⋃
Φ3
2(Q ) .527∗ .471∗ .346∗ .720∗ .416∗

4.3 Impacts of Selecting CSFs
ESER has two parameters that determine the set Φ̃(Q) of CSFs
used for retrieving and ranking entities, and therefore a�ect the
search performance. One is the parameter k used in discovering
k-CSFs. �e other is the parameter h used for constraining the
length of CSFs. In this experiment, we test the impacts of these two
parameters using the mix of QALD and the mix of INEX.�e results
are shown in Table 5 and Table 6. �e signi�cant tests are compared
with the baselines (q5 and i5) where k = 0 and h = 1. For q5∼q8
and i5∼i8, we set h = 1, and enlarge k from 0 to 3. According to
the results, the performance basically increases when k is enlarged,
showing the e�ectiveness of k-relax CSFs for picking CSFs when
the length of CSFs is limited to one.

When studying the impacts of relaxing 2-hop CSFs, we �nd that
it may slightly reduce the search performance (e.g., q13 and q14
v.s. q12) on the QALD dataset. However, for INEX dataset, a small
relaxation (k = 1) of 2-hop CSFs is helpful. �is is also because
INEX has a lower mapping quality and the relaxation does help
to retrieve more CSFs. Considering that the relaxation of 2-hop
CSFs o�en incurs more false positive CSFs, and therefore drops the
search performance, we apply Φ3

1(Q)
⋃

Φ0
2(Q) as the default se�ing

of Φ̃(Q) for picking CSFs.

5 CONCLUSIONS
In this paper, we address the problem of entity set expansion by
using KGs. We propose a concept called common semantic feature,
to describe the common features shared by the seed entities, as
the basis of discovering and ranking candidate entities. �rough
extensive experimental studies, we �nd that the proposed solution
is very suitable for ESE topics which have good coverage of entities
and predicates (relations) in the KGs. Even for those topics that
do not have good information coverage in KGs, our noise-resistant

solution may also work by discovering some common semantic
features shared by the seeds.
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