
THE RELATIONAL DATA FILE AND THE DECISION PROBLEM 
FOR CLASSES OF PROPER FORMULAS 

Robert A. DiPaola 
The Rand Corporation, Santa Monica, California 

ABSTRACT 

The Relational Data File (RDF) of The Rand 

Corporation is among the most developed of question- 

answering systems. The "information language" of 

this system is an applied predicate calculus. The 

atomic units of information are binary relational 

sentences. The system has an inference-making 

capacity. 

As part of the actual construction and imple- 

mentation of the RDF, a theory was developed by J. 

L. Kuhns to identify those formulas of the predi- 

cate calculus which represent the '~easonable" in- 

quiries to put to this system. Accordingly, the 

classes of definite and proper formulus were de- 

fined, and their properties studied. The defi- 

nite formulas share a semantic property Kuhns 

judged as necessarily possessed by a reasonable 

question to be processed by the RDF. The author 

has previously shown that the decision problem for 

the class of definite formulas is recursively un- 

solvable. The proper formulas are definite, and 

satisfy additional syntactic conditions intended 

to make them especially suitable for mmchine pro- 

cessing. The class of proper formulas depends on 

which logical primitives are employed. Different 

primitives give rise to different classes of for- 

mulas. A formula which can be effectively trans- 

formed into a proper equivalent is admissible. 
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Kuhns conjectures that with respect to one partic- 

ular class of proper formulas, all definite for- 

mulas are admissible. In the paper it is shown 

that the decision problem for several classes of 

proper formulas is solvable. The following results 

are established. Theorem i: The class of proper 

formulas in prenex form on any complete set of 

connectives is recursive. Theorem 2: The class 

of proper formulas on 4, V, ~ is recursive. 

Theorem 3: The class of proper formulas on 9, D, 

is recursive. Theorem 4: The class of proper 

formulas on 9, ~, V, ~ is recursive. Thus, there 

is a mechanical decision procedure which determines 

whether an arbitrary formula is a member of the 

class. It follows that the analogues of Kuhns' 

conjecture for these classes are false. 
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I. Introduction 

The so-called "information language" of Rand's 

Relational Data File is an applied predicate cal- 

culus [3, 4, 5, 6, 7, 8]. As an integral part of 

the design and implementation of this storage and 
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retrieval system, a theory was developed by J. L. 

Kuhns to identify and systematically study those 

formulas of this calculus that represent the "rea- 

sonable" questions to put to a computer implementa- 

tion of this system, with emphasis placed upon those 

representations that are supposedly especially 

suited for machine processing [3, 41 . Accordingly, 

three classes of formulas were defined--definite 3 

proper, and admissible. The definite formulas are 

defined semantically and are invariant under the 

sentential and quantificational transformations of 

the predicate calculus. They share a semantic con- 

dition judged as being necessarily possessed by the 

symbolic representations of reasonable inquiries. 

To elaborate, the notion of a data base as defined 

in [3] amounts to the common notion of a structure 

with a finite number of relations; or~ from the 

vantage point of a formal language, it is an in~ 

terpretation of a finite number of predicate and 

constant symbols. The formulas F with free vari- 

ables that are definite have the property that the 

sets of true instances of F in an interpretation I 

of F and in a special extension I' of I are the 

same. The formulas without free variables are 

definite if their truth value is always preserved 

on passage from an interpretation I to an extension 

I' of I of the aforesaid special type. A precise 

definition is given in Sec. 2. 

The proper formulas are those definite formulas 

that satisfy a certain syntactic condition--namely, 

their principal subformulas must also be proper. 

Thus, all subformulas must be definite. The ration- 

ale behind this definition presumably runs as 

follows: The definite formulas mirror the reason- 
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able inquiries, while the proper formulas are such 

that all of their parts, i.e., subformulas, also 

have this desirable property. The admissible for- 

mulas are those that can be transformed into proper 

equivalents; that is, if F is admissible, there is 

a proper formula G, such that for each interpreta- 

tion I, with domain D, F and G are satisfied in D 

at exactly the same instances. It is conjectured 

in [3] that every definite formula is admissible. 

Of course, even for one who accepts the theory as 

sound~ sensible~ and adequate it is a priori clear 

that the admissibility of a formula F is of little 

or no value unless the transformation ~ of F into 

a proper equivalent G is effective. 

The concept, then, of a proper formula in- 

volves the notion of a subformula. But determin- 

ing which consecutive parts of a given formula are 

subformulas is, of course, a syntactic notion and 

depends on the identity of sentential and quanti- 

ficational connectives employed. Thus, the sub- 

classes of proper formulas, in contradistinction 

to the class of definite formulas, depend on which 

of the logical connectives are taken as primitives. 

This paper considers the decision problem for 

various classes of proper formulas. We point out 

that an affirmative solution to the decision prob- 

lem for a particular class ~ of proper formulas 

refutes the version of the aforementioned conjec- 

ture relative to the class of definite formulas 

on an 7 complete set of logical connectives; that 

is, if A is a class of definite formulas on any 

complete set of connectives, it follows, as in [2]~ 

that A is not re (recursively enumerable). Hence, 

if ~ is recursive, there is no effective transfor- 



mation ~ such that for each formula F, F c A ~ 

~) e n. 

II. Definitions 

The language £ that we use is the language of 

the full, pure first-order predicate calculus with- 

out equality, augmented with infinitely many indi- 

vidual constants• A formula in the predicate sym- 

n I n 2 n 
bols PI ' P2 ' ..., Pt t, where the superscript de- 

notes the rank or degree of the predicate symbol, 

and in the constants el, c2, ..., c k is any formula 

F whose only symbols, other than sentential connec- 

tives, quantifiers, and individual variables, occur 

n I n 2 n t 
among PI ' P2 ' "''' Pt , el, ..., c k. An inter r 

n I n 
pretation of F is a system I = <D; R I ~ ., Rtt 

dl, ..., dk> , where D is a nonempty set, each rela- 
n. n. n. 

tion R'll is defined on D i and assigned to Pil, and 

• is assigned to ej, i = i, ..., t; dj ~ D, each d3 

j = i, ..., k. An interpretation I of F is said to 

be finite if the domain D of I is finite. Develop- 

ments of the notion of interpretation or structure 

may be found in [9] or [I0]. 

Definition 

If F is a formula with m free variables and 

n I n 2 
nt; dl, ., dk> is a fi- I = <D; R I , R 2 , ..., R t .. 

nite interpretation of F, T CF, I) is the set of 

members of Dm that satisfy F, if m > 0. If m = 0, 

we call F a sentence , and T CF~ I) = t (truth) and 

TCF, I) = f (falsity) according to whether F is 

satisfied or not satisfied in I. We say a sen- 

tence F is finitely satisfiable if there is a finite 

interpretation in which it is satisfied; F is fi- 

nitely valid if it is satisfied in all finite in- 

terpretations. 
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Definition 

nl R~t 
Let F be a formula and I = <D; R I , ..., ; 

dl, ..., dk> a finite interpretation of F. Let * 

be an individual not in D. A *-extension I' of I 

n I n t 
for F is the interpretation I' = <D'; S I , ..., S t ; 

n. 

dl, ..., dk> , where D' = D U {*} and S. l~ is the 

n. n. n i n i 
l i 

extension of R. from D to D' such that S 
l I 

is false on any member of D 'hi that has * among its 

components. 

Definition 

A formula F is said to be definite if, for all 

finite interpretations I of F, T~, I) = T~, I'), 

where I' is a w-extension of I for F. 

Thus, the theorems and refutables of the pre- 

dicate calculus that are sentences are definite. 

Clearly, all atomic formulas of ~ are definite, 

Closure properties of the class of definite for- 

mulas are investigated at length in [3]. 

Remark 

We recall again the following theorem [2]: 

If ~, k ~ 0, is the class of defi- 

nite formulas on ~ with k free variables, 

then ~ is not reeursively en~nerable. 

Thus, the decision problem for each ~ is re- 

cursively unsolvable. 

Examples 

Consider the following formula F : 

~xZyP(x, y) D ~yVxP(x, y). Let D = [i, 2} and P 

be interpreted in D by the binary relation R t~ue 

on the pairs 41, 2) and (2, I), and false on the 

pairs (I, I) and 42 , 2). Thus, in this case I = 

<D; R>. It is easily seen that Vx~yP(x, y) is 



true in I, whereas ~yYxP(x, y) is false in I. By 

the truth-table for implication, 

~x~yP(x, y) D ~yVxP(x, y) is consequently false in 

I. 

We form the *-extension I' = <39'; S> of I by 

taking D' = {I, 2, *} and S to be the binary rela- 

tion which agrees with R on D X D and is false on 

the pairs (I, *), (*, I), (2, "5, (*, 25, and 

(*, *). Thus, Vx~yP(x, y) is false in I' since 

R(*, "5, R(*, I), and R(*, 25 are all false in D'. 

Similarly, ~yVxP(x, y) is faise in I'. Hence F is 

true in I' Since F is false in I but true in the 

*-extension I' of I we see that F is finitely sat- 

isfiable, is not finitely valid, and is not defi- 

nite. 

Consider the formula G : 

~xP(x) & Vx[P(x5 ~ Q(x)]. Let D be any non-empty 

finite set. Suppose I = <D; RI, R2> is an inter- 

pretation in which R 1 and R 2 are unary relations 

serving as the interpretations of P and Q, respec- 

tively. If R 1 is false throughout D, then ~xP(x) 

and hence G are false in I. Thus, G is not fi- 

nitely valid. But, if, for example, R 1 holds for 

but a single member of D and R 2 is universally true 

in D, the G holds in I. Thus, G is finitely sat- 

isfiable. 

Suppose that I' = <D'; SI, $2> is a *-extension 

of I. Assume that G is false in I. If ~xP(x) is 

false in I, then since SI(* ) is false, ~xP(x) and 

hence G are false in I'. If ~xP(x) is true in I 

but Vx(P(x) D Q(xS) is false in I, then there is an 

element d g D such that S 1 is true on d and S 2 is 

false on d. Hence Sl(d ) is true and S2(d ) is false 

in D' Thus, Vx~(x) ~ Q(x)5 is false in I'. 

Therefore, G is false in I'. Assume, now, that G 

is true in I. Then ~xP(x) is true in I and hence 

true in I'. By assumptions, Vx~P(x5 ~ Q(x)5 is 

true in I. S 1 and S 2 are both false on *. So, 

Vx~P(x5 ~ Q(xS) is true in I'. Therefore G is true 

in I'. Since I is arbitrary, it follows that G is 

definite. 

Definition 

Let Ul, u2, ..., u k be the unary connectives 

and bl, b2, ..., b~ the binary eonneetives of the 

language £. It is assumed that at least one of 

(the existential quantifier5 and V (the universal 

quantifier) is among Ul, u2, ..., u k. We induc- 

tively define the property of being a subformula 

of a formula A of ~. 

(i) A is a subformula of A. 

(2) If A is ui(B ) and u i is a propositional 

connective, then each subformula of B is a subfor- 

mul e of A, i = i, 2, ..., k. 

(35 If A is u.x(BS, u. is either ~ or V, and 
l l 

x is a variable that occurs free in B, then each 

subformula of B is a subformula of A, i = I~ 2, 

...~ k. 

(4) If A is b. (B~ C)~ then each subformula of 
] 

B is a subformula of A and each subformula of C is 

a subformula of A, j = I~ 2, ...~ t. 

~) A formula B is a subformula of A only as 

prescribed by (I) through (45 above. 

Definition 

A formula A of ~ is proper iff e a c h  subformula 

of A is definite. In the following, we are mainly 

interested in proper formulas on the more familiar 

sets of connectives. If the primitive connectives 
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are basically those of [3, 4J--namely, -~, V, &, D, 

hut not), and ~--the above definition of sub- 

formula reads as follows : 

(i) A is a subformula of A. 

(2) If A is ~ B, then each subformula of B is 

a subformula of A. 

(3) If A is BVC, B&C, B[DC, B~, then each 

subformula of B and each subformula of C is a sub- 

formula of A. 

(4) If A is ZxB, then each subformula of B is 

a subformula of A. 

(5) A formula B is a subformula of A only as 

prescribed by (I) through (4) above. 

Notation 

To facilitate the frequent use of certain 

terms, we shall write "fv," "fs," '~fv," 'Mfs," 

"re," for "finitely valid," "finitely satisfiable," 

"not finitely valid," '~ot finitely satisfiable," 

and "recursively enumerable," respectively. Also, 

we write '~i ~ F2" to mean that, for each finite 

interpretation I, the formulas F 1 and F 2 hold at 

exactly the same instances of the domain of I. If, 

as is usually the case, ~ is among our primitive 

connectives, we write '~ m B" for "(ADB)&(B:3A)." 

Definition 

We define the height h of a formula F. 

(i) If F is atomic, hCF) = 0. 

(2) If u is a unary primitive connective of 

the language £ and F is u(A), then h CF) = h(A) ÷ i. 

O) If b is a binary primitive connective of 

£, and F is B(A, B), then hCF) = max~n(A), hOB)) + 

i. 

III. Results 

Unlike the class of definite formulas, the 

subclasses of proper formulas depend on which of 

the logical connectives are taken as primitives. 

Thus, classes 51 and ~2 of proper formulas employ- 

ing different but, in the usual sense, equivalent 

sets of connectives may have different properties. 

This dependence is, however, not absolute, as the 

following result demonstrates. 

THEOREM i. The class S of proper 

formulas in prenex form defined on any 

complete set of connectives is recur- 

sive. 

Proof. Consider a formula F g ~ . F is of 
P 

the form QXlQX 2 ... QXmM(Xl, x2, "''' Xm' YI' Y2' 

..., yn ), where M is quantifier-free and each Q is 

or ~. Now, it is easy to see that it is decid- 

able whether a quantifier-free formula is fv or 

nfs. Consequently, by using the various results 

governing the closure properties of the class of 

definite formulas given in [3] and E4], p. II, it 

is decidable whether M is proper. If M is not 

proper, F is not proper. So, assume that M is 

proper. The existential quantification of a proper 

formula is proper [3]; therefore, if each Q is Z, 

then F is proper. Suppose that i is the greatest 
o 

integer not exceeding m, such that Qx i is Vx i ; 
O O 

then Vx i Zx i ÷I ... ~XmM is proper iff the sentence 
O o 

~YlZY2 "'" ZYn~XlZX2 "'" Vxi Zxi ÷I "'" ~XmM is 
O O 

nfs [3], p. 62. Thus, Vx i ~x i ÷I "'" ~XmM is 
O O 

proper iff the sentence VylYy 2 ... yYnVXlVX 2 ... 

Zxi Vxi +I "'" VXm-n M is fv. But it is decidable 
O O 
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whether such sentences are fv [i], pp. 67-70, 72-74. 

Hence, it is decidable whether ZylZy2 ... 

~Yn~XlHX2 "'" %~xi Zxi +I "'" ~IXmM is fs. If the 
o o 

latter sentence is fs, then Wx i Zx i +i ... ~XmM is 
o o 

not proper, and hence F is not proper. If it is 

M is proper. However, nfs, then Wx i ~Ix i +I "'" ~Xm 
o o 

if ~yl~Y2 ... ~Yn~Xl.~X2 ... %~x i Zx i +i "'" ~IXmM 
o o 

is nfs, it follows that QxjQxj÷ 1 ... Vx i ~x i +I "'" 
o o 

M is nfs, j = io-l, io-2 , ..., i, and hence is ~x m 

proper. Consequently, if ~yl~Y2 ... ~yn~LXl~IX 2 ... 

Wxi Hxl +I ... ZXmM is nfs, then F is proper. 
o o 

Q .E .D. 

For the next result, we denote by '~" the class 

of proper formulas on -~, V, Z. 

~LEMMA 2. If F e ~, then it is de- 

cidable whether F i_~s fv or F i%s fs. 

Proof. Suppose F contains no occurrence of 

negation signs. Then plainly F is fs. Also, the 

closure of a prenex form of F is of the form 

VXlVX 2 ... VXmZYl~y 2 ... ~yn M, where Xl, x 2 ... x 

are the free variables of F. It is decidable 

whether sentences of this form are fv [i], pp. 

70-71. Consequently, it is decidable whether F is 

fv. 

We henceforth assume that F contains occur- 

rences of negation signs. Without loss of general- 

ity, we assume that no double negations occur in F. 

We employ induction on the height h of F. By our 

assumption, since F is proper, the induction starts 

with h = 2. For h = 2, F is of the form ~ ~xP(x), 

where P(x) is atomic. It is, of course, decidable 

whether such a formula is fv or fs. Assume that 

the lena holds for all formulas F in ~ of height 

h ~ k. Consider a formula F of ~ of height h = 

k ÷ I. Suppose F contains a subformula of the 

form ~ ~uAVB, where B has free variables . Since 

this subformula is proper, ~uA must be nfs and 

hence ~ ~uAVB ~ B. In faet~ suppose F' is the 

formula obtained from F by replacing this partic- 

ular occurrence of ~ ~uAVB by B. It is easy to 

see that F' is proper. Moreover, F' ~ F. F' is 

of height h < k + i; hence, by the induction hy- 

pothesis, it is decidable whether F' is fv or fs. 

Consequently, it is decidable whether F is fv or 

fs. 

We now assume that F contains no subformula 

of the form ~ ~uAVB (or BV ~ ZuA), where B has 

free variables. Consider all occurrences of sub- 

formulas of F that have a single occurrence of a 

negation sign and that have negation as the senior 

connective. Such subformulas are sentences of the 

form ~Xl~X 2 ... ~XmM , if we ignore the trivial 

case of the negation of proposition letters. If 

F is of such a form, then it is decidable whether 

F is fv or fs without use of the induction hypoth- 

esis [I], pp. 62-63. Suppose, therefore, that F 

is not of this form and such that A is a subformula 

of F of this type--that is, a sentence ~ ~IXl~X 2 ... 

~x M. We assert that A lies within the scope of 
m 

no other negation sign. Suppose it did. Then 

there is a subformula ~ZxB of F, such that A is 

a subformula of B. Since x occurs free in B, 

there is a subformula of B of the form CVA or AVC, 

where C has free variables. This contradicts our 

assumption that F contains no subformulas of this 

form; our assertion is therefore justified. 
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Moreover, for the same reason, A lies within 

the scope of no other existential quantifier. Let 

AI, A2, ..., ~ all be sequential occurrences of 

such sentences that occur as subformulas of F. 

Consider the left-most occurrence A I and next-to- 

left-most occurrence A 2 of such sentences. Since 

F is a formula on ~, V, Z, there are proper for- 

mulas B I and B 2 such that BIVAIVB2VA 2 is a subfor- 

mula of F. The binary connective V may occur in 

B I and B2, but no negation signs occur in either. 

Hence, each occurrence of an existential quantifier 

in either of B I or B 2 is unnegated. The same con- 

siderations apply to A 2 and A3, A 3 and A4, ..., 

~-i and A k. Thus, F is a formula of the form 

BIVAIVB2VA2V ... VAk.IVBkVAkVBk+I, using the asso- 

eiativity of V. Negation signs occur only in 

AI, A2, ..., Ak, and then only as senior connec- 

tives. (Of course, various of the formulas 

BI, B2, ..., Bk÷ I may be empty, or F may be of the 

BIVA I for a noneslpty BI; however, in such cases, 

the situation is yet simpler and the same analysis 

applies .) F thus has a prenex form (on ~, V, ~, ¥) 

in which each universal quantifier precedes each 

existential quantifier. The finite validity of 

such formulas is decidable [I], pp. 70-71. Simi- 

larly, F has a prenex form in which each existen- 

tial quantifier precedes each universal quantifier. 

The finite satisfiability of such formulas is de- 

cidable. Consequently, it is decidable whether F 

is fs or fv. Q.E.D. 

We define the propositional formula P~h): If 

F is a formula (on ~, V, ~) of height h and each 

subformula of F of height k < h is proper, then it 

can be effectively determined whether F is proper. 

LEMMA 3. P(h) is t~ue for each h. 

Proof. P(O) certainly holds, since atoms are 

proper and h = 0 implies that F is atomic. Assume 

PCn) for h ~ k and consider P~ ÷ i). Let F be a 

formula of height k ÷ I, such that each subformula 

A of F of height h ~ k is proper. 

Case i. F is ~A. Then if A is a sentence, 

F is proper. Otherwise, F is not proper. 

Cgse 2. F is ~xA, where x occurs free in A. 

Then F is proper. 

Case 3. F is AVB. If the A and B have the 

same free variables, then F is proper [3]. By 

Lemma 2, it can be decided whether A is fs or B 

is fs. If both A and B are nfs, then F is proper. 

If one of A and B, say A, is nfs and each free 

variable of A is a free variable of B, then F is 

proper [3]. On the other hand, if A and B do not 

have the same free variables, and (I) both A and 

B are fs, or (2) just one, say B, is fs but A has 

free variables that do not occur in B, then F is 

not proper. Q.E.D. 

We therefore have 

THEOI~EM 4. The class of proper for- 

mulas of V, 9, Z is r echrsiye. 

Proof. Consider a given formula F of height 

h. By 3, P(k) holds for each k. The atoms of F 

are proper. Thus, it can be determined whether 

the subformulas of height i, 2, ..., h of F are 

proper. Hence, it can be determined whether F is 

proper. Q.E.D. 

We nOw take up the decision problem for the 

class of proper formulas on 9, ~, ~. 
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We define a transformation ~ of the formulas 

on ~, D, ~ into the formulas on ~, V, Z. 

~0(A) = A if A is atomic, 

~(-~ A) = ~ ~0(A), 

~0(~xA) = ~x~0(A), 

~(A~B) = ~(~ A)V~(B). 

LEMMA 5. A is proper on -~, D, 

iff ~0(A) is proper on -q, V, ~. 

Proof. The proof proceeds by induction on the 

height h of A. If h = 0, then A is atomic, and 

~(A) = A; hence, the assertion holds. Suppose the 

statement is true for ill formulas B of height 

h ~ k. Consider a formula A of height h = k ÷ I. 

Case I. A is ~ B. Then ~(A) is ~ ) .  

Assume A is proper; then B is proper. Then, by the 

induction hypothesis, ~) is proper. Since ~B is 

proper, A is a sentence. Hence, ~) is a sentence 

and ~(A) is proper. Likewise, if ~(A) = ~ ~(B) is 

proper, ~B) is proper and a sentence. By defini- 

tion of ~, B is a sentence; by the induction hy- 

pothesis, B is proper. Hence, A is proper. 

Case 2. A is $~xB. Then ~(A) = ~x~B). A 

and ~(A) are proper iff B and ~) are proper. By 

the induction hypothesis, B is proper iff ~(B) is 

proper. Hence, A is proper iff ~(A) is proper. 

Case 3. A is I~3C. Then ~(A) is ~ ~(B)V~(C). 

Subease i. B and C are both sentences. Then 

~(B) and ~(C) are sentences. A is proper iff both 

B and C are proper. By the induction hypothesis, 

B is proper and C is proper iff ~B) is proper and 

~(C) is proper, respectively. Since B is a sen- 

tence, B is proper iff ~ ~B) is proper. But 

~)V~(C) is proper iff ~ ~B) and ~(C) are 
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proper [3, 4]. Therefore, A is proper iff 

~)V~(C) is proper. 

Subcase 2. At least one of B, C is not a 

sentence. In this subcase, A is proper iff B is a 

proper fv sentence and C is proper. Thus if A is 

proper, C is not a sentence. Hence, ~(C) is not a 

sentence and, by the induction hypothesis, ~(C) is 

proper. Also, if B is a proper, fv sentence, then 

~B) is a nfs proper sentence. Hence, 

~(B)V~(C) is proper [4], p. II. Similarly, 

since one of B, C is not a sentence, if 

~(B)V~(C) is proper, then ~ )  is a proper sen- 

tence [3], p. 51, ~(C) has free variables, and 

hence at least ~B) is nfs [4], p. II. Hence, 

B is, by the induction hypothesis, a proper sen- 

tence and C is a proper formula with free vari- 

ables. Since ~ F ~ ~(F) in the predicate calculus 

for each formula F, B is fv. Hence, A is proper 

[4], p. II. We conclude that A is proper iff 

~(B)V~(C) is proper. Q.E.D. 

We thus obtain 

THEOREM 6. The class of proper for- 

mulas on 7, D, ~ is reeursive. 

Proof. Indeed, an arithmetization of our for- 

malism, together with Lemma 5, shows that the de- 

cision problem for the class of proper formulas on 

~, ~, ~ is i-I reducible to the decision problem 

for the class of proper formulas on 7, V, ~. By 

Theorem 4, the latter class is recursive. Hence, 

the class of proper formulas on ~, ~, ~ is recur- 

sive. Q.E.D. 

The above statement is easily extended to give 



THEOREM 7. The class of proper fo.r- 

mulas on 9, V, ~, Z is recursive. 

Proof. We first extend the definition of ~ by 

inclusion of the clause, 

~(AVB) -- ~(A)V~@) 

One more case arises in addition to the three con- 

sidered in 5: 

Case 4. A is BVC. Then ~(A) = ~(B)V~(C). By 

the induction hypothesis, B is proper iff ~) is 

proper and C is proper iff ~(C) is proper [4], p. 

Ii. 

Subease I.. B and C have the same free vari- 

ables. Then ~) and ~(C) have the same free vari- 

ables; hence, A = BVC is proper iff ~¢B)v~(C) is 

proper, 

Subcase 2. B and C do not have the same free 

variables. Since ~ C ~ ~(C) and ~ B ~ ~(B) in the 

predicate calculus, then (I) B and C are nfs iff 

~¢8) and ~(C) are nfs and (2) just one, say B, of B, 

C is nfs and each free variable of B is a f~ee vari- 

able of C iff just one, say ~(B), of ~B), ~(C) is 

nfs and each free variable of ~) is a free vari- 

able of ~(C). So, again, BVC is proper iff 

~B)V~(C) is proper. Q.E.D. 

IV. Remarks 

i, Theorem 4, Theorem 6, and Theorem 7, the deci- 

sion problem for each of ~, 41 , 42 , and A3 is 

recursively unsolvable. In fact, none of these 

classes of definite formulas is recursively enumer- 

able but in fact each is a set of the highest degree 

0 
of unsolvability for sets expressible by the ~I 

predicates of the Kleene hierarchy [2], [I0]. It 

follows that the analogue of the conjecture of 

Kuhns described in the Introduction is false for 

all combinations of A's and ~'s; that is, if we 

momentarily denote by "4" any of ~, A1 , 42 , 43 

and by "~" any of r!p, ~i' ~2, 93' then there is no 

effective transformation ~ such that 

F c 4 ~ ~¢F) c ~ and F ~ ~¢F). 

In fact, none of 4p, 41 , 42 , 43 is many-one reduc- 

ible, or even Turing reducible to any of 9p, HI' 

92, 93 . For, if one of ~, 41 , 42 , 43 were Turing 

reducible to one of ~p, 91, ~2' 93' then that one 

of ~, 41 , 42 , 43 would be recursive, which is not 

the case. The final general statement along these 

lines one can make is that none of ~, 41 , 42 , 43 

is reducible to any of ~p, ~I' ~2' ~ by a recur- 

sively enumberable function, where we understand a 

function f to be re if the two-place relation 

f(x) = y is re. Thus, there is no re function f, 

such that F ~ A ~ f~) ~ H. 

Reducibility 

We denote by "~", "AI"' "&2"' "43" the classes 

of definite formulas in prenex form, on 9, V, Z, on 

It~ u! 9, D, Z, and on 9, V, D, Z, respectively; by P , 

" g l " '  "~2" '  "~3" '  we denote  the  c l a s s e s  of  d e f i n i t e  

formulas in prenex form on 9, V, 3, on 9, D, Z, and 

on 9, V, D, Z, respectively. In contrast to Theorem 
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A Concluding Comment 

None of the results, Theorem I, Theorem 4, 

Theorem 6, Theorem 7, is a priori obvious. However, 

if one inspects the solvable cases of the decision 

problem [i] on which the proofs of these results 

are based, one sees that the algorithms that solve 

the decision problems of ~p, HI, ~2' ~3' respectively, 



are reasonably simple and '~rogranmmble." There is 

no factor intrinsic to the algorithms that would 

render implementation infeasible. Computational 

difficulties would stem rather from testing a for- 

mula for finite validity or finite satisfiability 

when the data base is large. 
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