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ABSTRACT
In information retrieval and information visualization, hierarchies

are a common tool to structure information into topics or facets,

and network visualizations such as knowledge graphs link related

concepts within a domain. In this paper, we explore a multi-layer

extension to knowledge graphs, hierarchical knowledge graphs

(HKGs), that combines hierarchical and network visualizations into

a uni�ed data representation. �rough interaction logs, we show

that HKGs preserve the bene�ts of single-layer knowledge graphs

at conveying domain knowledge while incorporating the sense-

making advantages of hierarchies for knowledge seeking tasks.

Specially, this paper describes our algorithm to construct these vi-

sualizations, analyzes interaction logs to quantitatively demonstrate

performance parity with networks and performance advantages

over hierarchies, and synthesizes data from interaction logs, inter-

views, and thinkalouds on a testbed data set to demonstrate the

utility of the uni�ed hierarchy+network structure in our HKGs.
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KEYWORDS
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1 INTRODUCTION
Finding information on the Web is o�en di�cult. �ere are two

predominant paradigms for �nding information on the Web: Search-

ing (i.e, Search by query) and Browsing (i.e, Search by Navigation)

[20, 31]. While current search engines, following a “search by query”

paradigm, are generally su�cient when the information need is

well-de�ned in the searcher’s mind, examining search results re-

mains a necessary step within a larger information seeking process

[23, 25]. To elaborate, Searching requires the user to translate an

information need into queries, while Browsing accommodates the

knowledge gap between what the user is able to communicate and

what the system requires to �nd the desired information. �is
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knowledge gap (also formalized as an ‘anomalous state of knowl-

edge’ by Belkin [5]) is more evident when information is sought to

address broad curiosities, for learning and other complex mental

activities [2, 43].

�is paper focuses on the design of tools to support browsing.

Researchers note that, while search interfaces must support query

formulation and an e�ective ranking algorithm, browsing interfaces

require e�ective representations of search results to accommodate

searcher’s ‘state of knowledge’ and provide ‘information scent’ to

guide the user during navigation [31, 32]. Related to this obser-

vation of ‘information scent’ is the observation that information

seekers o�en express a desire for a user interface that organizes

search results into meaningful structures to facilitate browsing and

understanding of the retrieved results [15].

�e desire for browsing support via structure has given rise to

interfaces that represent the structure of information. �ese struc-

tures typically exist in one of two forms: hierarchies and networks

[11]. First, information can be presented into hierarchies based on

categories. Included in this class of search results organizations

are techniques such as faceted browsing or automatic clustering.

Second, alongside hierarchies, entity relationship or network rep-

resentations are also used. In these representations, rather than

clustering objects into labeled categories, the connections between

objects (people, places, things, etc.) in a document corpus represent

a relationship between two items. �ese network representations

include knowledge graphs [18] and concept maps [29].

Recent work has explored the relative bene�ts of hierarchies and

networks and has noted that the bene�ts are largely complemen-

tary: hierarchies provide users with some understanding of central

topics, allowing them to develop a be�er overview of information;

whereas networks allow people to glean concrete information from

the representation rather than needing to extensively read indi-

vidual documents [39]. Given the complementary advantages of

knowledge graphs and hierarchies, our main research question in

this paper is that whether we can algorithmically generate a seam-

less data structure that combines the advantages of both hierarchies

and networks into a single uni�ed structure.

In this paper, we evaluate the e�cacy of hierarchical knowl-

edge graphs (HKGs) as a combined representation of low-level

entity relationships and high-level central concepts. We gener-

ate these knowledge graphs automatically using a simple parsing

algorithm [37], then extract hierarchies using a dynamic thresh-

olding approach. We evaluate these HKGs using a mixed methods

approach. �antitative data argues that HKGs preserve the trans-

parency advantages of knowledge graphs and structural advantages
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of hierarchies. �alitative data triangulates with quantitative ob-

servations and provides additional insight into the advantages and

disadvantages of both hierarchical and network visualizations.

2 RELATEDWORK
In this section we survey related work in classifying and under-

standing web search and in techniques to augment search results.

2.1 Understanding web search
�ere exist several characterizations of web search queries [6–8,

35, 44]. Marchionini [24] focuses speci�cally on a process he terms

exploratory search. Marchionini de�nes three categories of web

search: Look-up, Learn, and Investigate and groups Learn and

Investigate tasks under the umbrella of exploratory search.

Learn and Investigate tasks involve sensemaking [14, 36]. Sense-

making is the process of searching for a representation and encod-

ing data in that representation to answer task-speci�c questions

[36]. Russell et al. [36] present four main cognitive stages that

are involved in sensemaking: an interaction between a bo�om-up

‘Search for representation’ phase and a top-down representation

instantiation phase, a phase of shi�ing representations to �t newly

discovered data into the current representation, and an application

of the representation to the user’s speci�c task.

�e top-level representation that results from sensemaking has

many di�erent names: a “holistic cognitive structure” [42], a mind-

map, a concept map [29]. Regardless, the construction of this rep-

resentation must be either provided explicitly by the interface or

constructed implicitly by the user [36, 42] before the user can fully

“make sense” of the retrieved information.

Alongside the distinction between “look-up” and exploratory

search, there are also varying levels of complexity associated with

exploratory search tasks [24]. At the simplest level, one might

simply wish to read a document to understand a topic. However,

consider tasks such as comparing two di�erent diets to understand

health bene�ts (e.g. oriental and Mediterranean), comparing two

di�erent political systems to understand relative authoritarianism

(e.g. President of Russia versus Iran), or comparing two di�erent

educational systems to understand relative student success (e.g.

British versus Canadian). All of these, as examples of exploratory

search tasks, require both searching and browsing to identify in-

formation, acquire knowledge, and contrast related data across

two contexts. As the complexity of comparison increases (three or

more alternatives, more abstract concepts), the information seeking

task continues to increase in complexity. Searching is highly e�ec-

tive at identifying relevant documents to guide basic exploratory

search, but browsing and reformulating are needed to fully acquire

and synthesize knowledge [23, 26]. �erefore, understanding both

searching and browsing behaviors are of vital importance to design

e�ective interactive information retrieval systems.

2.2 Organizing Search Results
Because of the importance of structure in search, there have been

e�orts to contrast strengths and weaknesses of di�erent spatial

representations and groupings of search results. A taxonomy of

techniques for organizing search results was proposed by Wilson

et al. [46]. �ey identify two main classes of approaches: (1) Cou-

pling results with additional metadata and classi�cations such that

searchers can interact and control the presentation of results. (e.g.

faceted browsing or categories), or (2) providing alternative or

complementary representations of search results (e.g, a network

representation). Wilson et al. also present four common approaches

to structured classi�cation [46]: hierarchical classi�cations, faceted

classi�cations, automated clustering, and social classi�cations.

Looking �rst at structured classi�cation, early forays into the

domain of structuring search results contrasted categories with au-

tomatic clustering to support search. Hearst [16] showed that cate-

gories, because they were more interpretable for the user, captured

important information about the document but became unwieldy

when the document corpus was too large. Clusters, by comparison,

were highly variable with respect to quality and were o�en less

meaningful for the user.

Given the lack of intuitiveness associated with clustering [17]

and a desire for understandable hierarchies in which categories

are presented at uniform levels of granularity [33, 34], alongside

speci�ed hierarchies such as tables-of-contents, researchers have

explored faceted categories, i.e. categories that are semantically

related to the search task of the user, to organize search results.

�ese include systems that de�ne faceted categories [48], research

that studies the use of facets to support browsing [9], and research

that identi�es strengths and weaknesses of faceted browsers [45].

In terms of strengths and weaknesses, faceted browsing has proven

bene�cial for users already clear about their search task [45]; addi-

tional information on interactions between facets (e.g. inter-facet re-

lationships) is helpful when users are unfamiliar with a domain and

need ‘sensemaking’. In other words, exploratory tasks (e.g.learning

or investigating [24]) are precisely those tasks where interactions

between facets are needed.

�e need to represent relationships between facets or concepts

has given rise to the use of network structures to depict relation-

ships between concepts or entities in a corpus. �ese network

structures include concept maps, knowledge graphs, and other

entity-relationship diagrams. Concept mapping has been widely

used in education as a method for knowledge examination, sharing,

and browsing [10, 29]. Knowledge graphs have been popularized

by Google to represent web-based information. One drawback to

network structures is it is hard both to get an overview of an infor-

mation network and to navigate through the network e�ectively:

users are easily “lost” in these systems [12, 22, 31].

A �nal question within this space is how competing representa-

tions fare in presenting results for exploratory search tasks. While

some past research has explored using questionnaires to determine

the e�cacy of di�erent knowledge representations [30], or has

evaluated the e�cacy of hierarchies, networks, or concept maps

with respect to ordered lists (e.g. [1, 9, 10, 27, 38]), we have found

li�le research that directly compares networks to hierarchies to un-

derstand their competing a�ordances. �e one exception to this is

recent work by Sarrafzadeh et al. [39]; they �nd that networks elim-

inate the need for reading documents – users can glean information

from the networks with statistically signi�cantly less time spent

reading – and that hierarchies particularly bene�t low-knowledge

participants by giving them an e�ective overview of the domain.
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Given Sarrafzadeh et al.’s observation of the complementary

bene�ts of hierarchies and networks, one question is whether stud-

ies have examined the use of hierarchies and networks as com-

bined – synchronized and simultaneous – representations of search

results. We have found li�le work that explores combined net-

works+hierarchies. Part of the challenge may arise from the com-

plexity of seamlessly integrating both hierarchies and networks

into a single uni�ed structure. For example, hierarchies are typically

best when the structure aligns well with the user’s task, but, given

this alignment, entities in networks may have many multiple ‘par-

ents’ within the structure, yielding a many-to-many relationship

within the hierarchy, i.e. a three-dimensional graph.

3 HIERARCHICAL KNOWLEDGE GRAPHS
In this section, we describe hierarchical knowledge graphs, an ex-

tension of knowledge graphs that include hierarchical information

about the lower level graphical structures. �e rationale behind our

proposed approach for employing hierarchical knowledge graphs

to represent search results is the complementary bene�ts [39] of

hierarchies [17, 47] and network structures [2, 29, 38] to support

exploratory browsing of search results. More speci�cally, hierar-

chies provide a breadth-�rst exploration of the information that

allows the user to iteratively reduce confusion, obtain an overview,

and slowly exploit detail. �ey thus provide a structured way to

navigate from more general concepts to more �ne grained data

and are valuable when people feel a need to orient themselves. In

contrast network structures allow users to glean more information

from the representation (document reading time is reduced), are

more engaging, yield more control over exploration at the lower

level of inter-concept relationships [39], and are more similar to

one’s mental model [3, 11, 28, 39].

Given the complimentary bene�t of networks and hierarchies,

the next question is how to design a representation that can seam-

lessly merge these two representations. We take the approach that

a knowledge graph will be an appropriate low-level representation

and seek to incorporate a hierarchical view of this low-level rep-

resentation of corpus content. To incorporate a hierarchical view

into a knowledge graph, we need to �nd answers to the following

three design questions (DQs):

(1) How do we integrate network and hierarchical views into

a single, seamless data structure?

(2) How can both the global and the local view of a knowledge

graph be co-visualized?

(3) How can transitions between views be designed to maxi-

mize visualization stability?

To answer these DQs, we �rst focus on DQ1 and describe the design

of our data structure. Next, to address DQ2 and DQ3 we describe an

interface that supports interaction with the data structure. Along-

side our DQs, we add one additional constraint to our design. We

want to ensure that both the low-level knowledge graph and the hi-

erarchies gleaned from that knowledge graph can be automatically

generated from a targeted search performed by the user.

3.1 Visualization Design and Creation
As noted above, given that we take the approach that a knowledge

graph will constitute the lower-level visualization of our data, the

task becomes creating a knowledge graph and creating a hierarchy

that is gleaned from and corresponds directly to the underlying

knowledge graph.

Figure 1 depicts the system architecture that supports the pro-

cess of automatically generating the hierarchical knowledge graph

representation. To simplify hierarchy generation, we create a 3-

level hierarchy for any document corpus. Beyond the base layer

knowledge graph, there is an intermediate layer of central concepts

gleaned from the knowledge graph. Finally, at the top-level, the

documents, themselves, represent the top level of the hierarchical

knowledge graphs. In Figure 1, three main steps are depicted to gen-

erate hierarchical knowledge graphs: Document Retrieval (yielding

the top-level of the hierarchy), Knowledge Graph Generation (yield-

ing the bo�om level of the hierarchy), and Hierarchy-from-graph

Generation (yielding an intermediate view of an individual knowl-

edge graph, which we dub a minimap1
).

User

Middle Layer:
Central 
Entities 

Minimap Generation

Lower Layer:
Flat 

Knowledge 
Graphs

Higher Layer:
Collection 

View

Entity 

Extraction

Relation 

Extraction

Labelling
&

Ranking

Preprocessing

Document Retrieval

Knowledge Graph Generation

Top 50 docs

List of Tuples:
<ENT1, ENT2, R, Snippet, Text_Anchor>

Figure 1: Generating Hierarchical Knowledge Graphs

3.1.1 Document Retrieval. �e Document Retrieval component

aims at creating an initial document collection based on a user’s

query. �is collection will then be used as an input for the Knowl-

edge Graph Generation component and will represent the top view

of the target hierarchy.

To generate a document corpus, we use the Bing Search engine to

retrieve the top n documents for a query while a�empting to ensure

a reasonable quality of information in the retrieved documents.

By default, to ensure that retrieved documents are consistent in

their credibility and coverage, we specify Wikipedia as the target

domain. Furthermore, because it is known that searchers typically

view only a few results [19] and rarely stray past the �rst page of

results [4], we selected n=10 documents to generate collections.

�e target domain from which to glean documents (e.g. a user

might specify webmd for medical documents, ’gov’ for public policy

documents, ’bbc’ for news) and the size of the initial collection can

be speci�ed by the user at the time of query submission. Finally,

1
�e term minimap is drawn from the gaming literature. It represents a less detailed

overview of a gaming world, allowing the user to orient themselves.
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since most exploratory search tasks require multiple queries to

retrieve documents for di�erent aspects of the information need,

this component assigns one partition per query so the user can

narrow down the retrieved collection further.

3.1.2 Knowledge Graph Generation. Inspired by past work [37],

we create knowledge graphs for an individual document or set

of documents as follows. (1) Entity taggers
2

are used to extract

entities from text. (2) Sentences that contain at least two entities are

selected and parsed using the Stanford Dependency Parser. For each

sentence, we extract meaningful relations between the entities by

�nding the shortest path in the corresponding parse tree. (3) Finally,

labels are automatically generated for the extracted relations. �e

labeled relations are ranked based on relevance to the query and

the informativeness of the extraction [37].

�e outcome is a set of tuples in the form of <entity1, entity2,

relation, snippet, document anchor>. �ese tuples collectively

correspond to a knowledge graph representation of retrieved docu-

ments where entity is usually a term or a noun phrase in text that

corresponds to a concept in the domain, relation corresponds to

a simpli�ed sentence that is semantically complete and describes

how entity1 and entity2 are connected, snippet is a short portion of

text from which the corresponding entity pair and the relationship

is derived, and text anchor is an HTML anchor that links the ex-

tracted tuple to the corresponding portion of the source document

in the collection. For example, from a paragraph on powers and

responsibilities of a president the following tuple can be extracted:

<president, parliament, “President nominates the Cabinet members

to the Parliament”, snippet, [URL][anchor]>.

�ese tuples are visualized as a knowledge graph where nodes

are the entities and edges are the relationships between them. �is

visualization constitutes the lowest layer of the hierarchy.

3.1.3 Minimap Generation. �e �nal component of this system

generates a hierarchical representation of the search results by

extracting a middle layer from the input Knowledge graph tuples

and provides bidirectional mappings between all three layers. As

noted earlier, we call this layer the minimap layer.

A natural result of the entity-relationship tuples extracted above

is that some entities have a higher number of edges, i.e. are of

higher degree. A higher edge count implies a larger number of

connections to other entities in the graph; in other words, those

entities with higher edge counts were more frequently linked with

other entities in the document. We call these higher degree vertices

central concepts and hypothesize that one alternative to hierarchical

faceted structures is to consider a multi-level view of a knowledge

graph around central concepts. �e multilevel view focusing on

central concepts simply introduces information seekers to those

entities or objects that are most frequently linked to other entities

within the corpus. Generating the hierarchy becomes a thresh-

olding task to appropriately scope the intermediate level of the

visualization. Algorithm 1 describes this process more formally.

3.2 Prototype Development
Given our hierarchical representation (DQ1), we must support

mechanisms for viewing and interacting with the visualization

2
h�ps://cogcomp.cs.illinois.edu/page/so�ware view/NETagger

Algorithm 1 Extracting Central Concepts

Require: Nodes: array of nodes in the knowledge graph,

min deдree: a pre-speci�ed threshhold for the minimum de-

gree of node to be considered as a central concept (starting

value = 3),max count : an experimentally derived threshold for

the maximum number of Central Concepts to be included in

the middle layer (default value = 15).

1: function ExtractCC(Nodes,min deдree,max count )
2: while true do
3: CentralNodes← []

4: for all node in Nodes do
5: if node .deдree ≤ min deдree then
6: CentralNodes.add(node)

7: if CentralNodes .size() ≤ max count then
8: return CentralNodes
9: min deдree++

(DQ2 and DQ3). In information retrieval, it is di�cult to separate

any visualization for representing search results from the interface

that contains that visualization [17]. We iteratively designed an in-

terface to support navigation of our hierarchical knowledge graphs

via a series of pilot studies.

Based on established literature and pilot studies we found that

knowledge graphs can become overwhelming or confusing for

participants [12, 22, 31, 39]. �e overwhelming nature of the full

knowledge graph leads to a need to create �ltered views of our

graph. �ese �ltered views draw inspiration from the “expand-

from-known” paradigm in information visualization [41]. Speci�-

cally, at the top level of the full corpus, a user selects a document,

then a central concept from the minimap visualization. While pre-

serving the entire knowledge graph, we alpha-blend all nodes in

the knowledge graph except those nodes directly related to the cen-

tral concept from the minimap. Recall that the central concept is

simply a high-degree vertex from the knowledge graph; therefore,

the central concept and all its linked nodes are shown saturated. As

a result, users can identify the central concept, linked entities, and

can see closely related additional entities. Together, this focused

detailed view seems to e�ectively support expand-from-known at

the knowledge graph level.

As well, for the Hierarchical View, the biggest challenge to ad-

dress was the disorientation among the participants during tran-

sitions between collection, minimap, and knowledge graph views,

a common problem in interfaces that show multiple levels of ab-

straction. To address this disorientation (DQ3), we maintained the

connection between the hierarchical view and the graph view in

two ways. First, the user can move between the layers of Collection

View and the Document View smoothly through a zooming func-

tionality that changes the focus of the UI (see Figure 2). Second,

the interplay between the Document View and the Detailed View

is designed such that the overview of the document is present at all

times, in terms of a callout on the le� side of the screen, an actual

minimap as in computer gaming, which allows the user to maintain

a sense of where he or she is while manipulating the �ne-grained

nodes and edges in the Detailed View.
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f
(Context Window)

e
(Detailed View)

a
(Collection View)

b
(Partition View)

c
(Document View)

d
(minimap)

Figure 2: MultiLayer Graph Interface: (a) Collection View; (b) Partition View; (c) Document View; (d) Minimap (i.e. Global
View); (e) Detailed View (Local View); (f) Snippet Window

�e iterative process culminated in the �nal prototype shown in

Figure 2.

In this interface, we see an initial overview, the Collection View

that presents an overview of the underlying documents’ structure

in the collection (Figure 2-a). �e collection view can potentially

provide multiple partitions on the documents. Figure 2-b illustrates

one partition of a collection. As an information seeker drills down

on each document, the view is altered (Figure 2-c) such that an

overview of the document is presented. �e Document View pro-

vides a Global View of the corresponding document in terms of its

central concepts. In this overview, the salient concepts in that arti-

cle are visualized as circles of di�erent sizes, where size indicates

the frequency of occurrence in that article. We used force and pack

layouts (as part of the D3 library
3
) to visualize the di�erent layers

of the knowledge graph representation.

�e lowest layer of our representation is the Detailed View (Fig-

ure 2-e). �is view is a knowledge graph that represents entities

and relationships between them. �e Detailed View, similar to

Sarrafzadeh et al.’s graph interface [39], contains labeled nodes and

unlabeled links between nodes. Nodes that represent entities with

low frequency are hidden in the initial view, and only appear once

a higher-frequency, connected node is clicked, ensuring that the

graph does not become too clu�ered. Once the user hovers over

a node, that node and all connected nodes are highlighted, while

the remainder of the graph is alpha-blended into the background.

Clicking on a node can expand it by adding in its related nodes.

Alternatively, clicking on a node can collapse its neighbours if they

are expanded already. Nodes can also be dragged and placed at

3
h�p://d3js.org/

di�erent parts of the canvas. �is functionality can help with orga-

nizing the graph structure in a way that is more meaningful to the

user and it can help with minimizing label overlap in the graph.

Edges can similarly be highlighted by hovering. By clicking

on any edge, the user can see the relationship(s) between the two

corresponding nodes (linked by this edge) in the context window

located on the lower le� side of the interface (Figure 2-f). For each

relationship in the context region, a hyperlink allows users to view

the corresponding web page.

4 EXPERIMENTAL DESIGN
Given that we have designed hierarchical knowledge graphs, a

related question is how hierarchical knowledge graphs compare to

hierarchies and/or knowledge graphs with respect to information

seeking tasks. To evaluate this question, we need a set of control

interfaces (reference interfaces that can be compared to hierarchical

knowledge graphs, HKGs) and a reference data set. �ese can

then be leveraged to design an experiment. As well, experimental

design should replicate, as closely as possible, past work to ensure

experimental validity.

In recent work, Sarrafzadeh et al. [39] developed two interfaces

for exploratory search: one knowledge graph interface and one

hierarchical tree interface. To preserve experimental validity, we

use identical interfaces as control interfaces. We also leverage the

identical data sets, ensuring that topic is eliminated as a confound.

Finally, we use exactly the same experimental task, ensuring that

performance numbers are representative between experiments.
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4.1 Control Interfaces
• �e �rst interface, a knowledge graph interface, functions

as follows: As the interface starts, nodes that represent

entities with low frequency are hidden in the initial view,

and only appear once a higher-frequency, connected node

is clicked. Users can also �lter the knowledge graph by

clicking on a node; when a user clicks on an edge, snippets

and links associated with that edge are shown in a preview

pane on the le� side of the interface.

• �e second interface utilized a hierarchy (or a tree) struc-

ture to organize headings and sub-headings of the articles,

as observed in each page’s table-of-contents. When the

user launches the application, the user is presented with a

fully expanded tree. By clicking on any node within the

tree, that portion of the Wikipedia document correspond-

ing to the node is presented in the preview area at the le�

of the interface.

Figure 3: Control interfaces for Knowledge graph and Hier-
archy. More details in Sarrafzadeh et al. [39].

Figure 3 depicts these two interfaces. Contrasting these interfaces

with Figure 2 shows a similar preview pane for snippets. Links

within the snippets function identically across all three interfaces.

4.2 Data Set
We leveraged the two data sets from Sarrafzadeh et al.’s previous

study: A history data set, speci�cally a corpus of Wikipedia articles

describing the historical locations of the capital city of Canada;

And a global politics data set, a Wikipedia corpus representing

governmental structures in Iran and Russia.

4.3 Search Tasks
We used the same two exploratory search tasks [24], a simple and

a complex exploratory search task, as follows:

Simple Politics: What governmental body or bodies are involved

in the impeachment of the President of Iran and of Russia?

(sample question)

Complex Politics: Imagine you are a high school student who is

going to write an essay on the Political Systems of Iran and

Russia. Knowing li�le about the presidents of these two

countries, you wish to determine which president has more

power. Find at least 3 arguments to justify your answer.

Simple History: As a result of which act were Upper and Lower

Canada formed? (sample question)

Complex History: Imagine you are a high school student who is

going to write an essay on the History of Canada. Knowing

li�le about Canadian History, you wish to know which

cities have served as a capital for Canada. You would also

like to understand the reasons behind moving the capital

from one city to another.

4.4 Study Design
Our study design was a 3 × 2 × 2 [interface, topic, complexity]

mixed design. For Knowledge graph and hierarchy, we leverage the

data set of Sarrafzadeh et al. [39], available from the researchers in

anonymized form. We add additional participants for our HKGs to

yield our mixed design as follows.

For HKGs, each participant performed two di�erent tasks, one

simple and one complex. �e topic area (history or politics) dif-

fered for each of these tasks. More formally, for these participants,

our design was a 2 × 2 full factorial mixed design, with topic and

complexity as within subjects factors and complexity to topic as-

signment as a between subject factor. We counter-balanced the

order in which the tasks were assigned to the participants.

Alongside the HKG participants, leveraging data from Sarrafazdeh

et al. [39] adds two additional levels of Interface (hierarchical tree

or knowledge graph) as a between subject factor. Combining the

data sets yield the 3 × 2 × 2 mixed design [interface, topic, com-

plexity] with interface as a between subjects factor, and topic and

complexity as within subjects factors.

4.5 Participants
In total we analyze data from forty seven participants. Twenty

six participants, thirteen female, used hierarchies and knowledge

graphs, the control interfaces. An additional twenty-one partici-

pants (4 female) used HKGs, the experimental condition, as a be-

tween subjects factor. All participants use the Internet on a regular

basis to search for information. Participants were aged between 18

and 45 years old (62% were between 20 and 29 years old). Partici-

pants received a $15 incentive for their participation.

4.6 Procedure
A�er introducing the study, participants were presented with an

experimental interface (populated with an unrelated data set), and

were given time to familiarize themselves with the interface and

data structure. Once participants had developed some comfort with

the features of the interface (∼ 3 minutes), participants completed a

questionnaire assessing their familiarity with the topic used for the

�rst task. �ey were then given the description of their task (see

above), and were asked to complete the task using the interface (15

minutes per task). Participants completed a post-task questionnaire

that evaluated the experience; we used questionnaires provided by
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TREC-9 Interactive Searching track
4

modi�ed to �t our experiment.

�e same process was repeated for the second task.

At the end of the second task, a semi-structured interview ex-

plored participants’ experience using the interface. Interviews

explored the conceptual usability of the visualization, the technical

usability of the application and the e�cacy of the interface for

di�erent types of search tasks. Feedback on competing interfaces

was also collected from participants.

4.7 Data Collection
Alongside a mixed design of within subject and between subject

factors, we perform a mixed methods analysis of both quantitative

and qualitative data [13]. Data was captured as follows:

(a) �e interface was instrumented with a logger which moni-

tored movement on the computer screen and participants’ interac-

tions with the system. Interactions collected included node or edge

clicks, snippets read, articles viewed, and time spent reading the

articles. In HKGs, the transition between the layers and switches

between the MiniMap and the knowledge graph were captured.

(b) Two assessors evaluated the quality of answers provided by

the participants for each of the search tasks independently. Simple

queries were rated as either correct or incorrect. Complex questions

were rated on a scale. Scores for all queries were normalized to

re�ect a value in the range [0, 1]. Inter-assessor reliability was

evaluated using Pearson coe�cient and an overall value of 0.97 for

simple queries and 0.94 for complex queries was found.

(c) We captured �eld notes during participant interactions, audio

recorded all sessions, transcribed �nal interviews, and collected

questionnaire data. �is data was analyzed collectively using open

coding to extract low-level themes and axial coding to identify

thematic connections between elements. Coding was performed

incrementally as each participant’s data was collected, and satura-

tion was found a�er coding qualitative data from �eld notes and

transcripts for 15 of our 21 participants.

4.8 Hypotheses and Research�estions
�antitative data allows us to test the following hypotheses:

• Hierarchical knowledge graphs result in fewer document

views and less time spent reading documents than do hier-

archical trees.

• Hierarchical knowledge graphs exhibit statistically similar

behaviors to Knowledge Graphs.

Alongside hypothesis testing, our log data provides insight into

whether hierarchies are used in hierarchical knowledge graphs and

on whether task complexity a�ects the use of hierarchies. As well,

to triangulate quantitative data, we leverage our qualitative data to

compare and contrast the nature of the hierarchies between the tree

interface and the hierarchical knowledge graphs and to understand

whether the hierarchies provide similar a�ordances.

5 RESULTS
5.1 �antitative Analysis
Scoring of participant responses by independent evaluators and

log �le analysis produced the quantitative measures in Table 1 for

4
www-nlpir.nist.gov/projects/t9i/qforms.html

Hierarchical Knowledge Graphs (H. Graphs), Hierarchical Trees

(H. Trees), and Knowledge Graphs (K. Graphs). Rows represent

measures for Marks (MK), Nodes clicked (NK), Edges Clicked (EC),

Document Views (V) and Document View Time (VT). We break

each measurement out by two query levels, Simple and Complex,

as described previously.

H. Graphs H. Trees K. Graphs

S
i
m

p
l
e

MK 0.43 (0.21) 0.32 (0.20) 0.37 (0.14)

NC 11.4 (8.6) 19.0 (10.04) 11.38 (9.4)

EC 18.3 (8.9) NA 27.15 (12.9)

V 2.38 (1.61) 6.08 (2.49) 2.38 (3.00)
VT 145.6 (153.7) 1430.9 (2302.8) 211.6 (228.0)

C
o

m
p

l
e
x

MK 0.62 (0.18) 0.57 (0.28) 0.58 (0.16)

NC 13.38 (9.2) 20.09 (17.7) 26.23 (19.12)

EC 23.09 (12.7) NA 41.07 (19.4)

V 2.15 (2.13) 4.38 (2.24) 4.38 (2.24)
VT 103.4 (97.6) 985.38 (1848.3) 78.76 (131.5)

Table 1: Hierarchical (H.) Graphs vs. Hierarchical Trees
and Knowledge (K.) Graphs: Mean (Standard Deviation) val-
ues for marks (MK - average independent evaluator scores),
clicks on nodes (NC) and edges (EC), document views (V),
and document view time (VT). Bolded dependent variables
exhibited signi�cant di�erences in post-hoc testing.

5.1.1 Hypotheses Testing. Multivariate analysis of variance with

respect to interface (tree versus graph versus hierarchical graph),

topic (history versus politics), and task (simple versus complex) for

Marks (MK), Views (V), and View Time (VT) shows a statistically

signi�cant e�ect of interface (F6,172 = 7.126,p < 0.001,η2 = 0.2)

and task (F3,86 = 12.22,p < 0.001,η2 = 0.3) on dependent variables.

Post-hoc factor analysis using Tukey correction indicates that the

tree interface exhibited statistically signi�cantly higher numbers

of document views than both hierarchical graphs and knowledge

graphs. As well, the tree exhibited statistically longer reading times

than hierarchical graphs (p < 0.05), but not than knowledge graphs

(p = 0.064) in our analysis. Hierarchical graphs and knowledge

graphs did not di�er signi�cantly in their e�ects on any depen-

dent variables. Task signi�cantly impacted the marks but no other

variables.

Clicks are not directly comparable between H. Trees, H.Graphs,

and K.Graphs, as edges are not clickable in hierarchies (NA value in

Table 1). Performing pairwise comparison between H.Graphs and

K.Graphs, our analysis showed no statistically signi�cant e�ect on

dependent variables (F3,30 = 0.752,p > 0.5,η2 = 0.70), including

node click and edge click behavior.

Given the above analyses, we reject both null hypotheses and

conclude that our hypotheses are supported by our data set. Hier-

archical Knowledge Graphs preserve the advantages of Knowledge

graphs over hierarchical trees in both reading time and in document

views. Focusing speci�cally on our hierarchical graph, we �nd that

our hierarchical graph has statistically lower document views (61%

fewer document views, on average) and time reading (90% less

time reading documents) than does hierarchical trees and that its
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behavior is statistically indistinguishable from the prior observa-

tions of knowledge graph interfaces. Furthermore, the e�ect size

measures, η2
, are signi�cantly above the threshold (0.14) typically

considered to be a large e�ect, lending support to these di�erences

being su�ciently large to be meaningful. In summary, our quantita-

tive results support our hypothesis that our hierarchical knowledge

graphs fully preserve the quantitative advantages identi�ed by

Sarrafzadeh et al [39] for knowledge graphs over hierarchies.

5.1.2 Additional �antitative Analysis. Given the statistically

indistinguishable nature of HKGs and Knowledge Graphs, one ques-

tion is if (and whether) intermediate hierarchical representations

are used. It is possible that Hierarchical Knowledge Graphs are

indistinguisable from Knowledge Graphs because users ignore the

hierarchy and simply leverage the knowledge graph.

GlobalView MiniMap DetailedView

Simple Task 27.03% 14.61% 58.0%

Complex Task 23.83% 17.24% 58.90%

Table 2: Percentage of Time spent on each of Global View,
Minimap and Detailed View

.
To speci�cally explore this question, we looked at how much

time users spent on each of the provided views in our HKG interface.

Overall, our data indicated that participants took advantage of all

three layers relatively similarly across both Simple and Complex

tasks. Further, while the the time spent on detailed view dominates

other views (58% for the simple task and 59% for the complex task),

over 40% of time was spent on additional views in the hierarchy

(Table 2). Looking speci�cally at how participants spent their time

in di�erent layers of the hierarchy (i.e. utilizing di�erent views

of the data) for di�erent tasks we see that the time spent at the

detailed view is similar for both levels of complexity. On the other

hand, participants seem to spend less time in MiniMap than Global

for the simple task (Pairwise t-tests with Tukey correction yields

statistical signi�cance, p < 0.01). For Complex task, however,

time in Global versus mid-level are not statistically di�erent (p >
0.1). Essentially, in the complex task, sensemaking is split between

global and minimap views of the hierarchy more equitably, i.e., the

minimap is particularly useful during our complex tasks.

Figure 4: Heatmap visualizing the patterns of users navigat-
ing views in HKG for intervals of 1% of task length.

We also explored usage pa�erns of views. Figure 4 is a heatmap

that visualizes use of di�erent views for intervals of 1% of task

length. Early in the task, we see frequent use of the global view.

While di�cult to see, MiniMap usage peaks just a�er the halfway

point in the task, but there is no strong concentration of use. �e

hierarchy, and particularly the MiniMap visualization, seems to be

used throughout the task.

5.2 �alitative Analysis
�e next question we explore involves participant perspectives on

hierarchical knowledge graphs as a representation of search results.

We were particularly interested in the overviews knowledge graphs

provide for the information space and their contrast with Table-of-

content-based hierarchies.

To address these questions, we performed open-coding of ob-

servations, transcripts, and questionnaire data. We coded incre-

mentally, and saturation occurred a�er ��een participants were

coded. We coded all participants for completeness. Once open

coding was complete, axial coding and thematic analysis was per-

formed collaboratively by the researchers. We present three themes

arising from our qualitative data analysis: Supporting Exploratory

Search Tasks, Imposing a Structure versus Open Exploration and

the Self-Orienting nature of HKGs.

5.2.1 Supporting Exploratory Search Tasks. As noted in our

study design, we incorporate two exploratory information seeking

tasks with di�erent levels of complexity. In post-experiment in-

terviews the participants were able to compare how di�erent task

complexities are supported by the assigned interface.

�e hierarchical graph representation was found to provide

more support for the Complex Task (i.e., more open ended and

exploratory tasks such as essay writing or learning) versus Simple

tasks (such as question answering and speci�c knowledge �nding).

�is observation seems to be true for any multi-level structure

which provides an overview and allows a gradual immersion into

details: Finding a speci�c piece of information to satisfy a simple

query is best done using a traditional search engine.

Looking speci�cally at HKGs and complex tasks, the overview

allowed participants to identify the central concepts of a domain at

a glance and the size of the circles indicates their prominence in

the corresponding article. As many participants noted, ‘relevance’

or ‘prominence’ of a concept with respect to the main topic or

the domain they are exploring is an important asset in Complex

Search tasks. �is qualitative observation may explain the more

equitable use of the MiniMap representation for complex search

tasks noted in our quantitative analysis. Complex tasks required

synthesizing, rationalizing, and comparing, which seem to require

more awareness of the entire data set.

�is identi�cation of central concepts was also linked to a per-

ception of value of the MiniMap as a starting or entry point into

the topic of the document being examined. Several participants

articulated a belief that the overview provided by Central Con-

cepts helped with “going from knowing nothing to having a plan”,

“learning terminology”, “relevance, importance, or prominence”,

and “objectively learning about a domain”. In particular, the objec-
tive nature of central concepts was cited by many participants as

key to their utility.

As White and Roth [43] point out, exploratory search is moti-

vated by complex information problems, poor understanding of

terminology and information space structure, and o�en a ‘desire

to learn’. Vakkari [40] also argues “more support is needed in the

initial stages of a task”, when users have an unstructured mental

model. Inspired by Kim [21], Sarrafzadeh et al. [39] found that

hierarchical trees provide this bene�t in unfamiliar domains. A

strength of our design of hierarchical knowledge graphs is that it
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enables the user to engage in two alternative navigation paradigms.

Users can exploit overview layers to explore the collection at a

higher level followed by targeted immersion in the detailed view.

5.2.2 Imposing a Structure versus Open Exploration. While most

participants were unanimous that the hierarchical representation

imposes a [subjective] [rigid] structure onto the information space,

their a�itude towards this phenomenon varied. �e level of domain

knowledge and the complexity of the search tasks were found to

be the major factors a�ecting their a�itude.

When the searcher is dealing with a domain where he has limited

knowledge, he is more open to accepting the structure that the

representation imposes. Both hierarchical trees and hierarchical

knowledge graphs incorporate imposed structures. Participants

articulated a variety of advantages to structures: it was “easier to

follow”, “contained important aspects” that “simpli�ed focus”, and

guided participants in “where to go” or “what steps to follow”. With

respect to hierarchical trees, some participants simply “trusted” the

designer of the hierarchy (e.g. the author of an article) to be “logical”

or “rational” in the way he broke down things. �is was particularly

true for participants with limited knowledge of a topic domain and

replicates �ndings by Sarrafzadeh et al. [39] and Amadieu et al. [1]

that low knowledge learners bene�ted from hierarchical structures

in free recall performance and exhibited reduced disorientation.

In the case of higher domain knowledge, our participants were

split in their preferences and a�itudes. Some still trusted the logic

behind the layout of a hierarchical trees and the fact that their

knowledge of the domain can guide them to �nd what they want

using this hierarchy. �ey trusted the designer to place items in

close proximity to where the item should be. Other participants

strongly opposed the rigid structure of a hierarchy, feeling it was

“not the way I think”, “based on the mindset of the author”, or “did

not match the domain structure”.

One interesting perspective of the multi-layer graph representa-

tion which presents central concepts of a domain as an overview

for each document is that it re�ects the knowledge graph concepts.

�is re�ection made it, for many participants, more �exible and

exploratory, a window into the knowledge graph. Many partici-

pants commented on this phenomenon, noting it was “guiding but

not imposting”, “more open”, “sparked interest” in the lower level

structure, or was “visually appealing” and “fun”.

5.2.3 Self-Orienting or Relative Positioning. One main advantage

of a the Hierarchical Tree visualization in Sarrafzadeh et al. [39]

was the explicit connections between nodes (categories or headings)

in the representation. �ese edges help in two ways:

(1) At a glance, you can tell why a concept appeared in this

overview, or in this domain. To whit, the hierarchical struc-

ture exists the way it does because of a human author’s

decision.

(2) �e Path from the root to each of these nodes in the Tree

Layout can provide useful information on where a concept

is positioned relative to the topic.

Sarrafzadeh et al. [39] note that participants may perceive a do-

main to have a derivative/hierarchical structure or a multi-faceted

structure. If salient relationships are viewed as derivative or hier-

archical (e.g. ‘is-a’ relationships), then a tree can best capture this

view of data, whereas if salient relationships are more heteroge-

neous and resist structure as a hierarchy, that disadvantages the

hierarchies.

�is is not the case in our MiniMap, where the connection be-

tween each of these main concepts and the main topic is unknown

at �rst glance. Central concepts are simply extracted based on their

high connectivity with other concepts within a speci�c document

within a corpus. However, it is also true that it would be quite

surprising if highly linked concepts were not, somehow, important

components of any individual document. �e more pervasively

they link, the more they interconnect with other concepts, the more

important it is to understand them and their relationship. In this

way, HKGs become self-orienting for out participants.

6 LIMITATIONS
Any study has limitations. Because we leverage the research method-

ology and data sets of Sarrafzadeh et al. [39], we inherit the lim-

itations of that study, including topic and implementation issues

which may bias the study. Despite this, there is also a strength

in replication: if interfaces are redesigned, data sets di�er, and

tasks are unique it becomes di�cult to ensure a lack of confound

in experimental design. We address this by preserving, to the limit

possible, all aspects of a similar study within this space contrasting

data structures.

Our mixed design of within and between subject factors is a par-

ticular strength to our study design. Because topic (history/politics)

and task complexity are within-subject factors, they are controlled

across participants. Because we are most interested in interface and

it is a between subject factor, to observe statistical signi�cance we

need good separation of dependent variables between the two data

sets, reducing the likelihood of a type-one error in our analysis.

7 CONCLUSION
�e primary goal of our research was to explore whether we could

combine bene�ts from both knowledge graphs and hierarchies into

one data structure for visualizing search results. We note that

our hierarchical graphs signi�cantly reduce documents read and

reading time as compared to hierarchical trees and perform on

par with knowledge graphs. We also provide evidence that the

hierarchy is used by participants via analysis of interaction logs.

�alitative data from our participants does indicate that hierar-

chies grounded in tables-of-contents are more familiar, easier to

follow, and more focused. �is in turn helps users orient themselves

in the data. �e ve�ed nature of hierarchical tables-of-contents was

also perceived to be an asset absent from our hierarchical knowl-

edge graphs. �e hierarchies in our knowledge graph were viewed

slightly di�erently, as noted above, with a more quantitative per-

spective giving them a certain cachet with respect to the unbiased

nature of topic selection.

A �nal issue to consider is whether any hierarchy might provide

bene�ts. While it may, one advantage of the hierarchy in our HKGs

is its tight connection to the entities contained in a knowledge graph

and the ease of automatically extracting the hierarchy through

thresholding. Another advantage is �exibility: while we currently

leverage only three levels – corpus, central concept, and knowledge

graph – it is easy to generalize the hierarchy to an arbitrary number
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of thresholds depending on the complexity of the domain. We

do not generalize the hierarchy in this paper because, for a �rst

experimental validation, there are a limited number of factors that

can be assessed. However, future work can address more detailed

inquiries into scalability to larger corpora, scalability to multi-level

hierarchies, and contrasts with other hierarchies such as automatic

clusters or user-speci�ed facets.

In summary, we �nd that our hierarchical knowledge graphs

preserve many of the previously observed advantages of traditional

knowledge graphs, i.e. fewer document views and reduced reading

time. Alongside this, hierarchical knowledge graphs introduce an

e�ective hierarchical representation into knowledge graphs.
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