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ABSTRACT 

Among the significant factors in assessing the suitability of a 

clustering technique to a given application is its stability; that is, 

how sensitive the algorithm is to perturbations in the input data. A 

number of techniques that appear to be suitable for measuring the 

stability of clustering have been published in the literature. The 

details about each of these measures, such as a description of the 

steps involved in their computation and an identification of precisely 

what they measure, are presented. These measures are considered in 

the context of analysing the stability characteristics of clustering 

techniques and are compared using a framework developed for this 

purpose. The question of generalizing some of these measures is 

addressed and the measures are also analyzed to identify conditions 

under which they can be reduced to one another. 

I INTRODUCTION 

In many fields of study such as life sciences, social sciences, 

and information retrieval, a specialist finds himself confronted with 

a large number of entities (organisms, persons, documents) each of 

which is represented by a finite number of attribtues or features. An 

* This research has been supported in part by a grant from Natural 
Sciences and Research Council of Canada. 
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important step in analyzing and understanding such data may often 

consist of classifying or clustering this set into "homogeneous" 

groups. 

Many clustering techniques are now available. Some of them are 

graph theoretic, while the others have variously been described as 

decision theoretic, enumerative, or corridor and linear adaptive 

(Salton, 1975). A review of these methods can be found in Bonnet 

(1964), Ball (1965), Johnson (1967), Lance and Williams (1967 a, b), 

Cormack (1971), Jardine and Sibson (1971), Watanabe (1972), Sneath and 

Sokal (1973), Yu (1974), Day (1977) and Matula (1977). 

There are a number of factors that determine the suitability of a 

clustering technique to a given application. The most important of 

them is, of course, the effectiveness of the classification generated 

in the context of the application. It is also common practice to 

evaluate a clustering method in terms of other factors such as 

computational efficiency, whether or not the resulting classification 

differs depending on the order in which the objects are processed and 

if the same clusters would be obtained if the scale of certain values 

is altered. Another significant factor in assessing the suitability 

of a clustering algorithm is its stability; that is how sensitive the 

algorithm is to perturbations in the input data. Very few researchers 

have considered the evaluation of different clustering techniques from 

the point of view of their stability (Rand, 1971; Yu, 1976; Corneil 

and Woodward, 1978; Raghavan and Yu, 1981). Consequently, very little 

has been published about techniques for measuring stability of 

clustering. On the other hand, a number of studies have considered 

the problem of how to compare classifications (Sokal and Rohlf, 1962; 

Farris, 1969; Jackson, 1969; Arabie and Boorman, 1973; Boorman and 

Olivier, 1973; Rohlf, 1974; Day, 1979). Since the measurement of 

change in classification, as a consequence of perturbations in the 

input data, is fundamental to the assessment of stability, the earlier 
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work on the comparison of classifications is of particular interest. 

The primary aim of this paper is to consider the various measures 

referred to above in the context of analysing the stability 

characteristics of clustering techniques. This goal is accomplished 

by describing each of the techniques, explaining (when necessary) how 

they can be used to measure stability of clustering, and providing a 

comparison of these measures. 

The remainder of the paper is organized in the following manner. 

In section II, a few essential definitions relating to clustering 

methods are introduced. A diagram which gives readers an overview of 

the clustering techniques is also presented. In section III we point 

out the importance of a stable classification from the point of view 

of document retrieval systems. A detailed description of the 

techniques found in literature, which can be used to measure stability 

of clustering, is presented in section IV. These measures are then 

compared to each other and evaluated in the context of assessing 

clustering stability in section V. Finally, section VI provides a 

summary of the findings of this paper. 

II BASIC DEFINITIONS 

In this paper, the terms clustering, classifying, or clustering 

technique refer to the process by which the entities, or the 

attributes characterizing them, are placed into groups such that the 

objects (attributes or entities) within a group are more strongly 

related to each other than those in different groups. These 

homogeneous groups are referred to as classes or clusters. The set of 

classes or clusters obtained by clustering a given set Of objects 

constitutes a classification. In the placement of objects into 

clusters, it is generally required that the classification generated 

be exhaustive of the objects under consideration and that no cluster 

properly includes any other cluster. If the overlap between any two 
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clusters in such a classification is null, then it is called a 

partition. 

For the discussions of this paper, it is convenient to place 

clustering methods into three broad categories. First is the group of 

clustering methods that have been referred to as grap_h theoretic. 

These methods require that the computation of the similarity measure 

between every pair of objects be the first step in the identification 

of clusters. This means that an object-object similaritz matrix, 

whose (i,j) th element represents the degree of closeness between the 

i th and jth object, needs to be created. Then, a threshold is applied 

and the value of the (i,j) th element is made 1 if the corresponding 

similarity value is greater than or equal to the threshold; the 

element is made zero, otherwise. This matrix is referred to as the 

adjacency matrix. A graph is then associated with the adjacency 

matrix where each vertex in the graph corresponds to an object, and an 

edge is associated between two vertices if the element in the 

adjacency matrix for the corresponding objects is i. Clusters are 

then identified by choosing one of various graph theoretic constructs 

available for specifying the conditions under which a set of vertices 

would be placed in the same cluster. 

The second group of clustering methods considered here are due to 

Jardine and Sibson (1971). Informally, the clustering schemes 

analyzed by Jardine and Sibson, consist of first obtaining a "target" 

similarity matrix from the object-object similarity matrix. Then, 

from the target similarity matrix, a classification is found by 

employing the maximal complete subgraph (MCS) clustering method. The 

formation of the target similarity matrix would, of course, depend on 

the type of classification desired. Although these methods make use 

of graph theoretic notions, the overall algorithm is quite distinct 

from that of the first group. 

Some clustering methods (enumerative, decision theoretic, etc.), 
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however, do not require the computation of the similarity or the 

adjacency matrices and the classification can be computed more 

directly from the input. The third and final group, thus, includes 

all methods not included in the other two. 

The categorization described above is summarized in Figure i. In 

the figure, the path ABCE represents the operations involved in any 

graph theoretic clustering technique. The path ABDE corresponds to 

the class of clustering techniques devised by Jardine and Sibson 

(1971). All other clustering methods are characterized by the path 

AE. 

clustering al~orithm 

C 

thresholding ~1 adjacency 
.... matrix 

/ ' / f object- simil- object- 
/attribute t arity =| object 
/matrix / c°mpu- I similarity 
,, tation matrix D 

.... I t'arget ............ 
I similarity _ ; similarity 
modification --I,, matrix 

clusterin$ al$orithm 

' classi- 
fication F 

I clique I 
I clustering algorithm 

Figure i. An overview of clustering techniques. 
In the figure, boxes A and E represent the input and 
the output, respectively, of the clustering process. 
Each arrow indicates an operation, whereas the boxes at 
the tail end and at the head correspond respectively to 
the input and output of the operation. 

III MOTIVATION FOR THE CURRENT WORK 

It was mentioned that there are a number of factors that 

determine the suitability of a clustering technique to a given 



214 

application and that stability is one among them. The concern about 

stability stems from the fact that perturbations to the input do 

occur, as a result of errors made in the parametric representation 

(choice of attributes and their values) of objects and in the 

conversion of this data into machine readable form. In this section, 

in order to demonstrate that the study of stability is important, we 

first look at the kinds of errors that can arise in the context of 

information retrieval systems*. Secondly, we consider the issue of 

measuring stability and difficulties thereof. Finally, the objectives 

of the current work are reviewed in the light of the discussions 

referred to above. 

III. i. The sources of input errors 

The following kinds of errors can arise in the initial processing 

and preparation of document collections: 

(a) In handling large document collections, the information from 

which their descriptions are obtained would have to be 

transcribed from their source and, then, be converted into a form 

suitable for processing by a computer. During this stage of 

input preparation, various kinds of clerical errors may occur. 

(b) A descriptor which is not important or does not appear in a 

document may be mistakenly assigned. 

(c) The set of descriptors that properly represent the content of a 

document may not be unique. That is, although two indexers (or, 

indexing strategies) analysing the same document may produce 

descriptions which agree with each other substantially, it is 

nevertheless likely that there will be points of disagreement. 

(d) In a dynamic environment in which additions and deletions of 

* In these systems, the database is a collection of documents or 
texts. Both documents and queries are represented by a set of 
descriptors. In response to a query, the closeness of the various 
documents to the queries are determined using some kind of a best 
match criterion and a list of references are provided. 
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documents occur quite frequently, these changes to the collection 

can be viewed as a kind of perturbation. The dynamic aspect 

would also have implications for the extent to which document 

descriptions remain valid over time. As new jargon is introduced 

into a field, earlier descriptions of documents can become 

incomplete or inaccurate. 

It is easily seen that these kinds of perturbations are unavoidable. 

But, if the clustering method is able to obtain nearly the same 

classification in spite of these distortions, it would clearly be an 

asset. In the light of the discussion above, we informally refer to a 

clustering method as stable if small changes in the input data lead 

only to small changes in the classification generated. 

III. 2. Difficulties i_nn th___ee evaluation o_ff stability 

There are essentially two aspects that a measure of stability 

must deal with. One aspect is the evaluation of changes in the input 

data due to errors, and the other is the measurement of the 

differences in the resulting classifications. 

Assuming that a collection of documents is viewed as an array, 

changes to a document-term array can be measured quite easily. 

Suppose that two document arrays are given, representing differing 

descriptions of the same document collection. There is no difficulty 

in identifying a particular document in one array with the 

corresponding document in the other array. Thus, over the whole 

collection, a measure of difference between the two arrays may be 

obtained by first computing the corresponding object-object similarity 

matrices and, then, determining ~ the similarity between these two 

matrices by using a measure such as Kendall's (1938) coefficient of 

agreement. 

There are, however, difficulties in using a similar approach for 

comparing classifications, even though a classification, like the 



216 

document collection, can be represented by means of a binary array. 

(In a classification array, C, the element Cij indicates the presence 

or absence of object j in class i.) Suppose that C and C" are two 

classification arrays produced from two document arrays, D and D', 

which are differing representations of the same document collection. 

Since names or labels given to each class in C and C" are entirely 

arbitrary, it is not possible (as could be done for document arrays) 

to identify each class of C as corresponding to a specific class in 

C'. This means, more ingenious approaches are required in order to 

obtain an object-object similarity matrix on the basis of a 

classification array. 

Thus, it is seen that in an information retrieval environment 

various kind of errors can occur and that the need for identifying 

stable clustering methods is real. In order to perform such 

evaluations one must first have techniques by which stability can be 

measured. However, comparison of classifications - a process which is 

inherent to any measurement of stability - is not something that is 

easily done. In view of these facts, there exists a need to take 

stock of what is known about evaluating clustering stability and to 

develop a proper framework in which the work in this area can be well 

understood. In this paper we attempt to fulfill the above need. 

IV EARLIER WORK 

Before the techniques for measuring stability of clustering are 

compared, the earlier work in evaluating stability and the related 

area of comparison of classifications is reviewed. 

IV. 1. ComParison of Classifications 

One of the first suggestions put forward for the comparison of 

different classifications was by Sokal and Rohlf (1962). They propose 
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a method for comparing hierarchical classifications* which are 

represented by dendro~rams (diagrams of relationships). The purpose 

of a dendrogram is to show the level at which two or more objects 

combine to form a common cluster. To illustrate, let us consider 5 

objects whose object-object similarity matrix is as given below: 

02 

03 

04 

05 

0.6 

0.4 0.8 

0.1 0.5 

0.1 0.2 

0.7 

0.2 0.3 

01 02 03 04 

Suppose that the clusters corresponding to a given threshold are 

defined (borrowing a graph theoretic terminology) as the connected 

components (CC's) of the associated graph. Then, the dendrogram for 

this situation is as shown in Figure 2. In a dendrogram the abscissa 

has no particular meaning. The ordinate, on the other hand, 

represents similarity values. In the example given, 02 and 03 join at 

level 0.8, 04 combines with 02 and 03 at level 0.7, O 1 combines with 

02, 03 and 04 at level 0.6 and, finally, all the objects form a single 

cluster at level 0.3. 

A summary representation of the level at which the various pairs 

of objects join is obtained as explained below and dendrograms can be 

compared on the basis of such a representation. 

The range of similarity values along the vertical axis is divided 

into a suitable number of equal intervals. Suppose that the number of 

intervals is N and the similarity values are in the range between 0 

and i. Let the code number of the (similarity value) interval ((i- 

I)/N,i/N) be i, for 1 < i < N. Then, the cophenetic value of a given 

* In a hierarchical classification there are many levels of 
classifications, and the clusters in a given level are cohesive than 
those of any higher level. That is, any cluster at a given level is a 
subset of some cluster at each higher level. 
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FIGURE 2. A dendrogram to illustrate the computation 

of cophenetic values. 
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pair of objects is defined to be the code number of the interval that 

contains the similarity value at which the objects join in the 

dendrogram. Using this scheme, a matrix containing the cophenetic 

value for every pair of objects can be generated. The values 

generated accordingly are given by the elements below the main 

diagonal of the following matrix. Note that this is an object-object 

similarity matrix which is derived on the basis of how the objects 

havebeen clustered. 

01 

02 

03 

04 

05 

X 4 4 3 3 

3 X 2 3 5 

3 4 X 3 5 

3 3 3 X 4 

2 2 2 2 X 

01 02 03 04 05 

Thus, given two classifications, the corresponding (similarity) 

matrices of cophenetic values are generated and a measure of agreement 

(or disagreement) between them is determined by calculating the 

product moment correlation coefficient, which measures the extent to 

which there is a linear relationship between the two sets of 

cophenetic values. 

Farris (1969) has suggested an alternative to the cophenetic 

value, which is called the cladistic difference. Consider a tree 

diagram corresponding to a dendrogram in which the external nodes are 

the objects, and each internal nodes represents the merging of two or 

more lower level clusters. Then, the cladistic difference between two 

objects is the number of edges in the path between them on the tree 

diagram. These values, for our example, are given by the elements 

above the main diagonal of the matrix shown above. 

In Jackson's (1969) work, a measure which reflects the extent to 

which a classification truly represents the data from which it is 
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derived is developed. Again, let D denote the object-attribute binary 

array and C the object-class binary array which is obtained from D by 

employing some clustering method. Let S and T denote the object- 

object similarity matrices obtained respectively from D and C by 

applying a similarity function to all the object descriptions 

considered pair-wise. Then, the assessment of the discrepancy between 

S and T is made by checking whether on not sign(S(i,j) - S(k,l)) = 

sign(T(i,j) - T(k,l)), for each distinct combination of i, j, k and 1 

that represent four different objects. In other words, whether or not 

a pair of objects which are more similar, by virtue of their initial 

attributes, than another pair of objects, are also more similar as 

indicated by the clusters in which they have been jointly placed. 

Thus, the greater the number of cases in which this condition holds, 

the better is a classification. The discrepency measures proposed by 

Jackson, which combine the numerous checks mentioned above to a single 

value, except for minor differences, can be thought of as being the 

complement of Kendall's (1938) coefficient of agreement. 

Borko et al. (1968) suggested constructing simple contingency 

tables for comparing non-hierarchic, non-overlapping 

classifications. An element, fij, in the table gives the number of 

objects in class j in the first classification that are in class i in 

the second classification, for some arbitrary labelling of the 

clusters in the two classifications. For example, if Y and Y" are two 

classifications of six objects {a,b,c,d,e,f} given by 

Y = { {a,b,c},{d,e,f} } and 

Y'= { {a,b},{c,d,e},{f} } , 

then the contingency table will be 

I Y classes 

Xp 

classes 

2 0 

1 2 

0 1 
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Using the table, the degree to which one can predict the class in 

which an object will fall in one classification, knowing only its 

class in the other classification can be measured by performing 

various contingency coefficients and tests of independence (e.g. 

using, ~2). 

Since a classification can be a partition, methods proposed for 

comparing differenct partitions of the same set of objects are of 

interest. The metric, which possess intuitively desirable properties, 

has been proposed as a model of distances between partitions (Arabie 

and Boorman, 1973). Day (1979) has studied metrics on partitions 

comprehensively. By using models for methodical enumeration of 

metrics, he identifies twelve, metrics. Two of these are classified as 

pair bond (PB) metrics, while the rest fall in the category of 

minimum-length sequence (MLS) metrics. Four of the twelve metrics, it 

is suspected, are difficult to compute, but efficient algorithms for 

the remaining eight metrics exist and exhibit time complexities 

ranging from O(n) to O(n3), where n is the number of objects in the 

partitions. Boorman and Olivier (1973) have shown that partition 

metrics can be used to construct metrics on various types tree-like 

classifications. Thus, the metrics mentioned above are also relevant 

to the comparison of hierarchical classifications. 

IV. 2. Measurement o_ff Stability 

Rand (1971) has proposed a method to measure the similarity 

between two different classifications (actually, partitions) of the 

same set of objects. The measure essentially considers how each pair 

of objects is assigned to clusters in the two classifications. If a 

pair of objects is placed together in a (some) cluster in each of the 

two classifications, or if the objects in the pair are assigned to 

different clusters in both classifications, then such pair of objects 

is said to be "similarly placed". In contrast, an object pair is 
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defined to be "differently placed" if the pair is in the same cluster 

in one classification and the objects in the pair are in different 

clusters in the other. A measure of similarity between two 

clusterings, Y and Y', can be defined as c(Y, Y'), and is equal to the 

number of pairs of objects which are similarly placed normalized by 

the total number of object-pairs. 

The following example illustrates the calculation of c between 

two classifications, Y and Y', of six objects. Let Y = {(a,b,c), 

(d,e,f)} and Y" = { (a,b), (c,d,e), (f)}, then the object-pairs are 

tabulated as follows: 

object-pair ab ac ad ae af bc bd be bf cd ce cf de df ef TOTAL 

similarly 
placed * * * * * * * * * 9 

differently 
placed * * * * * * 6 

A total of nine pairs being similarly placed out of a possible 15 

gives c(Y, Y') = 0.6. 

It is clear that the measure of similarity c, ranges from 0, when 

the two classifications have no similarities at all, to i, when they 

are identical. 

Rand suggests, in his paper, that the measure c can be used to 

study various characteristics that researchers would like to 

investigate, prior to choosing a particular clustering method. One 

such characteristic mentioned is the sensitivity of a method to 

perturbation of the data. Corneil and Woodward (1978) choose 

stability as one of the properties in their comparison of three 

clustering methods. In this case, Rand's measure is used for 

measuring stability. Thus, if Y and Y" correspond to classification 

obtained, respectively, for the unperturbed and perturbed data, then 

the larger the value for c, the more stable is the clustering method 

in question. 
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In a recent study Yu (1976) proposes a method for measuring the 

amount of disturbance in classification due to small changes in the 

input data. The measure is developed in particular reference to graph 

theoretical clustering strategies. The proposed measure estimates the 

amount of change in a set of 

clusters by the minimum number of "operations" required to restore the 

set of modified clusters to the original ones. Implicit in the above 

statement is the assumption that the change in the data is so small 

that there is a i-i correspondence between the vertices of the 

modified graph and those of the original graph. In other words, 

neither any of the original objects is lost nor any new ones created. 

Therefore, the operations consist only of the addition and/or deletion 

of edges needed to restore the set of modified clusters to the 

original ones. 

More precisely, let GP= (V,E) be the graph that would represent 

the object-object similarities if there had been no errors in the 

input data. Let G* = (V,E*) denote the graph actually obtained as the 

result of some perturbations in the input. That is, E* is obtained by 

deleting some edges from E and adding some edges from E to E. Thus, 

edge deletions come from the original graph, whereas edge additions 

are from the complement graph. Given some method of defining a 

classification, suppose G** = (V,E**) denotes a graph which is 

obtained through minimum number of changes to G* such that G and G** 

have an identical set of clusters, then, the amount of change is 

specified by the expression I(E**-E*) U (E*-E**)I+" This concept is 

illustrated below using Figure 3. 

The changes to G due to errors are the addition of edge (03, 07) 

and the deletion of (01, 02) and (04, 05). Let the clusters be 

defined as the CC's. Clearly, the removal of (03, 07) and the 

addition of one of the edges {(01, 02), (01, 05), (04 , 02), (04 , 05)} 

+ If A is a set of p elements, the IAI = p. 
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FIGURE 3. An initial, a perturbed, and a restored graph 
to illustrate theamount of work. 
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are sufficient to restore the clusters (refer to G**), and the work 

needed for restoration is 2. Note that, certain edge changes (adding 

(03, 07) or deleting (06, 08) ) would affect the resulting clusters and 

yet certain other changes (say, deletion of (02, 03)) do not alter the 

clusters obtained. In this sense, the measure takes the structure of 

the graph into account. 

Yu finds that clusters defined as the MCS's require the maximum 

number of operations and hence the least stable. In fact, in this 

case, the corrected graph must be identical to the initial graph. He 

compares the effect of simple matching and cosine similarity functions 

experimentally and concludes that for both cluster defining methods 

tested (CC and MCS), clusters produced on the basis of cosine function 

are less stable than those obtained using simple matching. 

Raghavan and Yu (1981) use the measure proposed by Yu to compare 

the stability characteristics of a number of families of graph 

theoretic clustering schemes. The connected component method is shown 

to be the most stable of all graph theoretic clustering methods that 

possess a certain property, and the maximal complete subgraphs method 

is found to represent the worst possible case in terms of stability. 

Furthermore, it is shown that certain families of graph theoretic 

clustering algorithm are such that as one proceeds from the method 

producing the most narrow clusters (MCS) to those producing relatively 

broader clusters, the clustering process remains at least as stable as 

any method in the previous stages. 

V COMPARATIVE EVALUATION OF TECHNIQUES 
FOR MEASURING STABILITY 

Of the various techniques reviewed in the previous section, those 

considered under the heading of Comparison of Classifications are of 

potential interest to the assessment of clustering stability. Since 

they have been proposed in a broader context, first we consider how 
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these measures might be used for measuring cluster stability. 

Secondly, we analyse the process in reference to Figure i, and 

summarize the differences in the techniques in terms of the approach 

employed for measuring stability. This analysis also provides some 

possibilities for other approaches that might be used. Finally, some 

special features and limitations inherent to the measures considered 

are outlined. The discussion in this final subsection, then, lead to 

some improvements and generalizations. 

V. 1. Measuring stability using the techniques 
for comparing classifications 

The techniques for the comparison of classifications presented in 

section IV.I are those by Sokal and Rohlf (1962), Jackson (1969), Day 

(1979) and Borko et al. (1968). Generally speaking, all these 

measures can be used for assessing clustering stability. 

These methods would likely be used in an experimental setting, 

where the amount of error associated with the input (object-attribute 

matrix) would be introduced in a controlled fashion. Two 

classifications would be generated, one for the correct input and the 

other for the perturbed input. The classifications can then be 

compared using one of the above measures and the effect of input 

errors on classification can be determined. 

Thus, the adoption of methods studied by Day or that proposed by 

Borko is straight forward since these measures directly deal with the 

similarities and differences between the classifications given. In 

the case of the method by Sokal and Rohlf, first the matrix of 

cophenetic values, which is essentially an object-object similarity 

matrix, would be derived from each of the resulting classifications. 

Then, the two matrices are studied to determine the extent to which 

the ranking of the similarities between the various pairs of objects 

in one matrix coincides with the corresponding ranking in the other 
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matt ix. 

The use of Jackson's method for measuring stability of clustering 

is similar to that of Sokal and Rohlf in the sense that object-object 

similarities based on the two resulting classifications is first 

obtained. At this point, one approach that might be used to determine 

the stability of the clustering method used is to compare the object- 

object similarity matrices. Alternatively, the use Jackson's method 

can be fashioned more closely after how he proposed to compare 

classifications. 

As indicated earlier, Jackson's proposal was to compare the 

similarity values obtained on the basis ~ of the input object-attribute 

matrix to those obtained on the basis of the resulting classification. 

The idea is that this comparison would indicate how well the 

classification still (after classification) retains the original 

relationships. This approach suggests that a better classification 

method is more able to retain the relationships that originally 

existed. In keeping with this thinking, we might assert that the 

clustering method is stable if the classification obtained using the 

perturbed input reflects the relationships in the correct input as 

well~as does the classification that is obtained on the basis of the 

correct input. Accordingly, the object-object similarities 

based on the two classifications would be compared separately with the 

similarity values obtained from the input object-attribute matrix. 

V. 2. A framework for under§tanding approaches 
t__qo measurin~ stability 

A number of methods which are available for the evaluation of 

stability of clustering techniques have been described. In this 

section, these methods are classified into a number of categories in 

terms of the approach they employ to measure stability. For this 

analysis, we characterize the approach of the various methods 
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considered in reference to Figure 1 of section II. 

In the previous section, it was pointed out that in some methods 

of comparing classifications, an object-object similarity matrix is 

derived from each of the classifications and, then, the comparison is 

made in terms of these similarity matrices. In order to correctly 

describe this case in terms of Figure i, the following modification to 

the figure is suggested. A box labeled F is added to the right of box 

E. An arrow is added which points from box E to box F as shown below: 

/c I I similarity 
similarity > 

based on 
lassification /computation Matrix 

classification 

The arrow stands for the process of computing object-object 

similarities from classification resulting from the clustering 

process. 

The approaches for measuring stability employed by the various 

methods can now be summarized. 

Approaches to measuring stability: 

(i) Compare F to F" 

(ii) Compare B, in turn, to F and F" 

(iii) Compare E to E" 

(iv) Compare C to C" 

The labels used with an apostrophe refer to the same entity, 

except that they are obtained after the input data has been perturbed 

to reflect the effect of errors introduced. It is easy to see that 

methods of Sokal and Rohlf, and Farris are of type (i). The use of 

Jackson's method in the content of measuring stability would 

correspond to (ii). The method proposed by Borko, as well as the 

partition metrics studied by Day, fall into the third category. It 

turns out, the method proposed by Rand is one of the metrics 

considered by Day. This has been referred to as the D metric in Day's 
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work and elsewhere in the literature (Arabie and Boorman, 1973). 

Finally, we note that the method suggested by Yu is of type (iv). The 

measure in this last case, however, depends not only on C and C', but 

also on the specific graph theoretic construct used to specify 

clusters. 

We conclude this section by pointing out some of other approaches 

that might also be adopted. These approaches are motivated by the 

relationship that exists between the co-phenetic value matrix of Sokal 

and Rohlf and the target similarity matrix (box D) identified in 

Figure i. Let us consider again the original object-object 

similarity matrix from which the dendrogram of Figure 2 is derived 

and, for that matrix, show the target similarity matrix that would be 

obtained by Jardine and Sibson's (1971) clustering scheme. It is 

assumed that the clustering scheme chosen is the one that would lead 

to the same dendrogram as Figure 2. The original and the target 

similarity values are shown in the matrix below. 

01 

02 

03 

04 

05 

X 0.6 0.6 0.6 0.3 

0.6 X 0.8 0.7 0.3 

0.4 0.8 X 0.7 0.3 

0.1 0.5 0.7 X 0.3 

0.i 0.2 0.2 0.3 X 

01 02 03 04 05 

The values below the main diagonal are the original object-object 

similarities and those above the main diagonal are the target 

similarity values. To illustrate the process by which target 

similarities are obtained, we explain how the target similarity of 

(02, 04) changes from 0.5 to 0.7. By the original similarities, the 

objects (02 , 03) join in a cluster at the level of 0.8. Then, 04 

joins this cluster at the level of 0.7, by virtue of the fact that the 

original similarity between (04 , 03) is 0.7. This step results in 04 
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also joining with 02 . Thus, even though the original similarity 

between (04, 02) is 0.5, 04 is considered to join the cluster having 

02 at level 0.7. In this way, the other changes can be explained. 

Now we notice that a striking similarity exists between the 

target similarity values and the cophenetic values. The process by 

which one obtains the cophenetic values can be seen simply as a 

generalization of the thresholding process (see Fig. i) by which an 

adjacency matrix is obtained from an object-object similarity matrix. 

Let this process be referred to as multi-valued thresholding, where 

the similarity values are broken down to a number of intervals and 

each interval is mapped to a code number. Thus, in our example, 

similarity interval (0.25-0.5), (0.5-0.75) and (0.75-1.00) get mapped, 

respectively, to code numbers 2, 3 and 4. This mapping applied to the 

target similarity values above yields the matrix of co-phenetic values 

presented in section IV. 1. 

Since, when each unique value in target similarity matrix falls 

in a different interval, the matrix of cophenetic values is 

essentially identical to target similarity matrix, it is reas0nab]e to 

assert that the target similarity matrices can provide a basis for 

comparison. Consequently, we have the following further possibilities 

for evaluating stability: 

(v) Compare D and D" 

(vi) Compare B, in turn, to D and D" 

(vii) Apply the thresholding operation to D and D" and compare 

the binary (adjacency) matrices that result. 

It is also interesting to note that, in the sense of approach 

(vii), comparing single-level classifications can be viewed as simply 

a special case of comparing hierarchical classifications. 

Several of the methods considered can be varied by using a 

different function for the comparison of similarity matrices. In this 

respect, in section III. 2, the possibility of using Kendall's 
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coefficient of agreement is suggested, and Sokal and Rohlf (section 

IV. i) recommend the use product moment correlation coefficient. 

Jackson proposed measures denoted as g(-) and g(+), which are closely 

related to Kendal~s coefficient of agreement. Many other choices are 

possible. The reader is referred to a table presented by Rohlf (1974) 

in which a number of such coefficients are listed. 

V. 3. Comparisons and generalizations 

The methods considered in this study can be compared on many 

respects. In presenting such comparisons, the method for measuring 

stability of clustering are treated roughly in the order in which they 

were reviewed. 

Sokal and Rohlf's method was proposed specifically for comparing 

hierarchical classifications. It is well suited to the clustering 

techniques such as those proposed by Jardine and Sibson. Since one of 

the intermediate results of these clustering schemes is the target 

similarity matrix, the computational effort involved in measuring 

stability would be of O(n2), where n is the number of objects, for 

both constructing the matrix of co-phenetic values and determining the 

product moment correlation coefficient. This method can be used 

regardless of whether the clustering procedure yields overlapping or 

non-overlapping clusters in the various levels. The cladistic 

differences proposed by Farris (1969) could be used, for hierarchical 

classifications, instead of cophenetic values. But since cladistic 

differences ignore the relative levels at which braching takes place, 

the use of this distance measure may not be appropriate for many 

applications (Rohlf, 1974). 

The method proposed by Jackson (1969) is suited to 

classifications that are commonly encountered in information retrieval 

applications. That is, classifications which just have a single level 

and where the classes in the classifications are allowed to overlap. 
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Jackson also assumes that the input object-attribute matrix is binary. 

As mentioned earlier, the entity corresponding to box E of figure 1 

for this case is a classification array. The object-object 

similarities, represented by F, are obtained by applying a similarity 

function (e.g. Tanimoto function) to the object descriptions in E. 

Again, in reference to figure i, the correlation of B to F (or B to 

F') is more complex computationally since Jackson proposes to compute 

concordant and disconcordant pairs, not just once for the complete 

matrices B and F, but at many stages with each stage corresponding to 

an application of the thresholding operation to these matrices. Thus, 

while the computational effort depends on the number of objects, it is 

dominated by the number of distinct values that appear in B. The 

process can therefore be speeded up by mapping the similarity values 

in B to another, more suitable scale. The details of the 

computational procedure can be found in Jackson (1969). 

Jackson's method is not really suitable for comparing partitions. 

The problem here is that, for partitions, the classification array has 

just a single 1 in the column corresponding to each object. Thus, the 

object-object matrix derived from this array would also be binary. It 

is easy to see that correlating such a binary matrix with the object- 

object similarities derived from the input data can lead to 

meaningless results. This method can, however, be generalized to be 

applicable to hierarchical classifications. Rohlf (1974) illustrates 

how a classification array can be obtained, given a hierarchical 

classification. Using that approach, the classification array for 

the dendrogram of Figure 2 would be as follows: 

C 1 

C 2 

C 3 

01 0 2 0 3 0 4 0 5 

0 1 1 0 0 

0 1 1 1 0 

1 1 1 1 0 
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The matrix shows the classes at the lowest level, as well as the 

clusters that they expand to, as we consider higher levels. The level 

which has all the objects in a single cluster is not represented. 

Having constructed the classification array in this way, the method 

would proceed as before. We find, then, that Jackson's method is also 

applicable to Jardine and Sibson type clustering schemes, regardless 

of whether the resulting hierarchical classifications have overlapping 

or non-overlapping clusters in each level. 

The measures studied by Day are partition metrics, and as the 

name implies they are designed for comparing single-level 

classifications without cluster overlap. The computational complexity 

of these metrics and the possibility of their generalization to 

hierarchical classifications were alluded to in section IV. i. Among 

these metrics, the one referred to as the D-metric is of particular 

interest. This D-metric is the same as that proposed by Rand. It has 

been shown that the computation of this metric requires time of O(n) 

for n objects. As we shall see later in this section, this measure 

also generalizes to the case of single level classifications in which 

clusters are allowed to overlap. 

The stability measure proposed by Yu is designed for the analysis 

of graph theoretic clustering methods. Although its use is limited to 

this context, it has the distinct advantage (over the other methods), 

that the stability characteristics of graph theoretic methods could be 

studied analytically. In Raghavan and Yu (1981), several such results 

have been proved. The computational details are not really relevant 

since this measure is not intended to be used in an experimental 

setting. This measure of stability is applicable to either 

overlapping or non-overlapping clusters. 

The methods proposed by Rand, and by Sokal and Rohlf can be 

reduced to Yu's measure in the following way. Referring to Figure 1 

again, if we are given E and E', we could construct adjacency 
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matrices, C and C', such that for any two objects in the same cluster 

in E the entry in C is i, and 0 otherwise; C" is defined similarly. 

If Yu's measure is applied to these matrices, assuming clusters are 

defined as MCS's, the result will be same as that for Rand. In other 

words, if each of the clusters in E and E" are imagined to be MCS's of 

some graph, then Rand's measure is equivalent to computing the number 

of edge changes required to make the two graphs identical. This 

correspondence is useful since it suggests a natural way in which 

Rand's measure can be generalized to measure the distance between 

classifications that are not also partitions. 

Let us now relate Sokal and Rohlf's method to the above. It was 

mentioned that, when the clustering schemes of Jardine and Sibson are 

used, the approach can be considered to be one of applying multi-level 

thresholding to the target similarity matrices, D and D', and 

comparing the resulting matrices. It turns out, that if the cluster 

scheme chosen is equivalent to that of MCS clusters, then the target 

similarity matrix is same as the original object-object similarity 

matrix derived from input. Thus, under the special case that~after 

thresh0]ding the target similarity matrix, the resulting matrix of 

cophenetic values is binary, the entities that are compared would be C 

and C', which is the case for Yu as well. It sh0u]d be pointed out, 

though, that the product moment correlation coefficient would not 

yield the same result as that of Yu. This correspondence, however, 

may be useful in deciding if some correlation other than the product 

moment correlation coefficient would be more appropriate. 

VI CONCLUSION 

The interest in this work stemmed from a desire to study various 

clustering techniques from the point of view of their stability. This 

task was rather difficult since many possibilities existed for how 

clustering stability might be measured and very little was known about 
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what factors determined which choice to make. This paper alleviates 

the above problem by analysing and comparing a number of measures 

available in the literature for evaluating clustering stability. A 

framework which facilitates the classification of these measures into 

a number of generic approaches is introduced. Possible 

generalizations of some of these measures, so that they apply to 

situations to which they could not initially be used, are also 

presented. 
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