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ABSTRACT

Entity cards are being used frequently in modern web search en-

gines to o�er a concise overview of an entity directly on the results

page. �ese cards are composed of various elements, one of them

being the entity summary: a selection of facts describing the en-

tity from an underlying knowledge base. �ese summaries, while

presenting a synopsis of the entity, can also directly address users’

information needs. In this paper, we make the �rst e�ort towards

generating and evaluating such factual summaries. We introduce

and address the novel problem of dynamic entity summarization

for entity cards, and break it down to two speci�c subtasks: fact

ranking and summary generation. We perform an extensive eval-

uation of our method using crowdsourcing. Our results show the

e�ectiveness of our fact ranking approach and validate that users

prefer dynamic summaries over static ones.
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1 INTRODUCTION

Over the recent years, entity cards have become an integral element

of search engine result pages (SERPs) on both desktop and mobile

devices [6, 25]. Triggered by an entity-bearing search query, a card

o�ers a summary of the entity directly on the results page, helping

users to �nd the information they need without clicking on several

documents [33]; see Fig. 1 for examples. Studies have shown that

entity cards can enhance the search experience by assisting users

to accomplish their tasks [25, 30] and increase their engagement

with organic search results [6].

Entity cards are complex information objects, consisting of sev-

eral components such as images, entity name, short description,

summary of facts, related entities, etc. �e factual summary (or

summary, for short), which is the focus of this paper, is a truncated

view of the top-ranked facts (i.e., predicate-value pairs) about the

entity, coming from an underlying knowledge base. Summaries
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(a) “einstein education” (b) “einstein family”

Figure 1: Example of entity cards displayed on the Google

SERP for di�erent queries. �e content of the factual entity

summary (marked area) varies depending on the query.

serve a dual purpose on the SERP: they o�er a synopsis of the entity

and, at the same time, can directly address users’ information needs.

Consider the examples in Fig. 1, from a commercial search engine,

and notice how the summary changes, depending on the query.

Even though entity cards are now a commodity in contemporary

search engines, to the best of our knowledge, there is no published

work on how these (dynamic) summaries are generated and eval-

uated. In this paper, we make the �rst e�ort towards �lling this

important gap. In other words, the question that we address in this

paper is this: How to generate and evaluate factual summaries for
entity cards?

Looking at the literature, the closest work related to this problem

area is the task of ranking or selecting the most important facts

about an entity, which has been addressed by di�erent research

communities over the recent years [9, 18, 19, 35, 36, 42]. All these

works focus on the notion of fact importance, as the basis of ranking;

a common approach is to compute PageRank-like graph centrality

measures on the knowledge graph [9, 35, 36]. When considering

factual summaries for entity cards, there are three important aspects

that need to be addressed:

(i) Importance vs. Relevance. What is deemed important in

general about an entity may be irrelevant in a given query context

and vice versa. Take for example the predicate nationality, which

is generally deemed important for a person; it, however, bears li�le

relevance for the query “einstein awards.” �is calls for query-aware
entity summarization, where summaries are created by considering

not only fact importance, but also fact relevance to the query.

(ii) Summary generation. Generating an entity summary that

will be shown on an entity card entails more than simply listing the

Session 7B: Entities SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

773



top-k ranked facts. It needs to deal with, among others, issues such

as semantically identical predicates (e.g., homepage and website),

multivalued predicates (e.g., children), and presentation constraints

(e.g., max height and width, which depend on the device).

(iii) Evaluation. Given the size of entity cards, it can reasonably

be assumed that users consume all facts displayed in the summary.

�erefore, in addition to evaluating the ranking of facts, the quality

of the summary, as a whole, should also be assessed, with respect

to the query. A fair comparison requires side-by-side evaluation of

factual summaries by human judges.

In this paper, we aim to address the above challenges head-on.

It is important to note that this problem area is not limited to

web search, where entity cards are typically displayed on the right

hand side of the SERP; it also applies to any information access

system that involves entities. Consider, for example, serving entity-

annotated documents in response to a search query; when hovering

over an entity, a context-dependent entity card is displayed to the

user. Deciding when an entity card should be presented is a pivotal

question, which should be addressed on its own account. �is,

however, is beyond the scope of this paper. We shall assume that

this decision has already been made by a separate component. Our

sole focus is the generation of factual summaries for entity cards.

To address (i), we present a method for fact ranking that takes

both importance and relevance into consideration. We design sev-

eral novel features for capturing and distinguishing between im-

portance and relevance, and combine these features in a supervised

learning framework. For (ii), we introduce summary generation as

a task on its own account, and develop an algorithm for producing

a summary that meets the presentation requirements of an entity

card. Concerning (iii), we build a benchmark for the fact ranking

task, obtaining a large number of crowdsourced judgments with

respect to both fact importance and relevance. In addition, we eval-

uate the generated summaries, with regard to search queries, by

performing user preference experiments via crowdsourcing. �e

results show that our proposed fact ranking approach signi�cantly

outperforms existing baseline systems. We also �nd that the sum-

maries uniting both fact importance and relevance are preferred

over those that are based on a single aspect. Overall, our results

con�rm the hypothesis that dynamic (query-aware) summaries are

preferred over static (query-agnostic) ones; this is especially true

for complex relational queries.

In summary, this paper makes the following novel contributions:

• We present the �rst study on generating and evaluating dy-

namic factual summaries for entity cards. We formalize two

speci�c subtasks: fact ranking and summary generation

(Section 2).

• We introduce DynES, an approach for generating dynamic

entity summaries, composed of fact ranking and summary
generation steps. We introduce a set of novel features, for

supervised learning, for the fact ranking task and present

an algorithm for summary generation (Section 3).

• We design and make available a benchmark for the fact

ranking task, with judgments for around 4K entity facts ob-

tained via crowdsourcing. �is test collection may be used

in both query-aware and query-agnostic se�ings, which

renders it useful not only for the context of web search, but

also for entity summarization in general, which has been

addressed in previous work [9, 18, 19, 35, 36] (Section 4).

• We perform an extensive evaluation of the proposed meth-

ods by (i) measuring fact ranking using the benchmark we

developed (Section 5), and (ii) measuring the overall quality

of summaries via a user preference study (Section 6).

�e resources developed in the course of this study are made avail-

able at h�p://tiny.cc/sigir2017-dynes.

2 PROBLEM STATEMENT

In this section, we describe and formally de�ne the problem of

dynamic entity summarization for entity cards. We assume that

entities are represented in a knowledge base (KB) as a set of subject-

predicate-object (〈s,p,o〉) triples.

Definition 1 (Entity fact): An entity fact (or fact, for short) f
is a statement about the entity where the entity stands as subject, i.e.,
f = 〈p,o〉 is a predicate-object pair. We write Fe to denote the set of
facts about the entity e : Fe = {〈p,o〉 | 〈s,p,o〉,s = e}.

�is de�nition implies that multi-valued predicates (i.e., predicates

with multiple objects) constitute multiple facts. For example, in Fig-

ure 1(b), there are two facts (predicate-object pairs) for the Spouse
predicate: 〈Spouse, Elsa Einstein〉 and 〈Spouse, Mileva Marić〉. For-

mulating our problem based on the concept of fact (instead of pred-

icate [13, 37]) allows us to handle multi-valued predicates properly.

We note that the object of a fact can either be a literal or a URI. A

literal object is o�en presented in the entity cards as it is stored

in the KB (e.g., March 14, 1879), i.e., as a string. A URI object, on

the other hand, links to another entity in the knowledge base and

should be converted to link with a human readable anchor, when

shown in the card (see, e.g., Elsa Einstein in Figure 1(b)).

We now de�ne the “goodness” of a fact for an entity summary

from various aspects:

Definition 2 (Importance): �e importance of fact f for an
entity is denoted by if and re�ects the general importance of that fact
in describing the entity, irrespective of any particular information
need.

Definition 3 (Relevance): �e relevance of fact f to query q,
indicated by rf ,q , re�ects how well the fact supports the information
need underlying the query. E.g., a fact may hold the answer to the
query or help explain why the entity is a good result for that query.

Definition 4 (Utility): �e utility of a fact, uf ,q , combines the
general importance and the relevance of a fact into a single number,
using a weighted combination of the two (where it is assumed that
the two are on the same scale):

uf ,q = α if + βrf ,q . (1)

For the sake of simplicity, we consider both importance and

relevance with equal weight in our experiments, i.e., α = β = 1. We

note that this choice may be suboptimal, and di�erent query types

may require di�erent parameter values. �is exploration however

is le� for future work. �e central point that we will demonstrate in

our experiments is that incorporating fact relevance (as opposed to

considering merely importance) leads to be�er entity summaries.

Session 7B: Entities SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

774

http://tiny.cc/sigir2017-dynes


Definition 5 (Fact ranking): Fact ranking is the task of taking
a set of entity facts (and a search query) as input, and returning
facts ordered with respect to some criterion (importance, relevance,
or utility). We write ϕ (Fe ,q) to denote the ranking function (ϕ :

F × Q → F ) which returns a ranked list of entity facts, Fe .

Once facts are ranked, they should be rendered in the from of an

entity summary and presented on the entity card. Entity cards

have a strong e�ect on users’ search experience [6, 25, 30], and

quality of an entity summary can directly impact users’ satisfaction.

�erefore, simply presenting users with the top-k ranked facts

is insu�cient for generating an adequate summary. Additional

processing steps are required, which may include, but not limited

to: (i) resolving semantically identical predicates (e.g., homepage
and website), (ii) grouping related predicates (e.g., birth place and

birth date as single predicate born), (iii) dealing with multi-valued

predicates (e.g., children), (iv) meeting the presentation constraints

imposed by the SERP (e.g., max. height and width), and (v) following

certain templates or editorial guidelines (e.g., always displaying

birth information in the �rst summary line). Considering these

challenges, we formulate summary generation as a separate task.

Definition 6 (Summarygeneration): Given a ranked list of en-
tity facts Fe as input, summary generation is the task of constructing
an entity summary with a given maximum size (height and width),
such that it maximizes user satisfaction.

�us, in this study, we formulate and address two tasks, as de�ned

above: fact ranking and summary generation. Both of these tasks

are novel and challenging on their own; combining the two, the

overall goal of this paper is dynamic entity summarization, where

“dynamic” refers to the query-dependent nature of the generated

summaries (as opposed to static ones).

3 APPROACH

In this section we present our proposed approach, referred to as

DynES (for Dynamic Entity Summarization). It consists of two

steps that are performed sequentially. First, we take a set of entity

facts and a query as input, and rank these facts based on utility

(i.e., a combination of importance and relevance). Second, using a

ranked list of facts as input, we generate an entity summary of a

given size (ready to be included in the entity card).

3.1 Fact ranking

We approach the entity fact ranking task as a learning to rank

problem, where we optimize the ranking of facts w.r.t. a target label.

Formally, we de�ne each fact-query pair ( f ,q) as a learning instance

and represent it with a feature vector xi . �en, a pointwise ranking

function h(xi ) generates a score yi . We choose fact utility to be our

target label, where importance and relevance are taken into account

with equal weights. We note that the learning framework allows us

to optimize for any other target (e.g., more bias towards importance

or relevance). �e features we introduce here are designed to be

able to handle di�erent types of queries, ranging from named entity

queries to verbose natural language queries.

We acknowledge that fact ranking could bene�t a lot from a

query log; however, since we do not have access to that, our feature

design is limited to publicly available data sources. Also note that

for long tail (unpopular) entities the search log would not be of

much help.

Before we proceed, a word on notation and terminology; see Ta-

ble 1 for a summary. �e underlying knowledge base (KB) consists

of 〈s,p,o〉 triples, where the subject s is an entity identi�er. To help

explain the intuition behind the concepts we introduce, we draw an

analogy to document retrieval. �e concepts fact frequency (FF ( f ))
and entity frequency (EF ( f )) are loosely analogous to collection

frequency and document frequency. �e former counts the total

number of triples matching a fact, while the la�er considers the

number of entities that have that fact. Entities have types assigned

to them in the KB (typically several, but at least one per entity).

Each entity type may be viewed as a document, with predicates of

the entities with that type being terms of the document. Using this

analogy, the two type-related concepts, entity frequency of predi-

cate for a type (EFp (p,t )) and type frequency of predicate (TFp (p)),
are similar to term frequency and document frequency. �e former

counts the number of times a given predicate appears in the virtual

document of the type (i.e., number of entities with that predicate

and type), the la�er counts the number of documents (types) which

contain that predicate.

Next, we describe the features we designed for capturing fact

importance and fact relevance. Unless indicated by a reference, the

feature is introduced in this paper, and, to the best of our knowledge,

represents a novel contribution.

3.1.1 Importance features. �e �rst set of features re�ects the

general importance of a fact for a given entity and are computed

based on various statistics from the knowledge base.

Normalized fact frequency: �e feature counts the overall fre-

quency of the fact in the knowledge base, normalized by the total

number of 〈s,p,o〉 predicates in the knowledge base (|F |):

NFF ( f ) =
FF ( f )

|F |
. (2)

We compute two other variants of this feature, NFFp (p) andNFFo (o),
where the numerator is replaced with fact frequency of predicate

FFo (o) and entity frequency of object FFo (o), respectively.

Normalized entity frequency: �is feature captures the entity-

wise frequency of a fact, normalized by the cardinality of entities

in the knowledge base (|E |):

NEF ( f ) =
EF ( f )

|E |
. (3)

Similarly to the previous feature, we compute predicate and object

variations of the feature (NEFp ( f ) and NEFo ( f )) by substituting

EFp (p) and EFo (o) in the numerator.

Type-based importance: �e importance of a fact for an entity

may not always be captured by the overall knowledge base statistics;

the speci�c entity types should be taken into considerations. �is

is of particular importance for predicates, as their frequencies are

biased towards the most frequent types: predicates of less frequent

types have low frequency, although they might be important for

that speci�c type. As introduced in [37], the type-based importance
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Table 1: Glossary of the notations.

Name Notation De�nition

Fact f 〈p,o〉 : fp = p, fo = o
Entity facts Fe {〈p,o〉 | 〈s,p,o〉 ∈ KB,s = e}

Ranked entity facts Fe ( f1, f2, ..., fn ); n = |Fe |

Fact frequency FF ( f ) |{〈s,p,o〉 | 〈s,p,o〉 ∈ KB,p = fp ,o = fo }|
Fact frequency of predicate FFp (p) |{〈s ′,p′,o′〉|〈s ′,p′,o′〉 ∈ KB,p = fp }|
Fact frequency of object FFo (o) |{〈s ′,p′,o′〉|〈s ′,p′,o′〉 ∈ KB,o = fo }|
Entity Frequency of fact EF ( f ) |{e |e ∈ E, f ∈ Fe }|
Entity frequency of predicate EFp (p) |{e |e ∈ E,∃f ∈ Fe : fp = p}|
Entity frequency of object EFo (o) |{e |e ∈ E,∃f ∈ Fe : fo = o}|

Entity frequency of predicate for a given type EFp (p,t ) |{e |e ∈ E,t ∈ type (e ),∃f ∈ Fe : fp = p}|
Type frequency of predicate TFp (p) |{t |〈s ′,p′,o′〉 ∈ KB : p′ = p,t ∈ type (s ′)}|

is computed as:

TypeImp (p,e ) =
∑

t ∈type (e )

EFp(p,t ) · log

|T |

TFp ( f )
, (4)

where |T | is the total number of types in the knowledge base.

Predicate speci�city: �is feature identi�es predicate-speci�c

facts; i.e., facts with a common object, but rare predicate. Take for

example the fact 〈capital, O�awa〉 for the entity Canada, where the

predicate is relatively rare (only for capital cities) and the object is

frequent. Predicate speci�city, hence, combines the fact frequency

of the object with the inverse entity frequency of the predicate:

PredSpec ( f ) = FFo (o) · log

|E |

EFp (p)
. (5)

Object speci�city: In contrast to the previous feature, object speci-

�city captures facts with rare objects, but popular predicates; e.g.,

the object of value of 〈Birth date, 1953-10-01〉 is relatively unique,

while the predicate is frequent. Formally:

ObjSpec ( f ) = EFp (p) · log

|F |

FFo (o)
. (6)

It is worth noting that both PredSpec and ObjSpec represent speci-

�city of a fact and highlight important features from the oppo-

site ends of the spectrum; that is, a fact should have either high

PredSpec or high ObjSpec to be considered important.

Other features: Two other binary features are employed: IsNum
identi�es whether the object is a number or not, and IsEntity re-

turns true if the object is an entity URI.

3.1.2 Relevance features. �e idea behind the second group of

features is to determine the relevance of a fact with respect to the

information need, speci�ed by the search query (q). Various sources

of information are used to extract these features: the query itself,

linked entities in the query, retrieved entities in response to the

query, and an external corpus to identify the semantic similarity

between terms.

Context length: �is feature identi�es the number of terms in the

query that are not linked to any entity. Formally, it is de�ned as:

ConLen(q) = |{t |t ∈ q,t < Link (q)}|, (7)

where t denotes a term and Link (q) is the set of query terms that

are linked to an entity. To obtain entity annotations for queries, we

utilize the TAGME entity linking system [15] through its API, as

recommended by Hasibi et al. [23]. �is feature helps to distinguish

keyword queries from other complex queries, such as list or natural

language queries. �e underlying motivation is that in case of

keyword queries targeting a speci�c entity (e.g., “ei�el tower” ), users

are more concerned about the most important facts of that entity,

while for longer and more complex queries (e.g. “points of interest
in paris” ), entity facts that address the underlying information need

(i.e., are relevant to the query) would be deemed more useful from

the user’s perspective.

Semantic similarity: In order to address the vocabulary mismatch

between queries and facts, we compute their semantic similari-

ties based on word embeddings, following recent common prac-

tice [7, 34]. Speci�cally, we use Word2Vec [29] with the 300 dimen-

sion vectors trained on the Google news dataset, and employ two

methods to compute string similarities: aggregated and centroid

similarity. �e former aggregates the word-wise cosine similarity

between each two words of the strings:

SemSimAдд(s,s ′) = agg func

w ∈s,w ′∈s ′
cos(~w , ~w ′), (8)

where the w represents a word of string s , and average and maxi-

mum are used as the aggregation functions. �e second approach

performs the aggregation at the vector level and computes the sim-

ilarity of centroid vectors ~C, ~C ′: SemSimCent (s,s ′) = cos(~C, ~C ′).
In our se�ings, we substitute s with the query and s ′ with a

predicate or object, thereby computing the semantic similarity for

query-predicate and query-object pairs.

Lexical similarity: In addition to semantic similarities, we also

compute lexical similarity to capture spelling mismatches. Follow-

ing [34], we employ the Jaro edit distance and apply it to query-

predicate and query-object pairs (i.e., LexSimp ,LexSimo ).

Inverse rank: �is feature promotes facts with an object value that

is considered highly relevant to the query [24]. We rank entities

from the KB w.r.t. the query and return the inverse rank of the

entity that matches the object value (of the fact). Formally:

iRank (q, f ) =
1

rank ( fo ,Ret (q))
, (9)
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Algorithm 1 Summary generation algorithm

Input: Ranked facts Fe, max height τh , max width τw
Output: Entity summary lines

1: M ← Predicate-Name Mapping(Fe)
2: headinдs ← [] . Determine line headings

3: for f in Fe do

4: pname ←M[fp ]

5: if (pname < headinдs) AND (size(headinдs) ≤ τh ) then

6: headinдs .add((fp ,pname ))

7: end if

8: end for

9: values ← [] . Determine line values

10: for f in Fe do

11: if fp ∈ headinдs then
12: values[fp ].add(fo )

13: end if

14: end for

15: lines ← [] . Construct lines

16: for ( fp ,pname ) in headinдs do
17: line ← pname + ‘:’

18: for v in values[fp ] do

19: if len(line) + len(v) ≤ τw then

20: line ← line +v . Add comma if needed

21: end if

22: end for

23: lines .add(line)

24: end for

whereRet (q) is the list of retrieved entities for the queryq. In our ex-

periments, we take a state-of-the-art entity retrieval approach [22]

to compute this feature.

Other features: Two additional features we use are (i) the IsLinked
function that looks up the fact object among the linked entities

of the query, and (ii) the Jaccard similarity (JaccSim) between the

terms of the query and predicate and object of the fact (separately).

3.2 Summary generation

We now turn to the task of generating a summary from the ranked

list of entity facts. Our proposed approach, presented in Algo-

rithm 1, has three main features that are believed to result in high

quality summaries for entity cards: (i) it creates a summary of a

given size, (ii) identi�es identical facts and �lters out unnecessary

ones, and (iii) handles multi-valued predicates. We note that sum-

mary generation may involve additional processing steps (cf. §2).

Our focus of a�ention here is to emphasize the essence of entity

summary generation as a separate task and to address the minimum

requirements for summaries that will be used on entity cards.

�e algorithm takes as input a ranked list of entity facts Fe ,

and maximum height and width thresholds τh ,τw . �e output is

maximum τh summary lines, each with a heading and one or multi-

ple corresponding values with a maximum width of τw characters.

Figure 2 illustrates these concepts.

�e �rst step in generating the summary is to map knowledge

base predicates to a human readable name. �is is of particular

… …
headingiheadingi valueivaluei

height(⌧h)height(⌧h)

width(⌧w)width(⌧w)

lineilinei

Figure 2: Structure of an entity summary in entity cards.

importance as the same fact may be described with di�erent pred-

icates; e.g., both dbo:BirthDate and dbp:DateOfBirth have the

same meaning. Recognizing these semantically identical predicates

and mapping them to a canonical name is encapsulated in the func-

tion Predicate-Name Mapping (line 1 of Algorithm 1). Depending on

the underlying knowledge base, this task can be highly non-trivial.

In our experiments using DBpedia, we take two predicates semanti-

cally identical if one of the followings holds: (i) one predicate name

(irrespective the pre�x) is a plural form of the other, (ii) all object

values of two predicates are identical, while the predicate names

partially match each other.

�e summary is built in three stages. First (from line 2 of Al-

gorithm 1), the headings for each summary line are selected; the

algorithm keeps the unique predicates corresponding to facts, such

that the number of predicates does not exceed the threshold τh .

Next (from line 9 of Algorithm 1), the values for each line are se-

lected; this is the part where values for the multi-valued predicates

are collected. Finally (from line 16 of Algorithm 1), the heading

(human-readable predicate) and object values are concatenated

together such that they meet the width constraint τw .

4 ESTABLISHING A BENCHMARK

�ere is no existing test set for fact ranking that considers queries.

�erefore, we develop and make publicly available a fact ranking

benchmark via crowdsourcing, as we shall explain in this section.

4.1 Data sources

To build the collection, we need a set of entity-bearing queries with

their corresponding entities that should be summarized. Below, we

describe the data sources used for this purpose.

Knowledge base. We use DBpedia (version 2015-10) as our knowl-

edge base, and restrict entities to those with a title and short abstract

(rdfs:label and rdfs:comment); entities without these a�ributes

may not be of su�cient importance to be presented as a card. Since

we are concerned with generating entity summaries, we blacklisted

predicates that are related to the other parts of the entity card, such

as image, entity name and type, abstracts, and related entities. Fur-

thermore, we �ltered out noisy predicates that consist of numbers

or a single character. To ensure that entity summarization is a

meaningful exercise (i.e., entities have enough number of facts to

select from), our collection is restricted to entities with at least 5

“valid” predicates a�er �ltering.

�eries. �e queries are taken from the DBpedia-entity dataset [2],

which is a standard test collection for entity retrieval [2, 8, 27, 31, 44].

It contains 485 queries from 4 di�erent categories: SemSearch ES

consisting of named entity queries (e.g., “ashley wagner”, “car-

olina”), List Search made up of di�erent entity list queries (e.g.,

“ra� albums”), QALD-2 containing natural language queries (e.g.,
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“Who founded Intel?”), and INEX-LD consisting of general key-

word queries, including type, relation, and a�ribute queries (e.g.

“vietnam war facts”, “England football player highest paid”).

4.2 Selecting entity-query pairs

Given a set of queries, the next step is to form query-entity pairs

that will constitute the input for query-dependent entity summa-

rization. For each query in the DBpedia-entity collection, we select

a single entity that is (i) known to be relevant and (ii) generally

the most easily “retrievable.” We measure retrievability by consid-

ering several entity retrieval approaches from the literature and

establishing a voting schema among them. Bear in mind that we

do not decide whether the entity card should be displayed or not;

we assume that our information access system generates a card for

a retrievable and presumably relevant entity (cf. §1). We also note

that our focus of a�ention in this paper is on generating a summary

for a given (assumed to be relevant) entity and not on the entity

retrieval task itself. We therefore treat entity retrieval as a black

box and combine several approaches to ensure that the �ndings are

not speci�c to any particular entity retrieval method.

Formally, for a query q, we de�ne Êq as the set of relevant

entities according to the ground truth, and Eq,m as the set of entities

retrieved by method m ∈ M , where M denotes the collection of

retrieval methods. A single entity e is selected for q such that:

e = arg max

eq ∈Eq
σ (eq ),

σ (eq ) =
1

|M |

∑
m∈M

1

rank (eq ,Eq,m )
,

Eq = {e |e ∈ Êq ,∃m ∈ M : e ∈ Eq,m }.

Basically, we select the entity that is retrieved at the highest rank

by all methods, on average. (If the entity is not retrieved by method

m, then the reciprocal rank is set to 0 by de�nition.) For our experi-

ments, we consider 6 di�erent entity retrieval approaches: BM25

and BM25F-all from [2], SDM and FSDM from [44], and SDM+ELR

and FSDM+ELR from [22].

Using our voting mechanism, we were able to extract relevant

entities for 421 queries. �e average σ score for the selected entities

is 0.32, meaning that these entities are retrieved among the top-

3 rank positions, on average, by all retrieval methods. For the

remaining 64 queries, none of the above methods could retrieve

relevant results (Eq = ∅). �ese were mostly complex natural

language queries. To avoid introducing any bias against these

in our collection, we still included them and randomly selected

one entity per query from the ground truth entities (Êq ). Due to

pragmatic reasons (i.e., keeping the evaluation costs sensible), we

randomly chose 100 entity-query pairs, evenly spread across the

4 di�erent query categories. For each entity in this selection, we

extracted the facts from the underlying knowledge base, resulting

in a total of approximately 4K facts.

4.3 Fact ranking test set

We build our fact ranking test set by collecting human judgments

using the CrowdFlower (CF) platform. We designed two indepen-

dent tasks to assess the importance and relevance of entity facts.

In one task, workers were presented with a single fact for an entity,
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Figure 3: Distribution of entity facts for di�erent levels of

importance and relevance.

and were asked to rate the importance of the fact w.r.t. the entity on

a 3-point Likert scale: unimportant, important, or very important.

In the other task, the search query was also presented in addition,

and workers were asked to assess the relevance of the entity fact

w.r.t. the query using a 3-point scale: irrelevant, relevant, or very

relevant. For both tasks, workers were educated on the concepts

of entity cards and entity summaries via examples. �ey were also

supplied with a short description about the entity and a link to the

entity’s Wikipedia page, to learn more about the entity, if needed.

Several policies were adopted to obtain high quality results form

the crowdsourcing experiments. Only the most trusted workers

(level 3 on CF) were allowed to perform the tasks, and they had to

retain 80% accuracy throughout the job. �e workers who did not

meet this threshold or spent very li�le time on each record, were

banned from the rest of task and their judgments were considered

untrusted. We also paid with a reasonably high price (¢1 per record)

to keep the high quality workers satis�ed. Each record was judged

by 5 di�erent workers and the Fleiss’ Kappa inter-annotator agree-

ment was moderate: 0.52 and 0.41 for importance and relevance,

respectively.

Figure 3 shows the distribution of the collected judgments. Con-

sidering importance judgments on their own, nearly half of the

facts are rated as unimportant, while the rest are (almost evenly) dis-

tributed among the two other categories. As for relevance, around

81% of the facts are considered irrelevant, 14% are relevant, and only

5% are judged as very relevant. Taking the combination of these

two aspects, the highest correlation is between unimportant and

irrelevant facts (53%), while the lowest one is among unimportant

facts that are highly relevant to the query (only 1% of all facts).

Following our de�nition of utility (cf. §2), we combine importance

and relevance with equal weights. In the end, we have three sets of

ground truth for fact ranking, based on importance (3-point scale),

relevance (3-point scale), and utility (5-point scale).

5 FACT RANKING RESULTS

In this section we present on our experimental results for the fact

ranking task, and address the following research questions: (RQ1)

How does our fact ranking approach compare against the state-of-

the-art? (RQ2) How does fact ranking performance compare with

respect to importance vs. relevance vs. utility?

5.1 Settings

We chose Gradient Boosted Regression Trees [16] as our learning

model because it is shown as one of the best performing learning
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algorithms on a range of tasks [4, 28, 41]. We set the number of

trees to 100 and the maximum depth of the trees to approximately

10% of our feature set; that is d = 3 when all features are used and

d = 2 when trained either on importance or relevance features.

All the experiments are performed using 5-fold cross validation,

ensuring that facts of the same entities are kept together. We report

on NDCG at ranks 5 and 10.

We use a two-tailed paired t-test to measure statistical signi�-

cance. Signi�cant improvements are marked with
M

(α = 0.05) or

N
(α = 0.01), and we write

O
and

H
for a drop in performance (for

α = 0.05 and α = 0.01, respectively);
◦
stands for no signi�cance.

5.2 Experiments

We report on various instantiations of our fact ranking approach

in order to be able to tell apart the e�ect of considering fact rele-

vance in addition/as opposed to fact importance: (i) DynES uses

all features and is trained on utility judgments; (ii) DynES/imp

considers importance features only and is trained on importance

judgments; and (iii) DynES/rel employs relevance features only

and is trained on relevance judgments.

We identi�ed three approaches from the literature that can be

considered as fact ranking baselines (cf. §7):

• RELIN [9] employs a variation of the PageRank algorithm to

rank RDF triples for each entity. �e scores indicate the im-

portance of a fact for an entity and are computed based on the

relatedness (or similarity) between two facts as well as their

informativeness.

• SUMMARUM[36] computes the PageRank score for all entities

in the knowledge graph and then takes the sum of the subject

and the object scores as the �nal score for each entity fact.

• LinkSUM [35] combines PageRank scores with the Backlink

algorithm [39] (a set-based heuristic for discovering related en-

tities).

Both RELIN and our DynES-based approaches generate the scores

for both URI and literal facts, while SUMMARUM and LinkSUM can

only score URI entity facts and do not consider literal facts (cf. §2

for URI vs. literal facts). �erefore, when comparing SUMMARUM

and LinkSUM with other approaches, we report on the results in a

tailored se�ing, where literal facts are �ltered our from the results

of other approaches. We implemented RELIN based on the source

code kindly provided by the authors and set the parameter λ = 1,

as it delivers robust results across various rank positions [9]. We

obtained results for SUMMARUM and LinkSUM from their publicly

available API
1
, o�ered for DBpedia ver. 2015-10.

5.3 Results

To answer our �rst research question, we compare the baseline

systems with DynES and DynES/imp with respect to importance

and utility. (As these baseline systems only address the importance

aspect, we do not report on relevance.) As shown in Table 2, our fact

ranking approaches perform signi�cantly be�er than all baselines

(with 16% relative improvement of DynES over SUMMARUM w.r.t.

NDCG@10). Interestingly, none of the di�erences between the

baseline systems are signi�cant with respect to utility, even though

1
h�p://km.ai�.kit.edu/services/link/

Table 2: Comparison of fact ranking against the state-of-the-

art of approaches with URI-only objects. Signi�cance for

lines i > 3 are tested against lines 1,2,3, and for lines 2,3

are tested against lines 1,2.

Model

Importance Utility

NDCG@5 NDCG@10 NDCG@5 NDCG@10

RELIN 0.6368 0.7130 0.6300 0.7066

LinkSum 0.7018
M

0.7031
◦

0.6504
◦

0.6648
◦

SUMMARUM 0.7181
N◦

0.7412
◦M

0.6719
◦◦

0.7111
◦◦

DynES/imp 0.8354
NNN

0.8604
NNN

0.7645
NNN

0.8117
NNN

DynES 0.8291
NNN

0.8652
NNN

0.8164
NNN

0.8569
NNN

Table 4: Fact ranking performance by removing features;

features are sorted by the relative di�erence they make.

Group Removed feature NDCG@10 ∆% p

DynES - all features 0.7873 - -

Imp. - NEFp 0.7757 -1.16 0.08

Imp. - TypeImp 0.7760 -1.13 0.14

Rel. - LexSimo/Max . 0.7793 -0.8 0.20

Rel. - iRank 0.7793 -0.8 0.22

Rel. - SemSimAддo/Avд. 0.7801 -0.72 0.25

Imp. - IsURI 0.7802 -0.71 0.22

Imp. - PredSep 0.7812 -0.61 0.25

Rel. - ConLen 0.7819 -0.54 0.35

Imp. - ObjSep 0.7826 -0.47 0.38

Imp. - NEF 0.7828 -0.45 0.41

Rel. - SemSimCentp 0.7834 -0.39 0.49

Imp. - IsNumber 0.7851 -0.22 0.72

Rel. - JaccSimo 0.7851 -0.22 0.70

- Other features 0.7810 -0.63 0.37

many of the di�erences are signi�cant for importance. We select

RELIN as our baseline for the rest of the experiments, because

it performs in par with other systems in terms of utility. More

importantly, it is the only system that can rank both URI and literal

facts; SUMMARUM and LinkSUM discard all literal facts (even

important ones such as birth and death date), which is not desired

for entity card use-case.

For the second research question, we compare RELIN against

the three variants of our approach. Table 3 presents the results

with respect to importance, relevance, and utility. Our �rst obser-

vation is that all DynES variants signi�cantly outperform RELIN

in all aspects; the relative improvements of DynES for NDCG@10

are 48%, 50%, and 47% with regards to importance, relevance, and

utility, respectively. We also �nd that all systems perform be�er in

absolute terms, when they are compared against importance or util-

ity as opposed to relevance. Systems that are designed to capture

only the importance of facts (i.e., RELIN and DynES/imp) achieve

lower NDCG scores for relevance and utility than for importance.

DynES/rel and DynES, on the other hand, deliver be�er results

for utility than for importance. �ese results, while re�ecting the

expected behavior of the compared approaches, provide evidence

that: (i) capturing the relevance of facts needs special treatment

and di�erent features from fact importance, and (ii) capturing the

relevance aspect is considerably more challenging than importance.
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Table 3: Fact ranking results w.r.t importance, relevance, and utility. Signi�cance for line i > 1 is tested against lines 1 .. (i − 1).

Model

Importance Relevance Utility

NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10

RELIN 0.4733 0.5261 0.3514 0.4255 0.4680 0.5322

DynES/imp 0.7851
N

0.7959
N

0.4671
N

0.5305
N

0.7146
N

0.7506
N

DynES/rel 0.5756
NH

0.6151
NH

0.5269
N◦

0.5775
N◦

0.6138
NH

0.6536
NH

DynES 0.7672
N◦N

0.7792
N◦N

0.5771
NNM

0.6423
NNN

0.7547
NMN

0.7873
NNN

5.4 Feature analysis

In Table 4 we report on a feature ablation study, where we remove

a single feature based on the relative di�erence it makes in terms

of ranking performance (w.r.t. utility). �e table shows the top 13

features individually; the rest of the features are grouped together

and removed from the feature set all at once. Interestingly, impor-

tance and relevance features are evenly distributed among the most

in�uential features. �e top-2 features (NEFp , TypeImp) are com-

puted based on fact predicates, while the rest of importance features

involve fact objects. As for relevance features, we see four di�erent

versions of similarity features, three of them computed based on

the object values: LexSimo ,SemSimAддo , JaccSimo . �e feature

ablation study reveals that some variant of each of the proposed

features (except NFF ) are among the top features, indicating that

each of the designed features captures utility from a speci�c angle.

To further analyze the performance of each individual feature, we

compared the features based on their performance as single feature

rankers. �e results show a large degree of overlap with the top-13

features identi�ed in Table 4.

6 SUMMARY GENERATION RESULTS

In this section we present on our experimental results for the sum-

mary generation task and address the following research questions:

(RQ3) How satis�ed are users with the di�erent types of sum-

maries? (RQ4) How does our summary generation algorithm a�ect

user preferences?

6.1 Settings

To evaluate the generated summaries, we performed side-by-side

evaluation via crowdsourcing. Workers were presented with two

summaries of the same entity along with the corresponding query,

and were asked to select the preferred summary w.r.t this query, or

the tie option when the two summaries are equally good. Providing

users with a tie option enables us to clearly discern user preferences

and to avoid randomness in the collected judgments. To avoid any

bias, the summaries were randomly placed on the le� or right side.

We collected 10 judgments from level-3 workers for each pair of

summaries. �e width and height threshold of Algorithm 1 are set

to τw = 70,τh = 5 in all experiments, inspired by entity cards used

in present-day web search engines. �e �nal results are presented

as the total number of user agreements on win, loss, and tie options.

We also compute the robustness index (RI) [10], de�ned as
N +−N −
|Q |

with N+ and N− being the number of wins and losses, and |Q |
denoting the total number of queries.

6.2 Experiments

We performed the following side-by-side evaluation of summaries

to answer RQ3. In all cases, we apply the same Algorithm 1, but

feed it with a ranked list of facts from di�erent sources. (i) DynES

vs. DynES/imp uses DynES vs. DynES/Imp for fact ranking; (ii)

DynES vs. DynES/imp uses DynES vs. DynES/rel for fact ranking;

(iii) DynES vs. RELIN compares DynES vs. the top-5 ranked facts

from RELIN; and (iv) Utility vs. Importance is an oracle compar-

ison, by taking perfect fact ranking results from crowdsourcing.

For RQ4, we compare our summary generation algorithm with

three variations of the algorithm, all applied to the utility-based fact

ranking. We compare DynES with: (i) DynES(-GF)(-RF), which

is Algorithm 1, without grouping of facts with the same predicate

(GF), and removing identical facts (RF); (ii) DynES(-GF), which is

Algorithm 1, without the GF feature; and (iii) DynES(-RF), which

is Algorithm 1, without the RF feature.

6.3 Results

Table 5 shows the results of summary comparison for di�erent fact

ranking methods. According to the �rst row, query-dependent sum-

maries (DynES) are preferred over query-agnostic ones (DynES/imp)

for about half of the queries; the opposite is observed for 31% of

queries. We performed the same comparison with the oracle se�ing

(last row of Table 5) and witnessed a similar number of wins, but

less losses, which is expected due to imperfect fact ranking. �is

veri�es that the preference of dynamic over static summaries is

true for both automatic and human generated summaries. When

comparing DynES vs. DynES/rel, we observe that DynES wins in

75% of the cases, signifying that a combination of both importance

and relevance is required for a profound entity summary. Finally,

we measured the accumulated e�ect of the improved fact ranking

and summary generation method by comparing DynES against RE-

LIN. �e results show the superiority of DynES, with a robustness

index of 0.9. Based on these experiments, the answer to RQ3 is that

dynamic utility-based summaries are indeed preferred over static

importance- or relevance-based summaries.

Table 6 presents the comparison between di�erent summary

generation algorithms. �e results clearly show that DynES sum-

maries are preferred over the ones that do not address the individual

presentation aspects. It also reveals that the grouping of multival-

ued predicates (GF features) is perceived as more important by the

users than the resolution of identical facts (RF feature). Based on

these results, our answer to RQ4 is that the summary generation

algorithm has a major e�ect on user preferences and thus it should

be paid a�ention within the entity summarization task.

6.4 Analysis

We analyze the di�erences in users preferences on the query level

for the �rst two set of summarization experiments in Figure 4; i.e.,

we compare DynES with DynES/imp and DynES/rel. Each value in

our query preference distribution indicates the number of users who
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Figure 4: Boxplot for distribution of user preferences for each query subset. Positive values show that DynES is preferred over

DynES/imp or DynES/rel.

Table 5: Side-by-Side evaluation of summaries for di�erent

fact ranking methods.

Model Win Loss Tie RI

DynES vs. DynES/imp 46 23 31 0.23

DynES vs. DynES/rel 75 12 13 0.63

DynES vs. RELIN 95 5 0 0.90

Utility vs. Importance 47 16 37 0.31

Table 6: Side-by-side evaluation of summaries for di�erent

summary generation algorithms.

Model Win Loss Tie RI

DynES vs. DynES(-GF)(-RF) 84 1 15 0.83

DynES vs. DynES(-GF) 74 0 26 0.74

DynES vs. DynES(-RF) 46 2 52 0.44

preferred DynES summaries over DynES/imp (or DynES/rel) sum-

maries; ties are ignored. Considering all queries (the black boxes),

we observe that the utility-based summaries (DynES) are generally

preferred over the other two, and especially over the relevance-

based summaries (DynES/rel). �ese summaries are highly biased

towards the query and cannot o�er a concise summary; the utility-

based summaries, on the other hand, can strike a balance between

diversity and bias. Considering the query type breakdowns in Fig-

ure 4(a), we observe that the ListSearch and QALD queries, which

are identi�ed as complex entity-oriented queries, bene�t the most

from utility-based summaries. Interestingly, however, we do not

observe any clear preferences for SemSearch and INEX-LD queries.

�is a�ests that our approach can generate dynamic summaries

without hurting named entity and keyword queries.

7 RELATEDWORK

�e related work pertinent to this paper concerns entity retrieval,

entity cards, and entity summarization.

Entity retrieval. Entities play an important role in many in-

formation access tasks, including web search [4, 32], enterprise

search [1], query understanding [17, 21], document retrieval [11,

14], and table population [43]. Over the past decade, various bench-

marking campaigns have focused on entity retrieval, including the

INEX 2007-2009 Entity Ranking track [12], the INEX 2012 Linked

Data track [40], the TREC 2009-2011 Entity track [3], the Semantic

Search Challenge in 2010 and 2011 [5, 20], and the �estion Answer-

ing over Linked Data (QALD) challenge series [26]. �e common

goal underlying all these campaign is to address users’ information

needs by identifying and returning speci�c entities, as opposed

to documents, in response to search queries. In a complementary

e�ort, Balog and Neumayer [2] introduced the DBpedia-Entity test

collection, which synthesizes a large number of queries from these

benchmarking campaigns and maps the relevant results to DBpedia.

Importantly, all these e�orts focus exclusively on the ranking of

entities and do not deal with the presentation of results to users.

In this work, our focus is on the generation of entity cards in a

query-dependent manner and not on the actual ranking of entities.

Entity cards. �e presentation of entity cards on search engine

result pages (SERPs) has recently gained particular a�ention both

in industry [4, 33, 37] and in academia [6, 25, 30, 38]. Most of the

research in this area has been geared towards understanding user

behavior and interaction with entity cards. Navalpakkam et al.

[30] performed eye and mouse tracking on SERPs and showed that

relevant entity cards can a�ect users’ a�ention and, in overall,

reduce the amount of time users spend to accomplish their task. In

a similar study on mobile search, Lagun et al. [25] interleaved entity

cards with organic search results and found that when entity cards

are relevant, users can quickly �nd the answer and complete the

task faster. With irrelevant cards, on the other hand, users spend

more time on the page looking for the answer and pay a�ention

to the results right below the card. In recent work on card content

and structure, Bota et al. [6] showed that entity cards, regardless of

their topics, can increase searcher engagement with organic web

search results. �e focus of a�ention in these studies is on the

search behavior of users, and not on the actual content of the entity

cards. Our focus is on the summary part of entity cards.

Entity summarization. Summarizing entities over RDF data

has received due a�ention over the past years [9, 18, 19, 35, 36].

Entity summarization has been also addressed by the more general

problem of a�ribute ranking (i.e., ranking entity predicates) [13, 37].

Notable, most of these studies have been performed by di�erent

communities in isolation, without knowing about each other.

Cheng et al. [9] introduced entity summarization over RDF data

as the task of selecting top-k predicate-object pairs for an entity.

�eir system, called RELIN, leverages relatedness and informa-

tiveness of entity facts using the PageRank algorithm. In similar

vein, SUMMARUM [36] and LinkSUM [35] employ the PageRank
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algorithm to generate ranking scores for predicates involving two

entities (i.e., no literal values are considered). �ese are the closet

system to the task we address in this paper and we use them as

our baselines. �e FACES [19] and FACES-E [18] systems approach

entity summarization as a classi�cation task; they partition entity

facts into semantically similar groups (facets), and pick the best fact

from each facet to form the summaries. �e framework presented

in [13] ranks RDF a�ributes for the given entity using learning to

rank algorithms. �e recent patent by Vadrevu et al. [37] presents

an a�ribute ranking approach for entity summarization. �eir pro-

posed approach hinges on a machine-learned ranker (classi�er),

with the features based on the global and type-speci�c importance

of entity a�ributes. A major di�erence between our work and the

aforementioned approaches (in addition to being query-dependent)

is that we are concerned with the ranking of predicate-object pairs,

and not only of predicates.

8 CONCLUSION

In this paper, we have introduced the novel problem of dynamic

entity summarization: generating query-dependent entity sum-

maries for entity cards. We have formulated two speci�c subtasks:

fact ranking and summary generation. �e �rst task entails the

ranking of facts (predicate-object pairs) with respect to importance

and/or relevance. We have addressed it in a learning-to-rank frame-

work, and have demonstrated signi�cant improvements over the

most comparable state-of-the-art baselines using a purpose-build

test collection. �e second task concerns the rendering of ranked

facts as a summary to be displayed on the entity card. We have

presented a summary generation algorithm and have shown via

a series of user preference comparisons that users favor dynamic

(query-dependent) summaries over static (query-agnostic) ones.

�ere are several interesting avenues for future work, including

the diversi�cation of facts and the personalization of summaries.
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