
Retrieval Activities in a Database Consisting of

Heterogeneous Collections of Structured Text

Forbes J. Burkowski

Department of Computer Science
University of Waterloo

Waterloo, Canada

Abstract

The first part of this paper briefly describes a
mathematical framework (called the containment model)
that provides the operations and data structures for a text
dominated database with a hierarchical structure. The
database is considered to be a hierarchical collection of
contiguous extents each extent being a word, word phrase,
text element or non-text element. The filter operations
making up a search command are expressed in terms of
containment criteria that specify whether a contiguous
extent will be selected or rejected during a search. This
formalism, comprised of the mathematical framework and
its associated language, defines a conceptual layer upon
which we can construct a well-defined higher level layer,
specifically the user interface that serves to provide a level
of functionality that is closer to the needs of the user and
the application domain.

With the conceptual layer established, we go on to
describe the design and implementation of a versatile
interface which handles queries that seaich and navigate a
heterogeneous collection of structured documents.
Interface functionality is provided by a set of “worker”
modules supported by an “environment” that is the same
for all interfaces. The interface environment allows a
worker to communicate with the underlying text retrieval
engine using a well-defined command protocol that is
based on a small set of filter operators. The overall
design emphasizes: a) interface flexibility for a variety of
search and browsing capabilities, b) the modular
independence of the interface with respect to its underlying
retrieval engine, and c) the advantages to be accrued by
defining retrieval commands using operators that are part
of a text algebra that provides a sound theoretical
foundation for the database.

Permission to copy without fee all or part of this material is
grantsd provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
15th Ann Int’1 SIGIR ‘92/Denmark-6/92
@1992 ACM 0-89791.524.0/92/0006/01 1200.$1.50

1. Introduction

It can be argued that the main strength of a relational
database is the relational model at its foundation. As
Date (1990, pg. 12) observes:

“Thanks to this solid foundation, relational systems
behave in well-defined ways; and (possibly without
consciously realizing the fact) users have a simple
model of that behaviour in their mind, one that enables
them to predict with confidence what the system will
do in any given situation. There are (or should be) no
surprises. This predictability means that user
interfaces are easy to understand, document, teach,
learn, use, and remember.”

Recently a number of researchers have developed models
for text databases. Research in this area includes Gonnet

and Tompa (1987), Gyssens, Paredaens, and Van Gucht
(1989), and Tague, Salminen, and McClellen (1991).
More recently, Burkowski (1992) describes an algebra for
hierarchical text dominated databases. In this model the
database is considered to be a hierarchical collection of
contiguous extents each extent being a word, word phrase,
text element (eg. chapter, section, etc.) or non-text
element (eg. bitmap) and the filter operations making up a
search command are expressed in terms of containment
criteria that specify whether a contiguous extent will be
selected or rejected during a search. This containment
model is meant to provide a foundation for structured text
databases that is as “solid” as the relational model
foundation provided for relational databases.

Text databases can utilize a variety of retrieval techniques.
As described by van Rijsbergen (1979, pg. 2), systems
characterized as providing data retrieval typically use
Boolean queries to define exact match criteria while
information retrieval systems employ probabilistic
techniques that foster relevance feedback strategies. An
interesting paper by Cooper (1983) distinguishes the use
of faceted searching and coordination-level matching in
query formulations. Some system designers utilize
Boolean queries for databases in which probabilistic
techniques are deemed to be inappropriate. For example,
the Oxford English Dictionary project (Gonnet (1987))

112



employs Boolean queries for dictionary searches while
Hoppe, et al. (1990) rely on Boolean oriented retrieval

tactics and strategies for “factual information retrieval”.
McAlpine and Ingwersen (1989) use exact match Boolean
logic in the EUROMATH project. Another interesting
tactic is to use complex Boolean retrieval “behind” an
interface that presents a more effective sophisticated yet
friendly interaction with the user. Especially noteworthy
is the work done by Anick, Flynn and Hansen (199 1) who
use “Query Reformulation Workspaces” to help overcome
the traditional shortcomings of the Boolean query.

While many systems tend to be at one extreme (Data
Retrieval) or the other (Information Retrieval) there is a
functional middle ground that can benefit from the
marriage of both types of query facilities. Sacks-Davis,
Wallis and Wilkinson (1990) use an initial Boolean query
to extract a subset of documents that are then ranked.

1.1 Objectives

This paper will describe the containment model and the
mathematical framework (text hierarchy) in which it
works. We then go on to demonstrate that typical
Boolean queries are really containment specifications.
This is done by presenting examples that illustrate the
syntax of the Retrieval Command String (RCS) protocol
between a user interface and its underlying (usually server
resident) retrieval engine. This RCS facility is then
adapted to provide statistical ranking of the search results
thus extending the model into the IR application domain.

The primary purpose of this paper is to present a unifying
model that can promote the synergistic cooperation of
both Boolean and statistical ranking methodologies. We
then show how the model can be utilized by describing a
modular, flexible and expandable user interface that
interacts with the underlying retrieval engine by using the
Retrieval Command Strings defined earlier. Readers may
wish to contrast this approach with other client/server
protocols such as SFQL specified by the ATA/AIA
Subcommittee (1990) and Z39.50 prepared by NISO
(1989).

Since the containment model assumes the existence of a
structured text hierarchy
such a database.

1.2 Structured Text

we start by detining the natute of

Recent trends have demonstrated a rapid increase in the
generation of text collections comprised of structured
documents that incorporate descriptive markup to define
both the logical model and the layout model of its
constituents. While many text collections use customized
or in-house markup, there has been a definite shift toward

the use of markup facilities provided by popular standards
such as SGML and ODA (described in reports from the
International Standards Organization, (1986) and (1988)
respectively). As the acceptance of standardized markup
spreads we can expect even greater quantities of structured
on-line text with a concomitant demand to have retrieval
operations utilize and react to the logical tags and layout
tags embedded in the text.

Typical applications include storage and retrieval of
reference material, encyclopedias, legal precedents,
educational presentations, books, and journal
publications. Raymond (1991) describes the use of text
&tabases for retention and rernevrd of source code.

1.3 !Xmacte ristics of the Str uctured Text Database

The following points will describe those features of a
structured text database that are germane to the scope of
this paptm

1)

2)

3)

Heterogeneity

The tagging scheme may differ across the various
constituents of the database. For example, if the
database includes the complete works of Shakespeare
we would expect the collection of plays to have a
structure that is different from that of the collection
of sonnets.

Multi-media

Even though retrieval activities typically rely on the
database being text dominated, presentation of the
data may include images and sound.

Hierarchical Layers

The tags embedded in the text can have more than one

PWPOSe. They may determine the logical structure of
the text, for example, delimiting the nested extents
that represent chapters, sections, subsections, etc. or
they may specify the layout (presentation formats) of
the text when it is displayed. Although both sets of
tags coexist in the same text they each define a
hierarchy of nested extents in which there is no
partial overlap. For example, two extents of the
logical structure will be either disjoint or one will be
nested in the other. However, there may be overlap
of extents across the two hierarchies, for example, a
page from the layout hierarchy may partially overlap
two consecutive chapters of the logical hierarchy.

As noted by Meghini, Rabitti and Thanos (1991), it is
highly advantageous to have another set of tags that define
a semantic layer for the text. This layer (which may
involve multiple levels with a hierarchical organization)

113



serves to give a text extent some particular meaning that
goes beyond its word content. For example, the tags in

ccity>Washingtonc/city>

clearly identify this single word text extent as the name of
a city. Another approach has been promoted by Rau and
Jacobs (199 1) using a method called segmented databases.
The keywords are divided into segments that create
conceptual categories of keywords (for example, a
‘company_name’ segment).

1.4 Desire Goa 1sof the Text Rerneval Svstem

The following list defines some of the more important
capabilities that should be expected in a database that
contains heterogeneous text collections:

1) Data Independence

The user interface should not be required to know
how the text collection and its index facilities are
managed. Ideally, it will accomplish retrieval
activities by dealing with a conceptual model of the
database expressing search operands using symbols
that are mapped to their physical associations through
the use of tables and indexes that are retained by an
underlying retrieval engine. A major goal is to
isolate the complexity of the retrieval engine by
encapsulating it in a module that will respond to
simple command strings.

2) Utilization of the Various Layers of the Hierarchy

Searching and browsing of the database can be
considerably enhanced when the logical, semantic and
layout hierarchies are properly utilized. Browsing of
the text hierarchy can be accomplished using a “table
of contents” metaphor if the logical hierarchy
identifies the titles of nested text elements such as
parts, chapters, sections, etc. Queries involving a
search for specific terms will have more precision if
the semantic hierarchy is used to provide meaningful
containment constraints. Thus, if the <city> </city>
tags are used in the text, a search for “Washington”
the city will not fetch “Washington” the statesman.

3) Extensible Interface Functionality

The user interface for a text retrieval system should
be easily adapted @y the system designer) to cover a
variety of retrieval activities with the possibility of
rapidly customizing particular navigation and search
techniques that are appropriate to a specific data
collection or user group.

The attainment of these objectives involves the proper
management of complex issues. The heterogeneity of the
data collections will complicate the user interface since
search and navigation techniques can vary from one data
collection to the next. There are two reasons for this:

a)

b)

2.

the tags will differ in different data collections,

the “fanout” of the hierarchy can vary from one data
collection to the next. For example, a “table of
contents” type of browse activity may easily descend
the hierarchy if the data collection deals with books.
A chapter will contain, at most, a few dozen sections
that can be listed by title in the user interface. The
situation is very different if the local hierarchy of the
database leads to a newspaper collection. It is not
reasonable to start listing titles of thousands of
newspaper articles and so it would be advisable at this
point to continue retrieval activities by initiating

some other strategy such as a full-text search.

An Algebra for Contiguous Text Extents

2.1 Motivation

One of the principle assertions in this paper is that data
independence, system modularity and integrity of the
database design will be greatly enhanced if the user
interface communicates with the n%ieval engine by using
a small set of commands based on the rigorously defined
text algebra of the containment model. Such an algebra,
described by the author (1992) will be summarized in
section 2.2.

Before describing the algebra we define the organization of
the database. It will have a hierarchical structure that
organizes the text into various groupings that we will crdl
static contiguous extents, A contiguous extent will
be a single word, a phrase comprised of consecutive
words, or some longer sequence of consecutive words

referred to as a text element. A text element is a
sequence of contiguous words that has a particular
significance in the database. For example, if the database
is comprised of newspaper articles, the text elements
might include: headline, dateline, textbody, date, or
author. Contiguous extents may be static (defined during
database creation) or dynamic (defined during retrieval
operations). Text elements may be defined either
implicitly (and subsequently located during the database
load using a parser) or explicitly using markup with tags.

We assume the database is created by a LOAD activity
that defines the initial text hierarchy by generating a set of
concordance lists that keeu track of the uosition and
nesting properties of the vari;us static contiguous extents
such as words and text elements. After the load activity is

114



completed each concordance list will identify all instances 2.2 A Formal Definition
of a particular type of contiguous extent. For example,
one list could specify all instances of the ‘chapter’ text A text collection is a finite seauence of words wm.
element while another list might specify all ins-~nces of

. ~.

the word “thunder”. The concordance lists will w~, W2, ... wn. ~ where each Wi c V a set called the

completely define the hierarchical structure and data
content of the database. The text algebra provides filter
operators that can be used to manipulate these lists in
response to the needs of a query. A parser is used to

transform a user query into a sequence of filter operations
that are submitted to the retrieval engine. In the retrieval
engine various concordance lists are used as operands of
the operators that on evaluation produce new concordance
lists. The final concordance list that is computed will
designate the contiguous extents that satisfy the
requirements of the query. The operators and concordance
lists essentially define an abstraction that we can regard as
a conceptual level of the database architecture. The
conceptual level captures the main essentials of the text
hierarchy defining both the containment properties of its
contiguous extents and the order of these extents within a
larger extent. The user view of the database may conform
to this conceptual view of the database or it may be quite
different depending on the facilities provided by the user
interface.

vocabulary of the text collection,

A contiguous extent e is specified by two integers

a(e) and u(e) such that O S cx(e) < Q(e)s n. We define e
to be the text collection subsequence that includes all

words Wi such that a(e) < i < o(e), that is, i c [a(e),

Q(e)). We will refer to the pair of integers [et(e), ~(e)] as
the bounds that specify the contiguous extent e. Note
that the simplest contiguous extent would be a single
word Wi specified by the bounds [i, i+ 1].

For two arbitrary extents x and y, we say that x is nested

in y denoted by x C y if x specifies an extent that is
totally included within the extent represented by y. That
is:

x ~ y <==> a(y) s a(x) < Q(x) ~ Q(Y).

Similarly,
x ~ y <==> a(x) < a(y) < Q(y) s o(x).

In this fashion the conceptual level provides a measure of
data independence. In practice we have found that

If two contiguous extents x and y are such that eitlher cx(x)
> o(y) or a(y) > 0 (x) then x and y are said to be

changing the internal functionality of the retrieval engine disjoint. Depending on context, the terms nested and
will not lead to modifications in the user interface as long disjoint will also be used in relation to the bounds of
as the new engine supports the same search operators.
Conversely, a change in the interface will not recmire a

contiguous extents.

new version of the engine; a new interface issues a
different sequence of retrieval operations to the same A concordance list G = ( [ct(ei), o(ei)] ) ‘i=l is defined

retrieval engine.

We will define filter operations based on the containment
model. They will operate on the concordance lists defined
during the database load. We contend that there are
advantages in adopting the mind set that the full
concordance is “the database” (it is, of course, the inverted
form of the database). The text collection itself will be
accessed only when a “fetch” operator is initiated. These
advantages arise from the ability to precisely formulate a
query specification in terms of the fundamental retrieval
operations employed by the database server.

In summary, utilization of the containment model has a
two fold advantagti

to be a named list of bounds specifying disjoint
contiguous extents. G is the name of the concordance
list and m is its cardinal it y. In an application, the

contiguous extents delimited by these bounds will
typically share some similar property. For example, each
contiguous extent might be designated as a “chapter” in
the text collection.

Database retrieval will be done using one or more
Retrieval Command Strings. Each RCS will be
expressed as a sequence of filter operations. There are
two types of filter operations: select and reject. Each
of these types can be viewed as narrow or wide
depending on the containment criteria specified in the
definition of the filter operations:

a) it provides a rigorous foundation for the specification
of retrieval activities, and

Select Narrow:

b) filter operators defined on the model form the basis
A SN {Bl, B2, B3> . . . Bq)

for a relatively simple but powerful protocol between
the user interface and the retrieval engine. The result C of this operation will be a subset of the list

A. For ai 6 A , the entry q is selected, that is q E C

115



if and only if ai ~ bmn < Bm for some 1 S n S lBml

and for some 1< m S q .

Select Wide:

A SW {B1, B2, B3,. . .Bq)

The definition for SW is the same as that for SN except

that C is replaced by ~.

Reiect Narrow:

A RN {Bl, B2, B3, . . . Bql

The result C of this operation will be all members of A

except those that are rejected. For ai ● A, ~ is rejected

that is ai @ C if and only if there are q integers ki m

m=12 ,,. ..,qsuchthac
lSkim SIBml m=l,2, . . ..q

and ai C bmkim ● Bm for W m = 1,2, . . . ,q.

Reiect Wide

A RW {Bl, B2, B3, .-. Bql

The definition for RW is the same as that for RN except

that ~ is replaced by ~.

2.3 Some Examples

In the examples to be presented, the list identifiers will be
represented symbolically using either a single word,
phrase structure, tag or list name (identifying the result
list of a previous search).

Examples of these would be:

a)

b)

“proton”

This is a symbolic representation of the concordance
list that specifies the word positions of each
appearance of the word “proton” fi the database.

“tensor calculus”

This is the representation of a concordance list of
bounds of contiguous extents each one being the two
word phrase “tensor” immediately followed by
“calculus”,

<chapte~

This syntax would represent the concordance list that
retains the bounds of all contiguous extents that have
been tagged as a ‘chapter’.

result_list

We use a single variable name to designate the name
of a concordance list that has been dynamically
generated during a rerneval activity. These lists can
be used in a future operation, for example, in the
refining of a search.

By specifying a search activity the user essentially tells
the system what a fetched text element (such as a
document) should contain and where it should contain it.
We will now illustrate this use of the filter operators by
reviewing some examples similar to those presented in
Burkowski (1992).

A search for chapters that contains “Feynman” OR
“virtual particle” would k

<chapteo SW { “Feynman”, “virtual particle”)

while a search for “Feynman” AND “virtual particle”
would be:

<chapte~ SW { “Feynman” } SW {“virtual particle”}.

Searching for chapters with titles that contain “weak
photons” OR “Higgs vacuum” would be

cchapte= SW {cchapter_title> SW
{“weak photons”, “Higgs vacuum”)).

The filter operator SW is called a Select Wide since it
selects elements that contain other specified contiguous
extents,

The RCS (Retrieval Command String) can also permit a
type of search that generates the bounds of contained
extents rather than bounds of the elements that contain
them. Thus,

esection_title> SN {chapter_list }

will develop a concordance list specifying text extents
each being an element that is tagged as a title of a section
and each contained in a text element with bounds in the
chapter_list concordance list presumably defined by an
earlier query. This filter operation is called Select
Narrow since it selects contiguous extents that are
contained within other specified extents.

116



We may use a type of disqualification filter that serves
to reject text elements, for example:

<chapte~ SW {“ha&on”) RW (“electron”, “neutrino” )

We assume execution of the operations in left to right
order since there are no parentheses to alter this order.
This RCS will select all chapter text elements containing
“hadron” but will subsequently reject (Reject Wide) any
text element that contains bo fh “electron” AND
“neutrino”.

We see that the filter operations making up a search
activity all deal with containment rules that define
whether some contiguous extent will be selected or
rejected during a search.

The power and flexibility of a RCS originates from a
design philosophy that does not attempt to distinguish the
types of contiguous extents involved in a search. These
contiguous extents will be treated differently after a
search, when and if they are fetched and displayed or
printed.

2.4 More RCS Sv taxn

We now present more RCS syntax that supplements the
filter operations just described.

Specifvin~ results of a t)revious search:

When a RCS is executed the retrieval engine does the
indicated list manipulations to produce a final result that
may be named for future reference. Thus, in the example
above, the variable name ‘result_list’ can be used later to
reference the final filtered list. This list stays with the
retrieval engine. It is not returned to the interface since
the interface would not have the capability of handling it

(recall the data independence goal).

Fetching contiguous extents:

Fetching a text extent is done using the [.] operator.
Thus,

result_list[3]

will return the document that is the text element specified
by the result_list entry with index 3.

car dinalitv of a search resuk

We will refer to this return value using vertical lines, for
example, lresult_listl.

Sub sts OIi f concordance lists:

At various times it will be necessary to extract lisi, enrnes
from a previously generated list in order to form a sublist.
Thus, result_list(5) represents a new list with a single
entry, namely the entry with index 5 in result_list. A
range of entries would be extracted using two values in
the brackets, that is, (m:n).

Word lemzth of a co ntismous extent

When the length of a text extent is required, we use the
LENGTH function. For example:

LENGTH (result_list(2))

will return the word length of the text extent that would
be fetched using the operation result_list[2]. Considering

the a, o notation defined earlier, this length will be

0(result_list(2)) - a(result_list(2)).

2.5 Statistical Ranking

The containment model adopts statistical ranking of
documents (more generally, text extents) as an activity
that follows an initial extraction of these text extents
using a “Boolean-like subquery”. This is similar to the
previously mentioned strategy used by Sacks-Davis et al.
(1990). It is also analogous to the approach used in
relational databases. A retrieval language such as SQL
will extract a relation (this extraction being formally
defined via the relational algebra) and after this extraction,
sorting of the data can be undertaken if required (note that,
sorting of rerneved results is not defined by the primitives
of the relational algebra).

Since the database is a heterogeneous collection of various
document types, an initial subquery extraction of text
extents is both natural and necessary. Typically, the
initial extraction will pull out text elements with similar
substructure or (perhaps more appropriately) with a
similar semantic context.

We use a statistical ranking strategy similar lto that
deseribed by Harman (1990). Ranking is done with an
Inverse Document Frequency (IDF) weighting measure.
The weight of an extracted document with index j will be:

The return value for an RCS will be its cardinality, a
value representing the number of entries in the final list.

117



Q (log2Freqjk X lDFk)
T

log2Mj
k=l

where

Q=

Freqjk =

‘j =

lDFk =

=

where

N=

NurnDk =

the number of terms in the query,

the frequency of quew term term.k in

dcmment j

the total number of words in the

document j (the document length)

the inverse document fkquency weight

of term.k

10’2(JmD )+ 1
k

the number of documents of this type in

the database

the number of documents in the

collection that contain one or more

instances of tem_k

In the following discussion let us assume:

a)

b)

c)

the query terms are designated as term_l, term_2, ....
term k— 9 .,.9

the entire database is delimited with the tags <db> and
</db> ,

the initial subquery has filtered all text extents tagged
with <doe> and c/doe> to produce a result list named
‘extractec_docs’.

Under these assumptions we can use the RCS syntax to
restate the definitions introduced earlie~

the number of terms in the query,

lterm_k SN {extracted_docs(j)) I

LENGTH {extracted_docs(j) )

I<doc> SN {<db>)l

I<doc> SW {term_k) I

Note that the containment model utilizes a dynamic

evaluation of both Freqjk and ID Fk . There are some

advantages to this approach:

1) The system does not maintain frequency counts for
individual words of the database vocabulary. These
are evaluated dynamically. Since the evaluations of

Freqjk and I D Fk are expressed in terms of text

extents, the system can deal with single words or
phrases in the query. Phrases involve a few more
disk accesses, but once the phrase text extents are
known the calculations proceed just as for single
words. This simple approach considers each text
extent in a query to be a “semantic unit” and so
avoids the need to estimate the weight of a phrase
using the weights of its constituent words as done in
Fagan (1987). It also avoids phrase related correction
factors derived from a dependency assumption for
phrase constituents as discussed by Croft (1990).

2) Since a heterogeneous database will contain sub-
hierarchies with a wide variation in the logical
structure, it is difficult at system design time to
predict those types of text extents that should be
involved in the ranking process. The design
philosophy presented here is that the retrieval engine
should provide the necessary environment so that any
future interface can specify, during retrieval, a ranking
procedure that utilizes the appropriate text structures.

Although the containment model provides great flexibility
in the choice of text extent types that are to be involved
in ranking, it does not give any specific indication as to
which type of text extent is best utilized. These are
issues for the system designer and may well depend on
both the nature of the application and the logical structure
of the local hierarchy. The reader may consult Wendlandt
and Driscoll (1991) who have compared ranking strategies
related to paragraphs and sentences. Salton and Buckley
(1990 and 1991) have also experimented with text
matching systems that operated at various levels of text

granularity.

Ranking evaluations are best done within the retrieval

engine to avoid the transmission of long vectors between
the workstation interface and the server. Consequently,
the interface requests a ranking evaluation by issuing a
function call to the retrieval engine, for example

ranking_vector = RANK(extracted_docs, <doe>,
term_l, term_2, ... ,term k )— , ...

where the arguments have the same significance described
earlier in this section.

The retrieval engine does the weight evaluation, sorts the
weights and sets up an index permutation that is given the

118



name on the left hand side of the assignment. This name
can be used in conjunction with the result_list to pull out
ranked documents. For example,

extracted_docs[mnking_vector(0)]

returns the highest ranked extracted document while

best.dots = extracted_docs(mnking_vector(O:4))

generates a list (named ‘best_docs’) containing the bounds
from the extracted_docs concordance list specifying the
five extracted documents of highest rank.

3. Database Structure and
Interface Organization

3.1 Global Strut ture of the Database

We now describe a system that meets the objectives
described earlier. This database design has been developed
by the author and is representative of the type of system
that could be supported by the previously described
containment model and filter operators. Undoubtedly,
there are other designs that would also be effective while
still conforming to the basic hierarchical structure of the
database as required by the model.

Figure 1 presents the macroscopic view of the database.
The entire database is delimited by the cdb> </db> tags.
Immediately descendent from this topmost node of the
hierarchy is a set of nodes each defined to be a data
collection. Each data collection will typically have a
different structure. This will accommodate the required
heterogeneity of the database. Subsidiary to each data

collection node is a set of text extents:

a) the pathname of the Tag and Hierarchy
Specification (THS) file,

b) the title of the data collection, and

c) various local hierarchies.

Each local hierarchy has a similar structure that is
specified by the contents of the sibling THS file.

3.2 THS (Tag and Hierarchy Smcification) F~

The THS file specifies the various properties associated
with a sibling local hierarchy. These include the strings
to be used as interface menu items that refer to a text
element, the formats of tags appearing in a RCS, and a
specification describing the structure of the local
hierarchy. The structure is described by specifying two
sets of text element names:

1) The names of text elements in the “spinal sequence”
of the hierarchy.

The spinal sequence is the main sequence of nested
text elements for this local hierarchy. For example,
if the local hierarchy contains a collection of books
categorized under various subject headings, we could
have the following spinal sequence: subject, book,
chapter, section, subsection.

2) The names of secondary extents.

Secondary extents are tagged extents that may be used
in a full - text search or cross reference activity.
They are not part of the spinal sequence. An example
might be a text extent that is semantically tagged to
indicate that it is the name of a city.

3.3 Interface Ormnization

The interface consists of an “environment” and a
collection of “Workers” each one associated with a
window in the display. The environment consists of all
the modules and facilities that are common to every
interface, for example:

a) modules that accomplish system initialization, and

b) the communication facility that allows a worker to
issue commands to the retrieval engine and then
subsequently receive responses from the engine.

The workers include a collection of prototypical
workers that may be modified or used “as-is” in the
required interface (this includes a specialized Browser
called the Data Collection window to be described later).
There is also a collection of window items (edit boxes,
list boxes, etc.) that can be used to develop other workers.

This organization of the interface promotes the flexibility
and extensibility described earlier, Typically, a new
worker can be added by modifying a copy of one of the

existing workers. A precise set of procedures guide the
system designer in this effort.

119



database 1
<db> A

... 4 ... </db>

data collection I
data collection

<data collection> ~</data collection>
v

<data collection> </data collection>-I \
-..

. . . various local
hierarchies . . .

document collection title

<dc title> This is a title </de title>

<ths path) THS_file–name.ths </ths path> I

Fig.1: Global Structure oftheDatabase

3.4 Interface Functionality

During execution the first worker launched by the
interface is the Data Collection window that provides the
starting point for all subsequent retrieval activities. This
window will display the titles of the various data
collections. Titles appear in a list box and selection of a
title will allow a hierarchical descent into that data
collection through the use of a Browser window. Further
descent may or may not be permitted depending on the
“fanout” structure of the local hierarchy. Menu items in
the Browser can be used to initiate a full-text search
constrained to a range that has been selected in the
Browser list box. Since any worker will have menu
items that cause the launch of other workers a chain of
workers can be developed to carry out retrieval operations
involving further navigation and searches of the database.

Workers other than the Data Collection presentation may
vary in functionality depending on the needs of the local
hierarchy. The prototypical workers can be segregated
into some basic categories that include the following:

Full-Text Search workers
Browsers
Cross Reference workers
Display windows

4. The Worker Paradigm

As illustrated in Figure 2 the typical worker
communicates with a variety of other components in the
system. These will now be described.

4.1 ~

Each worker has the following input requirements:

a) A work order issued as a work request by another
worker

b) Input from the user
text in edit boxes
list box selections
menu selections
button activations

c) Responses from the retrieval engine
hit count for the last search command
(cardinality of a result list)
text extents extracted horn the database

120



Each worker has the following output capabilities:

a) A work request issued to another worker

b) Output to the user
text in various output areas
text in list boxes
menu and button enabling and disabling

c) Commands to the search engine
Retrieval Command Strings (search activity
specifications, requests for text extents, ranking
requests).

Input from
User

*
— w

w
Response Search*
from Commands
Retreival to Retrieval
Engine Engine

v
Work Request

Fig. 2: Input and Output Facilities for a Worker

4.2 Work Orders / Reuuests

A work order / request consists of one or more of the
following:

a) Search constraints - for full - text searches
and cross references

b) WITHIN constraints - for a browse activity
c) Schema definitions
@ Miscellaneous text - title of a text element,

captions, etc.

good example of such an interface is in the work of
Thompson and Croft (1989). It employs browse facilities
and full-text searches with both Boolean query and
probabilistic models.

To keep the examples simple (due to space limitations)
we will describe a fairly “generic” text retrieval interface
discussing both its functionality and the RCS sequences
that it generates. This will illustrate the flexibility and
power of the Retrieval Command Strings.

The interface relies heavily on the hierarchical structure of
the text in the database. We will describe two of the
worker prototypes:

a) The Browser is used for navigation “up and down” a
local hierarchy. The main component of the Browser
is its listbox which is used to display the titles of
text elements that are subsidiary to some previously
selected text element. This interface functionality can
be given an intuitive feel by employing a “Table of
Contents” type of metaphor. Choices of text

elements are provided by means of miniatures
(usually titles) that are fetched and placed into a list
box. Individual items are subsequently selected by
using a mouse operation. If a title is selected (single
click) the parent text element may be involved in
either one of two subsequent actions initiated via the
menu: a full-text search that is limited to the selected
text element or a display of the text element in a text
window. Double-clicking a title will cause a “local
expansion” beneath that title and the titles of
subsidiary text elements will be displayed. The
double-clicking functionality is actually a toggle type
of functionality. If a title has already been expanded,
a further double-clicking action will eliminate the
titles produced by the earlier local expansion.

b) The Full-Text Search worker is used to develop
lists of text elements each satisfying a Boolean
constraint. These text elements are typically spread
across a very wide horizontal range of the hierarchy.
Full-text searching can be done any time, for
example, when a Browser descent in the hierarchy is
essentially impossible due to a large “fan out” of
subsidiary text elements.

5. Worker Examples

5.1 RCS Co remands Issued bv the Browser
As indicated previously, the Retrieval Command Strings
are a well defined protocol for communication between a
worker and the retrieval engine. Typically, the interface
worker will screen the user from the complexity of RCS
generation offering him or her a friendly easy-to-
understand query generation facility. While many of the
current commercial user interfaces provide “standard
Boolean queries, it should be stressed that a wide variety
of creative and novel possibilities can be implemented. A

Browsing activity is typically initiated at the beginning of
a user session when a data collection is selected from the
main application window. After a selection is made a
further Browser descent may or may not be effective
depending on the nature of the data collection
(specifically, the “width” of the hierarchy below the
current text element). If a descent is possible, a Browser
window is created and choices of elements at the upper

121



level of the local hierarchy are made available in a list box
that is part of the Browser window.

As an example, consider the command

listbox_items = <chapter_title>SN
{echapte~SN{<manuab) ]

that generates a list of the bounds of required chapter titles
that will provide the initial contents of the list box. The
right-most SN is evaluated to derive a list of all chapter
elements in a “Manual” subhierarchy (delimited with tags
<manual> and </manual>). The first S N is then

evaluated to extract the titles of these chapters. The
engine returns a hit count specifying the number of titles
that have been found (for example, 8). These are
subsequently fetched using the invocation

listbox_items[07]

and are inserted into the list box.

When a list box item is double-clicked, say number 5, (at
index 4) the parent text element of the title is obtained

using a SW and the subsidiary text elements are derived
using a SN, The titles may then be extracted using a
further SN. The compound search will have the form:

new_items = esection_title> SN
(esection>SN {<chapter>SW{listbox_items(4)) ) }.

When a list box item is selected (at, for example, index 3)
the contents of the parent extent may be presented in a
display window by the execution of a search wide to find
the bounds of the text element followed by a [.] operation
to retrieve the text itselfi

<section> SW {new_items(3)} [0].

5.2 ~ Futl-Tex

Search Window

The Full-Text Search window may be launched when the

database is initially chosen. If a narrower search is
required it can be launched from a Browser that has been
used to descend to some particular text element of the
database. The subsequent full-text search would be
constrained or “clipped to this (typically very large) text
element.

In our implementations the ITS window consists of three
sections: an area that is used to formulate a Boolean
constraint, a hit count report, and a list box (similar to
that appearing in a Browser) that is used to report the
results of a search. The user will “fill in the blanks” in
order to specify a Boolean constraint for a search. This

Boolean condition will be satisfied within a text element
that is chosen by a selection from the within menu.

As an example, the RCS sequence sent out by the FTS
invocation might be:

within_extents = <p> SW {“ozone depletion”,
“chloroflourccarbons” ) SW {“global warming”)

which derives a list of the bounds of text elements
(paragraphs) where the Boolean condition is satisfied. In
this case ‘Paragraph was selected from the Within menu.

This command is somewhat modified in the case of a
constrained search launched from a Browser. In this case
the list of <p> extents (paragraphs) can be clipped to
those that are subsidiary to a pre-specified extent by using
a search narrow.

The next command

listbox_items = <article_title> SN
{<article> SW{ within_extents} )

derives the list of bounds of titles that will be established
in the list box. Note that the SW will admit only those
articles that contain the paragraphs derived by the Boolean
condition. Once a list box item is selected, the actual text
can be displayed using RCS interactions that are similar
to those described earlier for the Browser.

When a local expansion is done in the listbox (say at
offset 6) the compound RCS will be similar to that seen
above in the Browser listbox expansion, but the
subsidiary extents must contain the within_extents
previously derivd

new_items = <section_title>SN {<section>SN
(carticle>SW {listbox_items(7)) )

SW( within_extents) ).

A very important design decision of this interface was to
use the table of contents metaphor when presenting the
user with a list of database hits in response to a full-text
search. When a search is completed the user is given a
list of titles and the opportunity to investigate

substructure using the same interaction as that provided
by the Browser. This time however, when a title appears
in the list box, it is only because the parent text element
contains a subextent that satisfies the query.

This is a very convenient and effective way to investigate
the hits produced by the search. Many text retrieval
systems will present the results of a search as a lengthy
collection of lines each containing the phrase or word used
in the query. Even for simple one word queries, a single
text line containing the query word or phrase will
typically not provide enough meaningful information to
give the user a worthwhile indication about whether this

122



hit is really of interest. If the query is more complicated
than a simple search for one word or phrase, the
presentation of a single line will not be large enough to
indicate the success of the search. By allowing the user to
descend the hierarchy using a table of contents descent that
is constrained to the hits, the user is given the equivalent
of a “path name” to a hit and so he or she knows how the
information has been categorized in the database. There is

a benefit to this strategy. During the descent the user can
avoid the investigation of hits that are obviously in areas
of the database that are of little or no interest. These can
be avoided simply by knowing the titles associated with
their higher level structure. The elimination of retrieval
of unwanted documents will reduce the cost of a search for
a user and will lower traffic on a network that is providing
the service. While we have not yet done any experiments
that would compare the effectiveness of this retrieval
strategy with other methodologies, we have received
favorable reports from users who appreciate the ability to
rapidly home in on the required text extents.

5.3 Workers and Hierarc hical Layem

As mentioned earlier in section 1.1, the text tags may
define one, two or three superimposed hierarchies (logical,
layout and semantic layers). It is interesting to note the
relationship between worker functionality and these

various hierarchies. In the system just described a worker
will utilize one or more layers as follows:

1) The Browser relies on the logical hierarchy providing
navigation by means of search activities that deal
with text elements and their associated titles.

2) The Full-Text Search window may specify
containment criteria that are dependent on logical
structure, for example,

<chapter> SW {“behemoth”, “leviathan”)

but, as noted earlier, containment criteria dealing with
the semantic layer typically provide more precise
search results.

3) Cross reference workers may deal with any one of the
three layers. Thus, a cross reference may specify a
title or in some cases it may specify a page in the
layout hierarchy.

4) Display workers will make use of the logical layer to
localize the text element that is to be displayed while
the layout hierarchy may be used to specify the
presentation format.

5.4 Workers and the THS File

Now that two examples of worker prototypes have been
described, the role of the THS is more apparent.
Information in the THS file can serve to specify the

parameters needed to initialize a worker when it is
launched by a menu selection made in an earlier window.
The THS file will establish the main sequence of nested
text elements and their associated tags so that the Browser
can issue the proper Retrieval Command Strings during
its navigation of the hierarchy. Similar information is
used by a Full-Text Search Window, in particular, it must
be informed of all tags used in the semantic layer.

5.5 hlanave~

Since the launching of a worker invariably requires a work
order issued as a work request by an earlier worker, we can
imagine the workers to be linked by communication lines
forming an invocation tree. The invocation tree is

actually a simplification of the information flow between
workers. In practice we use a manager that acts as a
relay, accepting work requests from workers and sending
them off as work orders to newly created workers.

A manager is first created when a descent is made from the
top of the hierarchy (the Data Collection Choices
window). This initial descent will be into a selected local
hierarchy that will have a particular THS associated with
it. Thus, each manager can be given a specification of the
particular local hierarchy that is its domain. It can then
communicate this information to any worker that it
creates by augmenting a work order with the schema for
the local hierarchy.

Other duties of the managec

1) The manager will keep track of all active workers in
case they must be destroyed at a later date.

2) The manager will have all the necessary parameters
required for the instantiation of a worker (size of
window, contents of the menu bar, etc.). This avoids
the need for each worker to know the instantiation
parameters of all the other workers.

3) The manager can arrange the placement of worker
windows on the screen for the best viewing.

6. Future Research

We intend to investigate the following topics:

a) Data Security

It seems likely that the filter operators can be utilized
to provide data protection, for example, not allowing

123



a specified class of users access to sensitive or
proprietary information.

b) Stored Queries and Views

The filter opemtors should allow the support of stored
queries and views. This would be similar to the
facilities described by Anick et al. (1991).

c) A Retrieval Language

Development of the RCS protocol began with search
activity specifications that were later extended to
more comprehensive commands for operations such
as ranking of text elements. However, the sending of
a single line RCS is really a protocol limitation. In
the case of ranking it essentially requires that the
interface initiate a server process that always
implements the same statistical ranking formula.
While the types of text extents involved in the
calculation can be specified, the formula itself cannot
be changed unless it is reprogrammed in the server
software. This could be avoided if the retrieval
engine was to accept from the interface a program
segment that it would interpret whenever an operation
such as ranking was to be done. We are working on
this extension.

7. Conclusions

This paper has described a hierarchical text database, its

user interface and the command protocol between this
interface and the retrieval engine. These strategies
represent a practical utilization of the text algebra defined
by Burkowski (1992).

Database Structure

We started by describing a database system that supports
retrieval operations for a heterogeneous collection of text
with a hierarchical organization. The hierarchical

structure is defined either implicitly using some type of
parsing facility or explicitly using markup with tags. A
load activity creates a full concordance for all static text
extents of the database (the words and all higher level text
elements).

Filter operations based on a containment model operate on
the concordance lists defined in this load.

A Conceptual Layer

The containment model represents an elegant and
utilitarian foundation for many current text retrieval
models. Its algebraic operations give us the benefits of a

rigorous foundation for the specification of retrieval

activities, and operations within this mathematical
framework form the basis for a relatively simple
command protocol between the user interface and a
retrieval engine that may be on the same machine or on a
database server accessible over a LAN.

We have shown that this command protocol can
encompass the standard Boolean operations encountered
when doing a full-text search or a browser navigation.
Furthermore, the model can be extended to accommodate
statistical ranking of text elements thus providing a
fiarnework for conventional information retrieval.

The Interface Laver

Interface facilities are supplemented with a development
toolkit that presents a modular environment based on a
“worker” paradigm. System designers can use this
flexible and easily adaptable environment to create new
workers or to modify existing workers.

Workers rely on the underlying conceptual layer to gain
access to an encapsulated retrieval engine that retains the
database while isolating the interface from the internal
complexity of its access methods.

8. References

Anick, P. G., Flynn, R. A., & Hanssen, D.
R. (1991, Oct.). Addressing the requirements of a
dynamic corporate textual information base. Proc. 14th
Annual International ACMISIGIR Conference on
Research and Development in Information Retrieval,
Chicago, 163-172.

ATA/AIA Subcommittee 89-9C (1990, June).
CD-ROM Interchangeability Standard - SFQL:
Structured Full-Text Query Language, ATA Draft
Standard 89-9C.SFQL2-R1- 1990, version 2.0.

Burkowski, F. J. (1992). An algebra for
hierarchical y organized text-dominated databases.
Information Processing and Management, Pergamon
Press, New York, To appear.

Cooper, W. S. (1983). Exploiting the maximum
entropy principle to increase retrieval effectiveness.
Journal of the American Society for Information
Science, 34(l), 31-39.

Croft, W. B. & Das, R. (1990, Sept.). Experiments
with query acquisition and use in document retrieval
systems. Proc. 13th International ACMISIGIR
Conference on Research and Development in
Information Retrieval, Brussels, 349-368.

124



Date, C. J. (1990). Relational database writings, 1985-
1989, Reading, Mass.: Addison-Wesley Publishing
co.

Fagan, J. (1987). Experiments in automatic phrase
indexing for document retrieval: A comparison of
syntactic and non-syntactic methods. Ph. D. Thesis,
TR 87-868, Dept. of Computer Science, Cornell

University.

Gonnet, G. H. & Tompa, F. W. (1987, Sept.).
Mind your jgammw a new approach to modelling text.
Proc. 13th International Co@erence on Very Large Data
Bases, (VLDB87), Brighton, England, 339-346.

Gonnet, G. H. (1987). Examples of PAT applied to
the Oxford English Dictionary. Centre for the New
Oxford English Dictionary, Univ. of Waterloo.

Gyssens, M. J., Paredaens, J. & Van Gucht,
D. (1989). A grammar-based approach towards unifying
hierarchical data models. Proc. ACM SIGMOD
International Conference on Management of Data,
Portland, Oregon, 263-272.

Harman, D. & Candela, G. (1990). Retrieving
records from a gigabyte of text on a minicomputer
using statistical ranking. Journal of the American
Society for Information Science, 41(8), 581-589.

Hoppe, H. U., Ammersbach, K., Lutes-
Schaab, B. & Zinllmeister, G. (1990, Sept.).
EXPRESS: An experimental interface for factual
information retrieval. Proc. 13th International
ACMiSIGIR Conference on Research and Development
in Information Retrieval, Brussels, 63-81.

International Standards Organization (1986,
October). Information Processing - Text and office
systems - Standard Generalized Markup Language
(SGML), (1S0 8879), Geneva ISO.

International Standards Organization (1988,
March). Information Processing - Text and office
systems - Office Document Architecture (ODA) and
Interchange Format, Part 1: Introduction and general
principles, (1S0 8613-1), Geneva: 1S0.

McAlpine, G. & Ingwersen, P. (1989, June).
Integrated information retrieval in a knowledge worker
support system. Proc. 12th Annual International
ACMISIGIR Conference on Research and Development
in Information Retrieval, Cambridge, Mass., 48-57.

National Information Standards Organization
(U. S.) (1989). Information Retrieval Service and
Protocol: American National Standard for Information
Retrieval Service Definition and Protocol Specification
for Library Applications, Transaction Publishers,
NewBrunswick, N.J.

Rau, L. F. & Jacobs, P. S. (1991, Oct.). Creating

segmented databases from free text for text retrieval.
Proc. 14th Annual International ACMISIGIR
Conference on Research and Development in
Information Retrieval, Chicago, 337-346.

Raymond, D. R. (1991). Reading source code.
Technical Report TR 74.070, Centre fou Advanced
Studies, IBM Canada Ltd., Dept. 81/894, 895 Don
Mills Road, North York, Ontario, M3C 1W3, Canada.

van Rijsbergen, C. J. (1979). Information retrieval,
(Second Ed.), London: Butterworths.

Sacks-Davis, R., Wallis, P., & Wiikinson, R.
(1990, Sept.). Using syntactic analysis in a document
retrieval system that uses signature files. Proc. 13th
International ACMISIGIR Conference on Research and
Development in Information Retrieval, Brussels, 179-
192.

Salton, G. & Buckley, C. (1990, June). An
evaluation of text matching systems for text excerpts of
varying scope. Technical Report TR 90-1134, Dept. of
Comp. Sci., Cornell University, Ithaca, New York.

Salton, G. & Buckley, C. (1991, Oct.). Automatic
text structuring and retrieval - Experiments in automatic
encyclopedia searching. Proc. 14th Annual
International ACMISIGIR Conference on Research and
Development in Information Retrieval, Chicago, 21-30,

Tague, J., Salminen, A., & McCllellen, C,,
(1991, Oct.). Complete formal model for information

retrieval systems, Proc. 14th Annual International
ACMISIGIR Conference on Research and Development

in Information Retrieval, Chicago, 14-20.

Thompson, R. H., & Croft, W. B. (1989).
Support for browsing in an intelligent text retrieval
system. Int. J. Man-Machine Studies, (30), 639-668.

Wendlandt, E. B. & Driscoll, J. R. (1991, Oct.).
Incorporating a semantic analysis into a document
retrieval strategy. Proc. 14th Annual International
ACMISIGIR Conference on Research and Development
in Information Retrieval, Chicago, 270-279.

Meghini, C., Rabitti, F,, & Thanos, C. (1991).
Conceptual modeling of multimedia documents.
Computer, 24(10), 23-30.

125


