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ABSTRACT
In this paper, a hierarchical classification framework has
been proposed for bridging the semantic gap effectively and
achieving multi-level image annotation automatically. First,
the semantic gap between the low-level computable visual
features and the users’ real information needs is partitioned
into four smaller gaps, and multiple approaches are proposed
to bridge these smaller gaps more effectively. To learn more
reliable contextual relationships between the atomic image
concepts and the co-appearances of salient objects, a multi-
modal boosting algorithm is proposed. To enable hierar-
chical image classification and avoid inter-level error trans-
mission, a hierarchical boosting algorithm is proposed by
incorporating concept ontology and multi-task learning to
achieve hierarchical image classifier training with automatic
error recovery. To bridge the gap between the computable
image concepts and the users’ real information needs, a novel
hyperbolic visualization framework is seamlessly incorpo-
rated to enable intuitive query specification and evaluation
by acquainting the users with a good global view of large-
scale image collections. Our experiments on large-scale im-
age databases have also obtained very positive results.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis-object recognition.

General Terms
Algorithms, Measurement, Experimentation

Keywords
Hierarchical Image Classification, Automatic Image Annota-
tion, Concept Ontology, Multi-Modal Boosting, Hierarchical
Boosting, Hyperbolic Visualization.

1. INTRODUCTION
As high-resolution digital cameras become more afford-

able and widespread, personal collections of digital images
are growing exponentially. Thus, image classification be-
comes increasely important and necessary to support au-
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tomatic image annotation and semantic image retrieval via
keywords [1-2]. However, the performance of such keyword-
based image retrieval approach largely depends on three
inter-related issues: (1) representative visual features for
characterizing diverse visual properties of images [3]; (2)
effective algorithms for classifier training and automatic im-
age annotation [4-5, 20-21]; (3) suitable system interfaces
for intuitive query specification and evaluation [1-2].

To address the first issue, the underlying visual patterns
for feature extraction should be able to characterize the im-
age semantics at the object level effectively and efficiently
[3-5]. To address the second issue, robust techniques for
image classifier training are needed to bridge the seman-
tic gap successfully [1-2, 20-21]. Because one single image
may contain different meanings at multiple semantic lev-
els, hierarchical image classification is strongly expected for
achieving multi-level image annotations [20-21]. Hierarchi-
cal image classification can provide at least two advantages:
(1) The classifiers for the high-level image concepts can effec-
tively be learned by combining the classifiers for the relevant
image concepts at the lower levels of the concept ontology
(i.e., low-level image concepts with smaller within-concept
variations of visual principles); (2) The computational com-
plexity for training the classifiers for large amounts of image
concepts can significantly be reduced through exploiting the
strong correlations between the image concepts. The major
problem with such hierarchical approach is that the classi-
fication errors may be transmitted among different concept
levels (i.e., inter-level error transmission) [20]. To ad-
dress the third issue, there is an urgent need to develop
new visualization framework, so that users can visually be
acquainted with what keywords are used to annotate and
index the images and can be used for query specification.

2. CONCEPT ONTOLOGY CONSTRUCTION
As mentioned above, classifying images into the most rele-

vant image concepts at different semantic levels is one promis-
ing solution to enable automatic multi-level image annota-
tion. Motivated by this observation, we have proposed a
novel scheme by incorporating the concept ontology for im-
age concept organization and hierarchical image classifier
training and visualizing large-scale image collections.

Following the idea of WordNet [11], a hierarchical network
is used as the representation of the concept ontology. In this
network, each node represents either one image concept at
one certain semantic level or one specific salient object class.
We define the former nodes as the concept nodes because
they represent the semantics of the whole image, and the
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Figure 1: Concept ontology for hierarchical organiza-

tion of large amounts of image concepts.

latter ones are defined as content nodes because they rep-
resent the semantics of salient objects which are the signifi-
cant compounds of an image. The concept nodes at the first
level of the concept ontology are defined as atomic image
concept nodes, which are used to represent the image con-
cepts with the most specific subjects. They can further be
assigned to the most relevant image concepts at the higher
level of the concept ontology, which are used to interpret
more general subjects of image contents with larger within-
concept variations of visual properties.

In this paper, we have developed a semi-automatic scheme
for concept ontology construction. We use our work on con-
structing the concept ontology for LabelMe1as an example
to depict our algorithm: (1) Labels in LabelMe contain text
information of dominant salient objects as well as their con-
tours and locations, but there are no explicit labels at the
image concept levels [8]. Each image is stored in a folder
with its name strongly indicating the concepts of the con-
taining images. First, we remove all the most common stop
words, date and other uninformative words automatically
from the folders’ names. Then the remaining meaningful
words are separated automatically by using standard text
analysis techniques to determine the basic vocabulary of
image concepts (i.e., text terms for interpreting the rele-
vant image concepts). (2) Latent Semantic Analysis (LSA)
is used to group the similar text terms and identify the most
significant image concepts [12]. The results of LSA are fuzzy
clusters of text terms with same sense, where each cluster
describes one significant image concept. (3) The contex-
tual and logical relationships among these significant image
concepts are obtained automatically, where both their joint
probability and their contextual dependency are integrated
to formulate a new measurement for determining the con-
cept associations effectively.

The joint probability ρ(Ci, Cj), between the text terms for
interpreting the corresponding image concept Ci and Cj , is
directly obtained from the relevant image annotations:

ρ(Ci, Cj) = log
P (Ci, Cj)

P (Ci)P (Cj)
(1)

where P (Ci, Cj) is the frequency for the co-occurrence of
the relevant text terms Ci and Cj , P (Ci) and P (Cj) are the
frequencies for the individual occurrences of the text terms
Ci and Cj .

WordNet is used as the priority set to accurately quantify

1The database can be downloaded from the following URL:
http://people.csail.mit.edu/brussell/research/LabelMe

the contextual dependency π(Ci, Cj) [11]:

π(Ci, Cj) = − log
length(Ci, Cj)

2D
(2)

where length(Ci, Cj) is the length of the shortest path be-
tween two text terms Ci and Cj on the WordNet, and D is
the maximum depth of the WordNet.

The association between the given image concepts Ci and
Cj is then determined by:

φ(Ci, Cj) = ρ(Ci, Cj)π(Ci, Cj) (3)

The value of φ(Ci, Cj) increases with the strength of se-
mantic relationship between Ci and Cj . Thus each image
concept is automatically linked with the most relevant image
concepts with the highest value of the association φ(·, ·). (4)
The concept ontology that is learned automatically is fur-
ther evaluated and modified to express the real contextual
relationships among the image concepts more precisely. One
concept ontology for our test image sets is given in Fig. 1.

After the concept ontology is constructed, it is further
incorporated to enable more effective image labeling and
reduce the hand-labeling cost for image classifier training.
Thus only the training images for the atomic image con-
cepts at the first level of the concept ontology are labeled
manually. Because the contextual and logical relationships
between the atomic image concepts and the image concepts
at the higher levels of the concept ontology are accurately
characterized by the underlying concept ontology, the key-
words for interpreting the relevant image concepts at the
higher semantic levels can be propagated automatically and
be added as the labels for the training images. Incorporat-
ing the concept ontology for automatic label propagation
can reduce the hand-labeling cost significantly.

3. BRIDGING SEMANTIC GAP
The CBIR community has long struggled to bridge the

semantic gap from successful low-level feature extraction to
high-level human interpretation of image semantics, thus
bridging the semantic gap is of crucial importance for achiev-
ing more effective image retrieval [1-2]. Our essential goal
for image analysis is to provide more precise image content
representation that allows more effective solutions for image
classification, indexing and retrieval by bridging the seman-
tic gap. In this paper, we have developed a number of com-
prehensive techniques to bridge the semantic gap by: (a)
using salient objects to achieve more precise image content
representation, and the salient objects are defined as the
salient image components that are roughly related to the
real world physical objects in an image [5]; (b) developing
new machine learning tools to incorporate concept ontology
and multi-task learning for exploiting the strong correlations
between the image concepts to boost hierarchical image clas-
sifier training; (c) incorporating hyperbolic visualization to
bridge the gap between the computable image concepts and
the users’ real needs by visually acquainting the users with
a good global view of large-scale image collections.

To enable computational interpretation of image seman-
tics, a hierarchical scheme is proposed to bridge the se-
mantic gap (between the users’ real needs and the low-
level computable visual features) in four steps as shown in
Fig. 2: (1) The gap between the salient image components
(i.e., real world physical objects in an image) and the low-
level computable visual features (i.e., Gap 1) is bridged by
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(b)

High−Level Image Concept 1 High−Level Image Concept i High−Level Image Concept N

Atomic  Image   Concept 1 Atomic  Image   Concept j Atomic  Image   Concept  M

Type  1  Salient Object Type  k  Salient Object Type  Q  Salient Object 

Low−Level Color Features Low−Level Texture Features Low−Level Energy Features

Gap 3

Gap 2

Gap 1

(a)

Users’   Real   Information   Needs 

a. Query Specification 
b. Query Result Evaluation 

System  Information Interpretation

a. Keywords for Concept Interpretation
b. Similar Images under Same Concept

Gap 4

Figure 2: The flowchart for bridging the semantic gap

hierarchically.

using salient objects [5] for image content representation.
The salient objects are defined as the salient image compo-
nents that capture the most significant perceptual properties
linked to the semantic meaning of the corresponding physical
objects in an image. Using salient objects for image content
representation can provide at least four significant benefits:
(a) The salient objects can effectively characterize the most
significant perceptual properties of the relevant real world
physical objects in an image [5], thus they can be used as
building blocks to increase the expressiveness of intermedi-
ate image semantics. (b) The salient objects are not neces-
sarily the accurate segmentation of the real world physical
objects in an image [5], thus both the computational cost
and the detection error rate are reduced significantly. (c) It
is able to achieve a good balance between the computational
complexity, the detection accuracy, and the effectiveness for
interpreting the intermediate image semantics at the object
level. (d) Similar images are not necessarily similar in all
their salient image components, thus partitioning the im-
ages into a set of salient objects can also support partial
image matching and achieve more effective image classifica-
tion and retrieval. (2) The gap between the atomic image
concepts and the salient objects (i.e., Gap 2) is bridged
by using multi-modal boosting to exploit the strong correla-
tions (i.e., contextual relationships) between the atomic im-
age concepts and the co-appearances of the relevant salient
objects. For example, the appearance of the atomic image
concept “beach” is strongly related to the co-appearances
of the salient objects, such as “sand field,” “water,” “tree,”
and “sky.” (3) The gap between the high-level image con-
cepts and the atomic image concepts (i.e., Gap 3) is bridged
by incorporating concept ontology and multi-task learning
to exploit their strong inter-concept correlations to boost hi-
erarchical image classifier training. (4) The gap between the
computable image concepts for image semantics interpreta-
tion and the users’ real needs (i.e., Gap 4) is bridged by
using hyperbolic visualization to visually acquaint the users
with what keywords are used to annotate, index and access
the images.

After the salient objects are extracted, the original images
are decomposed into a set of salient objects. It is well-known
that the diverse visual similarity between the images can be
characterized more effectively and efficiently by using dif-

Boosting

BeachAtomic Image Concept

Water & Sky Sand & Water Sand, Water, 
Sky, & Tree

Different Feature R,G,B colors Gabor 
Energy

L,U,V
colors Energy Deviation

Gaobor 

Multi−Modal

Different Patterns for 
Co−appearances of   
Salient Objects 

Subsets 

Figure 3: The contextual relationship between the

atomic image concept and the co-appearances of salient

objects and their low-level visual features.

ferent types of visual features, and thus 83-dimensional vi-
sual features are extracted to characterize the diverse visual
properties of images. These 83-dimensional visual features
are automatically partitioned into 9 homogeneous feature
subsets as shown in Fig. 3: 3-dimensional R,G,B average
color; 4-dimensional R,G,B color variance; 3-dimensional
L,U,V average color; 4-dimensional L,U,V color variance;
2-dimensional average & standard deviation of Gabor filter
bank channel energy; 30-dimensional Gabor average channel
energy; 30-dimensional Gabor channel energy deviation; 2-
dimensional Tamura texture features (coarse & contrast),
and 5-dimensional angel histogram derived from Tamura
texture. Because each feature subset is used to character-
ize certain visual property of images, more suitable kernel
function can be selected.

4. IMAGE CLASSIFIER TRAINING
We have proposed a novel scheme by incorporating con-

cept ontology for hierarchical image classifier training.

4.1 Multi-Modal Boosting
Because of the diversity of the visual similarity between

the semantically-similar images, we have proposed a new
framework to interpret the contextual relationships between
the atomic image concepts and the co-appearances of the rel-
evant salient objects. As shown in Fig. 3, the co-appearances
of multiple salient objects are used to interpret the appear-
ances of the relevant atomic image concepts, and such con-
textual relationships are well defined by our concept ontol-
ogy. Due to the diversity and richness of the patterns of the
co-appearances of salient objects (i.e., different images may
consist of different numbers and types of salient objects), it
is very attractive to learn the classifiers for all these poten-
tial co-appearance patterns and integrate them for achieving
more reliable image classification.

If one certain atomic image concept Cj is relevant to n
classes of salient objects, the total number M of such co-
appearance patterns of all these n salient object classes can
be determined by:

M =
n∑

i=2

Ci
n = 2n − n − 1 (4)

For each of these M co-appearance patterns, one SVM im-
age classifier can be trained to interpret the contextual re-
lationship between the given atomic image concept Cj and
the relevant co-appearance pattern. In addition, the visual
property for each of these M co-appearance patterns is fur-
ther characterized by 9 homogeneous feature subsets.

For one certain co-appearance pattern, the weak classifiers
for all these 9 homogeneous feature subsets are integrated
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to boost the corresponding ensemble classifier [6]:

f i
Cj

(X) = sign

{
T∑

t=1

9∑
j=1

αj
tf

j
t (X)

}
,

T∑
t=1

9∑
j=1

αj
t = 1 (5)

where f j
t (X) is the weak classifier for the jth homogeneous

feature subset at the tth boosting iteration, and T = 50 is
the total number of boosting iterations.

For the given atomic image concept Cj , its ensemble clas-
sifier is determined by a multi-modal boosting of the classi-
fiers for all these M potential co-appearance patterns:

fCj (X) =
M∑

i=1

pi(X)f i
Cj

(X) (6)

where pi(X) is the posterior distribution of the ith classifier
f i

Cj
(X) to be combined, and pi(X) is determined by [18]:

pi(X) =
exp(f i

Cj
(X))∑M

i=1 exp(f i
Cj

(X))
(7)

By incorporating high-dimensional multi-modal visual fea-
tures and various co-appearance patterns for image seman-
tics characterization, our multi-modal boosting technique is
able to handle the huge diversity of within-concept visual
properties, and it can further provide a natural way to se-
lect the most representative feature subsets and the most
suitable kernel functions for each aotmic image concept.

4.2 Hierarchical Boosting
Because of the inherent complexity of the task, auto-

matic detection of the high-level image concepts with larger
within-concept variations of visual properties is still beyond
the ability of the state-of-the-art techniques [1-2]. The im-
age concepts are dependent and such dependencies can be
characterized effectively by the concept ontology. Unfortu-
nately, most existing techniques for hierarchical image clas-
sifier training suffer from the problem of inter-level error
transmission. Thus there is an urgent need to develop new
scheme for hierarchical image classifier training with auto-
matic error recovery. In this paper, we have proposed a
novel algorithm by incorporating the concept ontology for
hierarchical image classifier training. First, the concept on-
tology is used to identify the related tasks, e.g., training the
classifiers for the sibling image concepts under the same par-
ent node. Second, such task relatedness is used to determine
the transferable knowledge and common features among the
classifiers for the sibling image concepts to generalize their
classifiers significantly from fewer training images. Because
the classifiers for the sibling image concepts under the same
parent node are used to characterize both their individual
visual properties and the common visual properties for their
parent node, their outputs are strongly correlated according
to the new task (i.e., learning a biased classifier for their
parent node).

For a given second-level image concept Ck, its child im-
age concepts (i.e., the sibling atomic image concepts under
Ck) are strongly correlated and share some common visual
properties for their parent node Ck, thus multi-task learning
can be used to train their classifiers simultaneously [9-10].
Because the related tasks are characterized effectively by
the concept ontology, our hierarchical classifier training al-
gorithm can provide a good environment to enable more ef-
fective multi-task learning. To integrate multi-task learning

for SVM image classifier training, a common regularization
term W0 of the SVM image classifier is used to represent
and quantify the transferable knowledge and common fea-
tures among the SVM image classifiers for the sibling image
concepts under the same parent node. The weak classifier
for the atomic image concept Cj can be defined as [10]:

fCj (X) = W T
j X + b (8)

where Wj = W0+Vj , W0 is the common regularization term
shared between the classifiers for the sibling atomic image
concepts under the same parent node, and Vj is the specific
regularization term for the atomic image concept Cj .

Given the labeled training samples for L sibling atomic
image concepts under Ck: Ω = {Xij , Yij |i = 1, · · · , N ;
j = 1, · · · , L}, training multiple classifiers for the sibling
atomic image concepts under the same parent node Ck is
then transformed into a joint optimization problem:

min

{
C

L∑
j=1

N∑
i=1

ξij + β1

L∑
j=1

‖Vj‖2 + β2‖W0‖2

}
(9)

subject to:

∀N
i=1∀L

j=1 : Yij(W0 + Vj) · Xij + b ≥ 1 − ξij , ξij ≥ 0

where ξij ≥ 0 represents the training error rate, L > 0 is
the total number of atomic image concepts under the same
parent node, β1 and β2 are positive regularization parame-
ters, C is the penalty term. The dual optimization problem
for Eq. (9) is to determine the optimal α∗

ij by:

max

⎧⎨
⎩

L∑
j=1

N∑
i=1

αij − 1

2

L∑
j=1

N∑
i=1

L∑
h=1

N∑
l=1

αihYihαjlYjlKjh(Xih, Xjl)

⎫⎬
⎭

(10)

subject to:

∀N
i=1∀L

j=1 : 0 ≤ αij ≤ C,
L∑

j=1

N∑
i=1

αijYij = 0

where Kjh(·, ·) is the underlying kernel function. By exploit-
ing the transferable knowledge and common features for im-
age classifier training, our multi-task learning algorithm is
able to handle the inter-concept visual similarity effectively.

The common regularization term W0 for the sibling atomic
image concepts is further treated as a prior regularization
term to bias the SVM classifier for their parent node. Set-
ting such prior regularization term is able to exploit the
inter-concept correlations between the SVM classifiers ac-
cording to the new task and can reduce the training cost
significantly. Based on such prior regularization term, a bi-
ased classifier for their parent node is trained effectively by
using few new training images. Thus the biased classifier for
their parent node Ck is determined by:

min

{
1

2
‖W − W0‖2 + α

m∑
l=1

[1 − Yl(W
T · Xl + b)]

}
(11)

where W0 is the common regularization term for the sibling
atomic image concepts under Ck, (Xl, Yl), l = 1, · · · , m are
the new training samples for learning the biased classifier
for Ck. The dual problem for Eq. (11) is solved by:

min

{
1

2

m∑
l=1

m∑
h=1

αlαhYlYhXT
l Xh −

m∑
l=1

αl(1 − YlW
T
0 Xl)

}

(12)
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Figure 4: The comparison results between our hierarchi-

cal boosting algorithm, multi-class boosting and multi-

task boosting for four sibling image concepts.

subject to:

∀m
l=1 : 0 ≤ αl ≤ C,

m∑
l=1

αlYl = 0

The optimal solution of Eq. (12) satisfies:

W = W0 +
m∑

l=1

αlYlXl (13)

Thus the bias classifier for the given second-level image con-
cept Ck is obtained as:

fCk (X) = W T X + b (14)

To learn the ensemble classifier for the given second-level
image concept Ck, a novel hierarchical boosting scheme
has been developed by combining its biased classifier with
the classifiers for its child image concepts. Unfortunately, all
the existing boosting techniques can only combine the weak
classifiers that are learned in different ways (i.e., different
input spaces) but for the same task [6], and they did not
include the regularization between different tasks which is
very essential for hierarchical image classifier training. We
have developed a new scheme for multi-task classifier com-
bination (called hierarchical boosting) that is able to inte-
grate the classifiers trained for multiple tasks and leverage
their distinct strengths and exploit the strong correlations
of their outputs according to the new task. Our hierar-
chical boosting scheme can search an optimal combination
of these multi-task classifiers by sharing their transferable
knowledge and common features according to the new task
(i.e., learning the ensemble classifier for their parent node
Ck), and thus it is able to generalize the ensemble classifier
significantly while reducing the computational complexity
dramatically. For the given second-level image concept Ck,
the final prediction of its ensemble classifier can be obtained
by a logistic boosting of the predictions of its biased classifier
and the classifiers for its child image concepts [18]:

HCk(X) =
L+1∑
h=1

ph(Ch)fCh(X) (15)

By exploiting the strong inter-concept correlations for hier-
archical image classifier training, our hierarchical boosting
algorithm is able to learn the classifiers for large amounts of
image concepts simultaneously.

Figure 5: The comparison results between our hierarchi-

cal boosting algorithm, multi-class boosting and multi-

task boosting for four sibling image concepts.

Our hierarchical boosting algorithm can significantly out-
perform the traditional techniques such as multi-class boost-
ing and multi-task boosting [7-8]. The multi-class boosting
techniques do not explicitly exploit the transferable knowl-
edge and common features among the classifiers to enhance
their classification performance [7]. The multi-task boosting
algorithms have recently been proposed to enable multi-class
object detection by sharing the common features among the
classifiers [8]. Rather than incorporating the transferable
knowledge and common features to learn a biased classifier,
the ensemble classifier for each object class is simply com-
posed by the classifiers that are trained for all the pair-wise
object class combinations [8], thus the strong inter-concept
correlations between the classifiers cannot be exploited ef-
fectively. On the other hand, our hierarchical boosting al-
gorithm can integrate the transferable knowledge and com-
mon features to enhance all these single-task classifiers at
the same semantic level simultaneously, exploit their strong
inter-concept correlations to learn a biased classifier, and
boost an ensemble classifier for their parent node with higher
discrimination power. As shown in Fig. 4 and Fig. 5, one
can find that our hierarchical boosting algorithm can signif-
icantly outperform the traditional techniques such as multi-
class boosting and multi-task boosting.

5. MULTI-LEVEL IMAGE ANNOTATION
After our hierarchical image classifiers are available, they

are used to classify the images into the most relevant image
concepts at different semantic levels. We carry out our ex-
perimental studies of our proposed algorithms by using three
public image databases: LabelMe, Corel Images, Google Im-
ages. For LabelMe image database, it contains more than
25,000 images and our experiments are done on a snapshot
of this database downloaded at April 2006. For Corel im-
age database, we have also included 2800 images for natural
scenes. For Google Images, we have included 9000 natural
images. Table 1 gives the average accuracy of our hierarchi-
cal image classifiers for some image concepts.

In our hierarchical image classification scheme, the initial
classification of a test image is critical because the classifiers
at the subsequent levels cannot recover from the misclassifi-
cation of the test image that may occur at a higher concept
level, and this misclassification can be propagated to the ter-
minal concept node (i.e., inter-level error transmission) [20].
We have integrated two innovative solutions seamlessly to
address such inter-level error transmission problem: (1) en-
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Table 1: The classification accuracy (i.e., preci-
sion/recall) for some image concepts.
concepts mountain view beach garden

80.6% /85.6% 90.4% /90.6% 89.5% /88.3%
concepts sailing skiing desert

85.8% /84.6% 83.6% /84.2% 79.5% /74.7%
concepts ocean view waterway prairie

82.3% /81.5% 85.4% /85.7% 80.5% /82.4%
concepts shopping office bathroom

83.6% /84.2% 89.8% /88.7% 86.5% /87.3%
concepts sidewalk corridor kitchen

85.4% /84.9% 86.4% /85.8% 89.6% /90.2%
concepts home avenus campus

90.5% /91.2% 92.3% /95.2% 90.2% /91.5%

Figure 6: Multi-level image annotation results both at

the object level and at multiple concept levels.

hancing the classifiers for the image concepts at the higher
levels of the concept ontology, so that they can have higher
discrimination power (i.e., classifying the images more ac-
curately); (2) integrating new protocols that are able to de-
tect such misclassification path early and take appropriate
actions for automatic error recovery.

Three significant respects of our hierarchical image classi-
fication scheme are able to address the inter-level error trans-
mission problem effectively: (a) The transferable knowledge
and common features can be shared among the classifiers
for the sibling image concepts at the same semantic level
of the concept ontology to maximize their margins and en-
hance their discrimination power significantly, so that the
test images can be classified more accurately at the begin-
ning, i.e., image concepts at the higher levels of the con-
cept ontology. By exploiting the strong correlations between
the classifiers for their child image concepts, our hierarchi-
cal boosting scheme is able to learn more reliable ensemble
classifiers for the high-level image concepts. (b) The classifi-
cation decision for each test image is determined by a voting
from multiple multi-task classifiers for the sibling image con-
cepts at the same semantic level to make their errors to be
transparent. (c) An overall probability is calculated to de-
termine the best path for hierarchical image classification.
For a given test image, an optimal classification path should
provide maximum value of the overall probability among
all the possible classification paths. The overall probability

h(Ck) for the optimal classification path (from one certain
higher level image concept Ck to the most relevant lower
level image concept Cj) is defined as [17]:

h(Ck) = p(Ck) + g(Cj), g(Cj) = max{p(Ci)|i = 1, · · · , L}
(16)

where p(Ck) is the posterior probability for the given test
image to be classified into the current image concept Ck at
the higher level of the concept ontology, p(Ci) is the poste-
rior probability for the given test image to be classified into
the child image concept Ci of Ck, g(Cj) is the maximum
posterior probability for the given test image to be classi-
fied into the most relevant child concept node Cj . Thus a
good path should achieve higher classification accuracy for
both the high-level concept node and the most relevant child
concept node. By using the overall probability, it is able for
us to detect the incorrect classification path early and take
appropriate actions for automatic error recovery.

It is important to note that once a test image is classi-
fied, the keywords for interpreting the salient object classes
(what are visible in the images) and the relevant image con-
cepts (what the images are about and what can be evoked by
the visible salient objects) at different levels of the concept
ontology become the keywords for interpreting its seman-
tics more sufficiently. Our multi-level image annotation
scheme is very attractive to support semantic image retrieval
via keywords such that the naive users can have more flexi-
bility to specify their query concepts via various keywords at
different semantic levels. Our experimental results on hier-
archical image classification and multi-level annotation are
given in Fig. 6. From our experimental results, one can find
that our proposed hierarchical image classification scheme
is able to achieve more sufficient image annotations.

6. HYPERBOLIC IMAGE VISUALIZATION
For naive users to harvest the research achievements of

CBIR community, it is very important to develop more com-
prehensive framework for intuitive query specification and
evaluation, but it is also a problem without a good solu-
tion so far. The problem, in essence, is also about how to
present a good global view of large-scale image collections to
users [13-16], so that users can easily specify their queries.
Therefore, there is a great need to generate the overall in-
formation of large-scale image collections conceptually and
incorporate the concept ontology to organize and visualize
such concept-oriented overall information more effectively
and intuitively.

To achieve multi-modal representation of concept ontol-
ogy, each concept node on the concept ontology is jointly
characterized by: keyword to interpret its semantics, most
representative images to display its concept-oriented sum-
mary, decision principles (i.e., support vectors and impor-
tance factors for classifier combination) to characterize its
feature-based principal properties, and contextual relation-
ships between the relevant image concepts.

We have developed a novel scheme to generate the concept-
oriented summarization of large-scale image collections. For
one given image concept on the concept ontology, three types
of images are automatically selected to generate its concept-
oriented summary: (a) Images which locate on the decision
boundaries of the SVM image classifier; (b) Images which
have higher confidence scores in the classification procedure;
(c) Images which locate at the centers of dense areas and
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can be used to represent large amounts of semantically sim-
ilar images for the given image concept. To obtain such
representative images, kernel PCA is used to cluster the se-
mantically similar images for the given image concept into
multiple significant groups [19].

Our approach for concept ontology visualization exploits
hyperbolic geometry [16]. The hyperbolic geometry is par-
ticularly well suited to graph-based layout of large-scale con-
cept ontology, and it has “more space” than Euclidean geom-
etry. The essence of our approach is to project the concept
ontology onto a hyperbolic plane according to the contex-
tual relationships between the image concepts, and layout
the concept ontology by mapping the relevant concept nodes
onto a circular display region. Thus our concept ontology vi-
sualization framework takes the following steps: (a) The im-
age concept nodes on the concept ontology are projected to a
hyperbolic plane according to their contextual relationships,
and such projection can accurately preserve the original con-
textual relationships between the image concept nodes. (b)
Poincaré disk model [16] is used to map the concept nodes
on the hyperbolic plane to a 2D display coordinate.

Each concept node on the graph is assigned a location z =
(x, y) within the unit disk, which represents the Poincaré
coordinates of the corresponding image concept node. By
treating the location of the image concept node as a com-
plex number, we can define such a mapping as the linear
fractional transformation [16]:

zt =
θz + P

1 + P̄ θz
(17)

where P and θ are the complex numbers, |P | < 1 and |θ|
= 1, and P̄ is the complex conjugate of P . This transfor-
mation indicates a rotation by θ around the origin following
by moving the origin to P (and −P to the origin).

After the hyperbolic visualization of the concept ontology
is available, it can be used to enable interactive exploration
and navigation of large-scale image collections at the con-
cept level via change of focus. The change of focus is im-
plemented by changing the mapping of the image concept
nodes from the hyperbolic plane to the unit disk for dis-
play, and the positions of the image concept nodes in the
hyerbolic plane need not to be altered during focus manip-
ulation. Users can change their focus of image concepts by
clicking on any visible image concept node to bring it into
focus at the center, or by dragging any visible image con-
cept node interactively to any other location without los-
ing the contextual relationships between the image concept
nodes, where the rest of the layout of the concept ontology
transforms appropriately. Thus our hyperbolic framework
for concept ontology visualization has demonstrated the re-
markable capabilities for interactively exploring large-scale
image collections at the concept level. By supporting change
of focus, our hyperbolic visualization framework can theo-
retically display unlimited number of image concepts in a
2D unit disk.

Moving the focus point over the display disk unit is equiv-
alent to translating the concept ontology on the hyperbolic
plane, such change of focus can provide a mechanism for
controlling which portion of the concept ontology receives
the most space and changing the relative amount of the im-
age concept nodes for current focus. Through such change
of focus on the display disk unit for concept ontology visual-
ization and manipulation, it is able for users to interactively

explore and navigate large-scale image archives at the con-
cept level. Therefore, users can always see the details of the
regions of interest by changing the focus. Different views
of the layout results of our concept ontology visualization
are given in Fig. 7. By changing the focus points, our hy-
perbolic framework for concept ontology visualization can
provide an effective solution for interactive exploration of
large-scale image collections at the concept level. In addi-
tion, users can visually be acquainted with what keywords
are used to annotate and index the images, and thus they
can easily and intuitively specify their queries with better
knowledge of large-scale image collections.

Because the concept ontology is used to represent the
abstract information of large-scale image collections, the
amounts of the returned images for such keyword-based queries
may be very large and it is too expensive for users to look
for some particular images effectively. Our solution for this
problem is to project the returned images onto a 2D visual-
ization space according to their kernel-based visual similar-
ity distances. In addition, the visual similarity relationships
between the returned images are explained more intuitively
by using hyperbolic visualization, thus users can easily judge
the relevance between the returned images and interactively
browse large amounts of returned images according to their
visual similarity. Such interactive exploration can also
allow users to zoom into regions of interest, obtain some ad-
ditional images of interest that may not be found by using
1D or 2D top list (some interesting images which are loosely
relevant to users’ queries), and enable fortunate discoveries
of unexpected images by accident.

For a given returned image I , we set ρ to be the hyperbolic
distance between I and the center of the hyperbolic plane for
image projection, and r be the distance between I and the
center of the display unit circle. The relationship between
their derivatives is described by:

dρ =
2

1 − r2
· dr (18)

An example of this hyperbolic visualization is shown in Fig.
8, where the returned images for the query “nature scene”
are layouted according to the global color histogram by using
Kernel PCA projection [19]. One can observe that such 2D
hyperbolic visualization of the returned images can provide
more intuitive interpretation of their visual similarity, where
the similar images are closer according to their kernel-based
visual similarity. Therefore, users are allowed to manipulate
not only the images, but also their visual similarity relation-
ships. By allowing users to zoom into regions of interest via
changing the focus, our algorithm can easily support visual-
ization of large amounts of returned images.

7. CONCLUSIONS
In this paper, we have proposed a novel algorithm for au-

tomatic multi-level image annotation via hierarchical clas-
sification. A novel multi-modal boosting algorithm is pro-
posed to achieve more reliable interpretation of the contex-
tual relationships between the atomic image concepts and
the co-appearances of salient objects. To avoid the inter-
level error transmission problem, a novel hierarchical boost-
ing algorithm is proposed by incorporating concept ontology
and multi-task learning to boost hierarchical image classi-
fier training. Our hierarchical image classifier training algo-
rithm is able to simultaneously learn the classifiers for large
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Figure 7: Two different views of our hyperbolic visualization of large-scale concept ontology.

amounts of image concepts with huge within-concept visual
diversities and inter-concept visual similarities. A novel hy-
perbolic visualization framework is seamlessly incorporated
to enable intuitive query specification and similarity-based
evaluation of large amounts of returned images. Our experi-
ments on large-scale image database have also obtained very
positive results.
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