Interoperability Ranking for Mobile Applications

Dragomir Yankov
Microsoft
Sunnyvale, CA 94089

dragoy@microsoft.com

ABSTRACT

At present, most major app marketplaces perform ranking
and recommendation based on search relevance features or
marketplace “popularity” statistics. For instance, they check
similarity between app descriptions and user search queries,
or rank-order the apps according to statistics such as number
of downloads, user ratings etc. Rankings derived from such
signals, important as they are, are insufficient to capture the
dynamics of the apps ecosystem. Consider for example the
questions: In a particular user context, is app A more likely
to be launched than app B? Or does app C provide comple-
mentary functionality to app D? Answering these questions
requires identifying and analyzing the dependencies between
apps in the apps ecosystem. Ranking mechanisms that re-
flect such interdependences are thus necessary.

In this paper we introduce the notion of interoperability
ranking for mobile applications. Intuitively, apps with high
rank are such apps which are inferred to be somehow impor-
tant to other apps in the ecosystem. We demonstrate how
interoperability ranking can help answer the above questions
and also provide the basis for solving several problems which
are rapidly attracting the attention of both researchers and
the industry, such as building personalized real-time app rec-
ommender systems or intelligent mobile agents. We describe
a set of methods for computing interoperability ranks and
analyze their performance on real data from the Windows
Phone app marketplace.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval

General Terms

Experimentation

Keywords

mobile, apps, ranking, recommender systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

SIGIR’13, July 28—August 1, 2013, Dublin, Ireland.

Copyright 2013 ACM 978-1-4503-2034-4/13/07 ...$15.00.

Pavel Berkhin
Microsoft
Sunnyvale, CA 94089
pavelbe@microsoft.com

857

Rajen Subba
Microsoft
Sunnyvale, CA 94089
rasubba@microsoft.com

1. INTRODUCTION

The growing trend of users consuming information through
their mobile as opposed to desktop devices requires rethink-
ing some of our approaches to ranking, information retrieval
and recommendation. Identifying relevant content on the
web is by now a relatively well understood process. In mo-
bile, however, content is primarily consumed through a spe-
cial and very diverse proxy - mobile apps.

The question of how to provide better utility to users
now shifts from discovering and ranking relevant informa-
tion to discovering and ranking relevant apps that can in
turn provide relevant information. This comes with a num-
ber of challenges. Firstly, app marketplaces have very lim-
ited knowledge of what users ultimately get from an app
which they have installed. Apps often aggregate and dis-
play content in custom formats which are not transparent
to the underlying platform so that proper inference could
be conducted. A news app, for instance, may be launched
only for the entertainment news which it aggregates or only
for the financial news. Secondly, the well established notion
of “hubs and authorities” from the web world [4] is also not
explicitly present in the case of mobile application.

Here we demonstrate that a simple idea of how we think
about apps can alleviate many problems. The idea is that
we should not treat apps independently, but rather
recognize that there are implicit and explicit depen-
dencies between them. Identifying these dependencies can
help us approach the above challenges. Indeed, if we find out
that many users who launch the news app from the example
subsequently launch stock trading apps, then it is reasonable
to assume that they have consumed financial news through
the news app and are now looking for some complementary
functionality. We can say that the news app is acting as a
hub to multiple financial apps and also that recommending
entertainment apps to its user-base will be less relevant than
recommending financial apps.

With the above in mind, we introduce the concept of in-
teroperability ranking. The interoperability rank of app A
quantifies the importance it has to other apps in the ecosys-
tem. We propose several methods for computing the rank
and compare their performance on data from the Windows
Phone marketplace (Section 4). The presented methods uti-
lize a graph structure derived from user-app interaction logs
which reflects the existence of potential connections between
apps on the marketplace. We call this graph structure inter-
operability graph (Section 3). First, however, we point out
a number of important areas where interoperability ranking
can provide valuable input.

2. AREAS OF APPLICABILITY

Marketplace recommendation. In the previous sec-
tions we gave examples for this application of interoperabil-
ity ranking.

Personalized real-time recommendation. With many
users having tens of apps, navigating and finding the one to
launch can be time consuming [3]. We can build instead
a special app - a personalized recommender, which in real
time infers and organizes the apps that are most likely to be
launched next by a user. Inference can take into account the
user context, e.g. time of day, location, apps being launched
or other context [3]. Among these features, we find that
what apps were launched is very predictive of what is to
be launched next, which suggests inherent dependencies be-
tween the apps which users utilize. Interoperability ranking
can help identify these dependencies.

Intelligent agents. More generally, we can have an in-
telligent agent system which predicts not only the next app
to launch but a whole sequence of apps which are relevant
and should be launched in a given context. This is similar
to the “zero-query mobile IR” systems discussed in [5] which
predict what mobile users might need next without such
need to be explicitly expressed. Another such system with
growing popularity is Google Now. Through a set of rules
it decides when to launch one or more special apps (cards),
e.g. driving to the airport can activate the “traffic card” then
the “flight status” card. Again, interoperability ranking can
help the agent identify and trigger the right apps for a task.

3. INTEROPERABILITY GRAPH

Dependencies between web pages are explicitly expressed
through web links which allows for intuitively building the
link graph. The graph is then utilized in different ranking
algorithms such as PageRank [2] and HITS [4]. Identifying
dependencies between apps, however, is harder as there are
usually no explicitly declared links. There are emerging ef-
forts that try to catalog apps which provide means for other
apps to “deep launch” them [1]. Yet, the number of apps
in these catalogs is very limited and one needs to resolve to
proxies from which to implicitly infer such links.

A proxy that we explore here are user-app interaction logs
and in particular launch patterns of the form (A;, 4;) - app
A; has been launched immediately after app A; within a
session. By session here we denote the time span between a
user turning on their device until they turn it off. Listing (1)
shows session logs for two users.

usery sessionii (A1, Az, A3)
sessioniz (A1, Az, As)
sessioniz(Ai1, As) (1)
users sessiona1 (A1, Az, A1)

sessionagz(Aas)

The logs show wuser: having three sessions in which the
launch patterns (A1, A2) and (Az, As) appear twice (sessioni1
and sessioniz2), and (A1, As) which appears once (sessionis).
From users we obtain (A1, A2) and (A2, A1). Aggregating
across the users results in the graphs from Figure 1.

In the interoperability graph each app A; is represented
by a node and each pattern (A;, A;) with a directed edge
pointing to app A;. The edge carries the implicit notion of
dependence - the user may have launched A; to complement
functionally what they obtained from A;. In the first graph

858

Figure 1: Interoperability graphs for the sessions from List-
ing (1). Frequency based - each pattern is counted, user
based - a pattern is counted only once per user.

(frequency based) we count all patterns when computing the
weights of the edges. Often though a user would launch A;
after A; randomly or while habitually checking the same
sequence of apps. We therefore construct the second graph
(user based) where each pattern is counted only once per
user. In the evaluation we work with this type of graphs.
We exemplify the idea with Figure 2. It shows the interop-
erability graph for sessions observed over a week. Patterns
(As, A;) which appear less than a predefined threshold have
been removed. Zooming in the dense area of the graph re-
veals many patterns. Some are clearly resulting from the
vast adoption of certain apps (e.g. social clients) which
makes seeing them sequentially in a session also common.
Other patterns, however, are more interesting and reveal-
ing. We show several among many which we could identify'.
Thicker edges indicates higher weights for the patterns.

- Figure2, B: SubwaySchedule, BusSchedule. Both apps
are dealing with transportation schedules in a major
metropolitan city. Apparently, many people are using
both methods of transportation and need to comple-
ment their functionality to achieve their intents, e.g.
planning commute to work.

- Figure2, C: Pregnancyl-4, ZodiacApp. The first preg-
nancy app is one of the popular apps in its category
yet there are multiple complaints that it does not track
well certain pregnancy aspects. Users are thus com-
plementing it with some of the other pregnancy apps.
The data covers a period close between two star signs
which probably explains while some of the pregnancy
app users tend to launch after that the ZodiacApp.

- Figure2, D: SocialClient1-2, Photolmagel-2. This ex-
ample is interesting in several aspects. First, while
most existing marketplace recommender systems sug-
gest apps withing the same marketplace category, here
we see that there are well defined cross category de-
pendencies, e.g. social apps are related to photo and
image processing apps. Second, we find out that Pho-
tolmage2, though with lower overall ratings and less
installs is launched several times more frequently than
PhotoImagel by people who also launch SocialClient1,
which shows that user engagement with an app is often
related to its interdependence with other apps, which
is not captured by the existing ranking approaches.

!The real name of the apps have been obfuscated and re-
placed with names suggestive of their functionality.

,-"'r-___
Subfvayschedule
B T —

Zodiacépp

—

—
BurSr;?guJe -
- " Fhomimage2
- - :I'
/ i
ey,
~T
Eragnancyd aF f
sogatClients = [/
Pothﬁg/—;
Pregrancy3
Sociol@lient2
—Pregnancy?
]

Figure 2: A: Interoperability graph built with app sessions observed throughout a week. B-D: Zoomed in patterns emerging
from the graph - certain pairs of apps are launched disproportionately large number of times (c.f. text for details)

4. METHODS AND EVALUATION

Data and evaluation setup.

The evaluation is done on four weeks of user-app in-
teractions data from the Windows Phone app market-
place. We train on weekl and test on week2, then we shift
the window, train on week2 and test on week3 and so on.
We have removed apps and app patterns which appear less
than a predefined number of times in training. After thresh-
olding the data still covers tens of thousands of apps from
the marketplace. The comparison here is done primarily
with the personalized recommender systems from Section 2
in mind. A user is recommended k = [1, 10] apps (z-axis on
Figure 3 and 4). We compute the click-through-rate (CTR)
among the top-k recommendations, e.g. if we recommend
three apps (k = 3) in what percentage of the cases the user
actually launched one of them. We report the mean and
standard deviation of the results across the three test weeks.

User agnostic methods.

This set of methods compute statistics and recommend
apps from the entire marketplace. We assume that we
do not know what apps each particular user has installed.
These methods are good for suggesting new apps to users
which others have found useful in a similar context. The
performance is summarized in Figure 3.

Static Frequency Based (SFB). In this method we
simply compute the top-k most frequently launched apps
during the training week and we always predict these apps.
Le. we compute the probability p(A;) of launching A; and
rank-order the apps based on that probability. This is sim-
ilar to the “top free/paid/popular” etc. recommendations
that every marketplace offers. In predicting that the user
will click A; the method does not take into account what
app was launched prior to that. Figure 3 shows that if we
recommend ten apps we can achieve 9.8% accuracy, or in
other words every one in ten launched apps is among the
top ten most frequently used apps on the marketplace.

Static AppRank (SAR). Similar to above the method

859

computes a static rank for all apps on the marketplace and
every time predicts the top-k apps with highest rank. The
rank is computed similarly to PageRank [2] with a few differ-
ences which we found suitable for the purpose of interoper-
ability ranking. In particular, the rank is computed over the
interoperability graph which has well defined edge weights
while PageRank collapses multiple links from one page to
another into a single link.

If M is the transition matrix of the interoperability graph,
where mj; is the weight for a pattern (A;, A;), then the rank
is given by the solution of R = (1 — d)P + dM R, where M
is the column stochastic matrix derived from M by normal-
izing the columns to sum to one and replacing zero columns
with the probability vector P, which defines how the residual
flow gets distributed among all apps. In the classic PageR-
ank, P is uniformly randomly distributed over all nodes.
Here we notice that people often start their sessions with
some preferred apps, e.g. social clients or games. To avoid
overemphasizing such apps we assign a hundred times lower
probability in P to apps which appear too frequently (above
some threshold) in the start of sessions. The method im-
proves slightly the SFB method (2.3% lift at £ = 10, Fig-
ure 3).

Conditioned Frequency Based (CFB). Here if a user
has launched A; we check the graph and predict A; for which
the edge (A, A;) has the highest weight among all edges
starting from A;. The method performs a maximum like-
lihood estimate of p(A;|A;) - the conditional probability of
launching A; given that A; has been launched prior to that.

The performance of the method (Figure 3) and its large
superiority over the non-conditional SFB and SAR methods
clearly demonstrates the ideas emphasized through the text -
apps should not be treated independently as there is valuable
predictive signal embedded in the interdependencies.

Conditioned AppRank (CAR). The method takes the
top-k predictions of the CFB method and reorders them ac-
cording to their AppRank, computed as explained for the
SAR method. As we can see from Figure 3 the static global
rank does not improve on top of the maximum likelihood es-

User agnostic interoperability ranking methods

0.35 : ‘ ‘ ‘ ‘ : ‘
—— SFB
—e— SAR
03 = = =CAR
—— CFB Xdr
0.25 -

CTR
o
= o
a)

AY
\
]
AY
\

=
0.05
g
¢
0 s s s s s s s s
1 2 3 4 5 6 7 8 9 10
k — number of recommendation
Figure 3: User agnostic predictors.
User dependent interoperability ranking methods
—Uuu
o9f UM
= = =UUM
0.8
0.7
o
= 0. %
5 06 =
’
05 =5
4
4
0.4—
4
3 /
0.3 4
02 s s s s s s s s

k — number of recommendation

Figure 4: User aware predictors.

timate of CFB. For k = 10 both CFB and CAR are identical
because CAR simply reorders the results of CFB. Therefore
a click on any of the top ten apps recommended by CFB
will also in the case of CAR too.

User aware methods.

In this set of methods we are aware of the apps that
a user has installed and the top-£ recommendations
are selected among them. While these methods pro-
duce much higher ctr (Figure 4) and seem very suitable for
the personalized recommender system discussed in Section 2
they would not select new apps which others have discovered
to be useful in similar context. Hence they are not suitable
for diversifying the portfolio of already installed apps which
might be important while aiming at better user engagement.

User-User (UU) For each app A; that a user launches
the method predicts the top-k most likely to be launched
next apps based on training set frequencies for that same
user. If we do not have an estimate for A; (the app was
not launched during the training period) then we predict
the top-k apps which the user has launched most frequently

860

on train data. Ties are resolved by random selection. Every
week there is a number of new users joining the marketplace.
For these users we have no frequency estimates from the
training data. For them predictions are made by choosing
uniformly at random among their installed apps.

The method does not utilize the interoperability graph
or any information from the marketplace. It is fully per-
sonalized. One can correctly argue that instead of interde-
pendence patterns it detects patterns where users habitually
check the same apps. Its results are significantly better than
the user agnostic methods - 83.3% ctr among the top ten
recommendations compared to 27.4% for the CFB method.

User-Marketplace (UM). Similar to the CFB method
UM uses the interoperability graph to select the top-k A;
which maximize p(A;|A;) from marketplace perspective with
the additional constraint that all selected A; should be among
the installed apps by the user. The improvement compared
to the results for the UU method (ctr 87.2% vs 83.3% for
k = 10, Figure 4) comes to demonstrate again that app in-
teroperability patterns do exist on the marketplace and can
be very useful when there is no user history to compute user
specific launch probabilities from.

User-UserMarketplace (UUM). The method is a com-
bination of the UU and UM methods. For a particular user
who has launched A;, if we have an estimate of the top-
k apps A; which maximize p(A;|A4;) then we select them
as prediction. Otherwise, we resolve to estimates from the
marketplace similar to UM. The method as seen on Figure 4
improves between 1% — 4% over the UM method, where the
improvement is especially notable for small values of k.

The results remain stable across the three test weeks with
the static user agnostic methods naturally showing less vari-
ance than the conditional and the user aware methods.

S. CONCLUSION

We studied the concept of interoperability rank - a mea-
sure of the importance of apps to other apps on the market-
place. A number of methods were presented for computing
the rank. Their performance was demonstrated on a large
real world data set of user-app interaction logs. The results
reveal that app interdependencies can provide valuable pre-
dictive signal in identifying apps with complementary func-
tionality which is in turn essential when aiming for better
user utility and engagement.

6. REFERENCES

[1] http://handleopenurl.com/.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
seventh international conference on World Wide Web,
WWW?7, pages 107-117, 1998.

P. Coppola, V. Della Mea, L. Di Gaspero, D. Menegon,
D. Mischis, S. Mizzaro, I. Scagnetto, and L. Vassena.
The context-aware browser. IEEFE Intelligent Systems,
25(1):38-47, Jan. 2010.

J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. J. ACM, 46(5):604-632, Sept. 1999.

T. Sakai. Towards zero-click mobile ir evaluation:
knowing what and knowing when. In Proceedings of the
35th international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’12,
pages 11571158, New York, NY, USA, 2012. ACM.

