
Surrogate Subsets: A- Free Space Management Strategy
for the Index of a Text Retrieval System

F. J. Burkowski
Department of Computer Science

University of Waterloo
Waterloo, Ontario

CZiMda

ABSTRACT

This paper presents a new data structure and an associated strategy to be utilized by
indexing facilities for text retrieval systemsThe paperstarts by reviewing some of the goals
that may be considered when designing such an index and continues with a small survey of
various current strategies. It then presents an indexing strategy referred to as surrogate
subsets discussing its appropriateness in the light of the specified goals. Various design
issues and implementation details are discussed. Our strategy requires that a surrogate file
be divided into a large number of subsets separated by free space which will allow the
index to expand when new material is appended to the database. Experimental results
report on the uttiization of free space when the database is enlarged.

This paper will present a new data structure and an associated strategy to be utilized by
indexing facilities for text retrieval systems. Typical applications [FAL87D], [CHR86]
include the archiving and retrieval of natural-language documents contained in very large
databases such as automated law [DEF88] and patent databases, electronic encyclopedias,
abstracts, medical libraries, automated office filing and newspaper databases. In the more
sophisticated systems, a computer network is used to communicate user queries to a
document server which responds by sending a selection of documents back to the user
workstation. Queries typically involve the inclusion of words or phrases in a syntax which
defines a Boolean or relevance search that selects a hopefully limited set of documents that
are germane to the information needs of the user. Query syntax may support the stipulation
of words within variotis text elements of a document, for example, the query may request
all newspaper articles containing “acid rain” WITHIN the headline AND “river pollution”
WITHIN the main text.

Typically, during retrieval operations, words or phrases extracted from the query are
presented to an index facility which maintains the text locations of all the significant words
in the database. Depending on the needs of the application, the precision used to specify
the location or address of a word may be extremely narrow (byte displacement in a text file)
or very wide (the address of some text element, perhaps the document itself). In the former
case we will consider the index entry for a word to have an address Pranularitv of a byte
while in the latter case the address granularity is some larger extent specified by the type of
some particular text element (for example, a sentence, paragraph, chapter or the document
itself). Naturally, the granularity of the address has an effect on the size of the index and
on the nature of the queries that may be handled efficiently.

Permission to copy without fee all part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

(cl 1990 ACM o-89791-408-2 90 0009 211 $1.50

211

In response to a query the retrieval system will access the index, extracting from it all
required address lists and it will then perform various manipulations on these lists in an
attempt to determine the address of words which meet the constraints imposed by the
query. These manipulations typically involve intersections, union and sorting operations.
We will avoid any further discussion of these manipul&tions since this paper will deal
primarily with index techniques.

This paper will assume that the words selected for indexing have been determined by the
needs of the application. Techniques which consider the appropriate strategies for index
word selection generally fall into one of two categories which serve to support either free-
text search or keyword searching. These issues are discussed briefly in [STA863 and more
extensively in [SAL863. While not advocating any particular strategy we will generally
assume index word selection is being done to support a free text search allowing the user to
retrieve information from the database after defining queries which incorporate arbitrary
combinations of document words. This assumption places the heaviest demands on the
size and performance requirements of the index, keyword searching typically requiring
fewer index entries.

A~SUMI%D ENWRONMENT

The following list of assumptions will summarize the text retrieval environment that this
paper considers:

1) Multi-user large database

The multi-user environment will make frequent demands on the system which
should strive to provide short response times while dealing with an index that is
very large.

2)

3)

Dynamic Growth

The database will grow with the addition of new material.

Flexibility

Indexing techniques should porenridy allow text inversion on every word of the
database. The system should efficiently handle queries that contain word proximity
constraints and phrases.

GOALS

1) Fast retrieval

List manipulation aside, most of the time spent in retrieval arises from disk accesses
to the index and so indexing techniques should focus on achieving low I,/0 counts.

2) Fast loading and appending

The initial database load and subsequent database append operations should be done
quickly and in a fashion that will least cornpromiSe retrieval ability.

212

3) Efficient Free Space Management

During append operations the index will extend into free space areas. This shouId
be done in a way that does not seriously compromise retrieval performance, append -
performance or the efficient utilization of the storage area.

It can be seen that these three goals are in a type of dynamic tension in that design tradeoffs
which favour one goal tend to weaken the achievability of the other goals.

CWI-IER 3SSUES: NEX SIZE

An important consideration is the size of the index. This paper will assume that the primary
use of the index will be the retention of word addresses within the text file. In this case,
the size of the index is very dependent on the address granularity that is utilized. Small
granularity addressing (say down to the text word or character level) will give a much
larger index but the system functionality is greatly enhanced since proximity searching and
detection of phrases are handled in a much more effective fashion.

LRt us consider this dependency in more quantitative terms. We will develop formulae that
establish the ratio of index size to overall text size under two scenarios:

address g-ranularity is a single byte

W address granularity is a text element with a minimum size of TE, bytes.

The following notation will be used:

DB, = database size in bytes

%
= average size of word (4.87 bytes)

TE, = text element size in bytes

TE, = average number of distinct words in a text element of size TE,

Rsb = ratio of index size to text size when address granukrity is a single byte
R te = ratio of index size to text size when address granularity is a text element

of size TEs

The value of ws was obtained by calculating the average word length in a newspaper data
base containing 250 megabytes of text. If we include the delimiter after each word, the
word accounts for 1 + ws = 5.87 bytes on average.

With an address granularity of a single byte and assuming each address is stored in a
sequence of bytes we get DE%, [(10g~DB,)/87/(1 j- ws) as the size of the index (ignoring
any contribution necessary to define the structure of the index), Thus,

R,b = i-(log2DBs)/8t(l -t ~$1 (1)

Now with the wider granularity it is possible to save on the size of the address since it need
onIy identify the text element to specify a word’s location. Consequently the address size

213

is ~(~o~~(DB~~~))/81. M ore signifkantly we can eliminate duplicate words in the text
element during the load activity, indexing only the distinct words. The number of distinct
words V in a sequence of N consecutive words can be derived from the formula

V(v+lnV)=N (2)

where y = 0.57721 (Euler’s constant). This formula (derive-d in [FAL84]) assumes that
the distribution of words in text follows a Zipf distribution. Thus the size of the
contribution made by the text element to the index is TEv ~(log2@Bs/TIZs))/81 where

TE, (y + ln TE,) = Es /(1+ ws) and so

R,, = r(logZ@BsITEs))/g1 / ((1 + ws)(‘d + h =v))* (3)

As an example, let us consider 1 gigabyte of text stored on an optical disk. Equation (1)
indicates that with single byte address granularity the index has a size that is 68% of the
size of the text. ln practice, since the addresses are in ascending order, we can use a simple
front end compression scheme on the addresses to drop this to a smaller percentage
providing a final size that is considerably lower than the frequently cited extreme of 300%
mentioned in [HAS81],

If we consider a text element size TE, to be equal to 1024 bytes then TE,, = 40.72. In this
case equation (3) indicates an index of size 12% and again with front end compression this
can be reduced even further.

SEARCHING FOR PHRASES WHEN THE ADDRESS GRANUMRITY IS URGE

With the above observations in mind it becomes ertremely tempting to do a partial
inversion of the text by employing this larger address granularity. Savings would be
significant, especially for large multi-gigabyte text collections. The major problem is that
these schemes have a good average response time but an unpredictable worst case response
time [DEF89], very extended response times occurring when searching for a phrase which
must be detected by a final document inspection since the search itself can only retrieve
documents containing the phrase constituents in any order and in any location within the
document.

Many examples of such an anomaly can be given, the worst situation being a phrase which
is relatively rare in occurrence but which is comprised of words that are frequently used
elsewhere in the text. We have performed indexing experiments using document level
address granularity and have discovered many queries that support this claim. For example,
in a newspaper collection of 95,000 articles a search for documents containing the phrase
“John Turner” produces a very fast response fetching the first of 646 articles in less than 5
seconds. However, a search for documents with the phrase “the new John Turner” takes
over 3 minutes because of the extensive document Scanning (typically the word “new”
appears in roughly one out of every three newspaper articles).

214 I

A BRIEF OVERVIEW OF CURRENT ACCESS METHODS

We will start by discussing some of the indexing techniques that have been used for text.
This discussion is not meant to be a tutorial, but will instead describe these strategies from
a perspective that will consider the performance and goals stated earlier. A more
comprehensive description of the following strategies appears in [FAL85].

Inverted Lists

Inverted lists [TEO82] (pg. 344) can be implemented using a database dictionary [FALSS],
and a postings file. A word from the query is found in the dictionary. The dictionary entry
contains a pointer which selects a list of addresses specifying the text locations containing
that word. All such lists are stored in the postings file. Organization of the dictionary can
be done using a variety of tedhniques such as B-trees [BAY72], TRIES, or hashing. In
most cases the technique will allow rapid updates to the dictionary when the database
increases in size due to the appending of new documents. Accomodating list expansion in
the posting file is a more challenging problem especially if one is concerned about space
consumption on secondary storage.

Discussion

Inverted lists can exhibit very fast retrieval times provided the address list for a particular
word is stored in contiguous areas of the disk. During load or append operations one or
more addresses will be appended to various lists in the postings file and since these are
spread over a large area of the disk there will be many disk seeks. Typically, one of two
strategies is used:

The address lists in the postings file are retained in a series of chained buckets.
When a bucket is filled, a pointer to a new bucket allows the list to expand. In
addition to internal fragmentation the scheme has the drawback of extending the
retrieval time due to the extra disk seeks across the noncontiguous buckets.

2) In an effort to maintain fast retrieval each list can be stored in a contiguous extent
which has a length equal to 1 or more adjacent buckets. When new entries are
abut to overflow the extent the list can be copied to a longer free extent made
available from a free space list. The original extent is returned to the free list
manager. Retrieval is not compromised but the load process becomes quite
extended due to the copying and overhead associated with the free list management.

&nature Files

Signature file techniques [BER87], [CIIR84], [FAL87S], [STA86] typically require that
each document be divided into “logical blocks” each containing a constant number D of
distinct, non-common words. Each word is mapped to a word signature which is a bit
pattern of length F (F=512, for example) with m bits set to “l”, the rest being 0. Positions
of the m “1” bits are determined by hashing techniques. The word signature derived from
the D distinct words are then OR-ed together to form the block signature corresponding to
the logical block. In the next figure we use small values (F=12, m4, D=3) to illustrate the
technique.

215

Word Signature

phantom 0001 1000 0110
Opel-a 0001 0110 0001
webber 1000 0010 0011
block
signature 1001 1110 0111

Illustration of a Block Signature for Three Words

Searching for a word is done by creating the word signature and then examining each block
signature to see if that word signature has been included. Because of the hashing and due
to the superimposition of the word signatures it is possible that a block signature appears to
contain a word signature even though the corresponding word is not actually in the
document. This occurence of a “false drop” will happen very infrequently if appropriate
choices are made form, F and D [TSI83], (CHRS4].

Discussion

The main advantage of a signature file is the rapid update capability. Appending new
information to the database will result in a simple extension of the signature file into the free
space that follows it. Utilization of the free space is excellent since there is no possibility of
fragmentation. Size of the index is small, quoted at 5 to 10% in [CHR84] when the logical
block contains about 40 distinct words. Since the address granularity is essentially the size
of the logical block, the signature file exhibits a size which is not surprisingly low. It is
comparable to the size that would be achievable with inverted list schemes using the same
address granularity (see equation (3)).

Superimposed encoding implies that proximity and phrase searches must be done with
document filtering .

Retrieval is quite slow because of the extensive scanning. For example, a signature file that
is 5% of the size of the text file will be 30 megabytes in length if the text is 600 megabytes
long. Since disk transfer rates are typically one megabyte per second, the I/O time for
accessing the signature file will be half a minute. Various modifications to superimposed
encoding have been implemented [FAL87D], [ROB793 most with the goal of speeding up
the retrieval strategy while trying to maintain the ease of update.

Bit-Slice Sbature Files

Roberts [ROB791 stored signature files in a “bit-slice” fashion. The large array of bits
comprising the signature file is transposed and stored in such a way that the bits from the i-
th position of all the signatures are stored contiguously in a bit-slice. Since we need not
check the j-th bit of any signature in the file if the j-th bit of the signatures derived from all
the query words is “O”, we can reduce the amount of scanning that is to be done. We need
only scan those bit-slices that correspond to the bit positions in the query word signatures
that are set to “1”. This considerably speeds up the San operation but the cost per query
word is still rather high since it involves one disk seek for each “1” bit set in the word
signature plus the bit-slice transfer time which may be ‘longer than the seek time depending

216

on the size of the signature file. Ease of update is stiiu retained, but only if documents are
appended in batches and the signature bits are buffered in main memory before being
written out to the transposed signature file.

S&nature Files with Concatenated .SiaturB

The surrogate file (essentially a signature file with concatenated word signatures) is a
sequence of integers (bit strings of fixed length), each integer representing the word
signature of a significant word contained in the main text of the database. Creation of the
surrogate corresponding to a text element (for example, the entire document) involves three
steps mR83]:

1. Common words are removed using a list of stop words.

2. A signature word is computed for each remaining word in the text element. In most
cases, this is simpIy a hash function that maps words (character strings) onto
integer values that are m bits long. A reasonable value for m would be between 16
and 24.

3.. Duplicate word signatures are eliminated.

Thus the surrogate file is a series of signafure groups (see next figure below) appearing in
the same order as the corresponding text elements. Each signature group is comprised of a
series of word signatures derived from the words in the corresponding text element
followed by the address of that element. When a user query is to be satisfied, words from
the query are converted into word signatures and the surrogate file is scanned for these
word signatures. Whenever a match occurs the address at the end of the group is extracted
so that the corresponding text element can be eventually located. Since the hash encoding
is not guaranteed to be a I-to-l mapping, it is possible that more than one text word maps
to the same signature value. During a scan operation this multiple map can produce afalse
drop and an unrelated document of no interest to the user may be retrieved. This can be
detected and rectified by having software check documents before they are passed to the
user. As noted in LAR83] false drops can be made to occur with very small frequency if
signature words are long enough.

signature Group:

address qf text element
4

I

Word Signatures

Structure of a Signature Group

Note that if more documents are appended to the text portion of the database, the surrogate
file is similarly extended by the appending of additional document signature groups.
Retrieval operations are expected to be slow since the size of the surrogate file results in
extensive transfer times and hence long scan times.

217

SURROGATE S~~~SETS WITH ANTICIPATORY EXPANSION SPACE

We wili now progress to the main content of this paper which describes an index strategy
that we have dubbed surrogate subsets. The approach is intended to serve many of the
goals presented earlier while maintaining both fast retieval (without false drops) and fast
update.

In an effort to minimize the scan time while retaining the property of an easy update, we
adopt a technique which is a compromise strategy in that it has some of the properties of
both inverted fties and signature files with concatenated signatures. Our approach is most
easily described as an extension of the concatenated signature scheme with the following
modScations:

1) As in signature files a word is represented in the index by a fixed length value or
identifiet which we will call a marker. A marker has the same appearance and
functionality as a word signature. We use this different terminology to stress the
fact that a marker is not created using hashing techniques but rather it is ssigned
during a database load, the assignment technique guaranteeing uniqueness. This
will avoid the false-drop problem.

2) The file of concatenated markers is subdivided into a reasonably large number of
subsets. During the creation of the file a word marker is mapped to a particular
subset and this subset will be the one that retains the marker group. During
renieval operations the same mapping is used when we wish to select the subset to
be scanned when presented with the marker v&e derived from a given query
word. The subset designation and marker value for each word are kept in a
database dictionary Note that within a subset there is a one-to-one mapping
between markers and words.

3) Each subset is followed by free space that allows for subset expansion during
subsequent database appends.

This simple overview of the technique avoids any discussion of the free space assignment
strategy which works by taking advantage of the predictable nature of the Zipf distribution
of word frequencies in the database. This word frequency distribution is essentially
determined by an initial load of a portion of the database and it is then used to predict free
space requirements, the objective being to drastically reduce the occurrence of overflows of
subsets. The final section of this paper outlines an experiment which reports on the
effectiveness of the strategy.

We now describe the load, append and retrieval operations in more detail. In these
discussions we will use the following notation:

tWili=lN is the set of distinct words in the text that are to be indexed. Each
distinct word Wi from the database will have an entry at location i of the
dictionary. This entry initially keeps track of the word frequency and
later will retain the marker value and subset identifier assigned to the
word.

(sjlj=lo is the set of identifiers for the subsets in the surrogate file.

218

SID[i] This dictionary entry retains the subset identifier Sj assigned to the word
Wi.

MRK[i] This dictionary entry holds the marker value assigned to the word Wi

CNT[i] This temporary dictionary entry retains the number of times Wi appears
in the text of the initial load.

E=Cl This array keeps track of the current estimated size of all the subsets.

IXhUN(ESZ) This function returns the index of the minimum value in the array ESZ.

Other functions and arrays will be defined as we progress in the discussion.

me m Activity

The initial load builds the index for an initial portion of the database. For example, in our
experiments, we used the first 40 megabytes of a text database that was 250 megabytes
long. From this first portion the loader can determine with reasonable accuracy the
statistical properties of the word frequencies. While we could get by with a smaller initial
load, it is more effective to use a larger portion. However, as the size increases, it become
more difficult to handle other memory resident structures such as the word dictionary. The
load activity progresses through the following phases:

1) Pass I
The loader processes the text extracting from it the distinct words { Wi) i,lN that are
to be indexed. While doing this it builds a word dictionary which retains CNT[i]
for each word Wi. When a word is taken from the text stream, the loader will
attempt to find it in the dictionary. If found it increments CNT[i], if not found, a
new entry is created with CNT[iJ=l.

2) Assignment of Subsets

The loader initializes all ESZ[] entries to 0. Entries in the dictionary are now
processed in descending order with respect to the CNT[] value. This can be done
through a sort vector SV[k] k=1,2,..., N created just prior to this step. SV[k] will
be the index of the dictionary entry that is in position k after a descending order sort
of CNT[].

For k=I ,2,..., N the loader executes:

SJJEMP = IXMIN(ESZ)
SID[SV[k]] = SJJEMP
increment ESZ[SJ,TEMP] by CNT[SV[k]].

When this is completed, CNT[] locations in the dictionary may be used for other
purposes such as retention of the subset ID and marker values computed in the next
steps. The assignment of subset identifiers is essentially analogous to the packing
of a collection of boxes with articles of various sizes. We place the largest articles
in the largest available space within the boxes, followed by the lesser size items

239

(always using the largest available box space) until we finish with the smallest
articles. This heuristic approach will help ensure that subsets are fairly well
balanced.

3) Assignment of Markers

The loader progresses through the dictionary assi.erninP: a marker value to each word
Wi. Marker values will be unique within subsets (and hence there is never a false
drop problem). The array NXTMRK[] keeps track of the next marker value to be
assigned to a particular subset. Initially, all its entries are 0.

For k=l,2,..., N the loader executes:

MRK[k] = NXTMFKK[SID[k]]
increment NXTMRK[SID[kJ] by I.

Marker values should be at least one byte in length, two if the number of subsets is
small. The database designer must consider the anticipated vocabulary of the
system and choose accordingly.

4) Pass II

In this second pass of the text, the surrogate subsets are created. For each word,
the loader consults the dictionary to determine the subset selection and marker
values to be used. For each word Wi in the text stream, the loader creates the pair
MFX[i], ADRS[i] where MRK[i] is extracted from the dictionary and ADRS is the
address of the word in the text stream. This information is appended to the end of
the list held in thecsubset designated by SID[i]. In practice, the loader will record in
another array the last MRI$[] that was placed in a subset and if it is the same as the
current MRK[i] then the MRKfi] value can be omitted. The loader also keeps track
of the last address in a subset and enters ADRS[i] using an encoding that provides a
type of front-end compression. In our experiments, address entries had a length of
1,2, or 4 bytes the average length being between 1 and 2 bytes. Steering bits in the
most significant part of an entry are used to dibtinguish markers and addresses of
particular lengths.

Free Space Allocation

The ES2 array used in step 2 is also used in step 4 to provide a rough estimate of
the size requirements for the subsets. The appropriate amount of free space can be
preallocated for each subset in proportion to the values held in ES2 (ESZ[i]*6 is
sufficient at this time). It is impossible to establish the exact space requirements
that each subset will need to accomodate the first load since we cannot anticipate the
space savings due to marker omission and front-end compression.

In this step, the loader can redefine the free spaae needs based on the true size of the
subsets thus far. Let FS[Sj] denote the length of the free space that is to follow
subset Sj and let the current length of Sj be given by CL[Sj]. Define

R=TIjPL (4)

where TL is the total length of the text that is to be indexed (this includes the portion
of the text just loaded) and PL is the length of the text portion just loaded. The

220 /

success of our allocation policy rests on the assumption that, on average, future
appends will cause the subsets to grow to a final size which is R times larger than
the current size, that is:

(CL[Sjl + FSiSj]) / CL[Sj] = R. (5)

Equations (4) and (5) essentially deal with average behaviour. Some subsets will
not totally use she free space, others will need more. Xn our effort to reduce the
overhead associated with overflow of the free space we can extend the f?ee space by
some small fraction of the free space size recommended by (5). With this approach

FSlSj] = (R- 1) (1 +XTR) CLISj] (6)

where XTR provides the extra extension of the free space. In a future section
report on recommended values of XTR. Once all the FS[S$ are determined
subsets can be shifted so that each one gets the calculated free space allotment.

If both index and text are to be kept on a single volume the loader can be informed
about the volume capacity and will use this to calculate TL the maximum allowable
length of text that can be both indexed and stored on the volume. With a little
calculation it can be determined that:

‘L-L = PL(VC -t- XTR’SC) / (PL f (1 + XTR)*SC) (7)

where VC represents the volume capacity and SC is the sum of the lengths of the
current subsets that is

s,c = c CLU].

The Amend AC@&

An append is similar to a load except that a two pass procedure is not needed. When a
word is extracted from the text stream there are two possibilities:

1) The word is in the dictionary
In this case the append program must recognize the commitment made by the prior
assignation. If the word is found at location k then the pair MR.K[k], ADRS[k] is
entered into the subset just as in step 4 of the load activity.

2) The word is not in the dictionary
In this case the word is entered into the dictionary at index i, for example, and
SID[i] is assigned the subset identifier which designates the subset having the
shortest current length. As before NXTMRK[] is used to determine the marker
value to be assigned to MRK[i]. Having done this the subset entry can be made in
the usual fashion.

It is important to realize that loading and appending can proceed at a very fast rate if suitable
buffering is used. In our experimental database 4096 subsets were used. Each subset was
given a buffer area equal in length to the size of a disk sector. When this buffer is filled it
is written out to disk. Total buffer space required is 4096 x 5 I2 bytes = 2 megabytes. The
size of the buffer area was the primary restriction on the number of subsets used by the
indexing scheme. Since the buffer area represents a “wavefront” of subset extension

activity the disk writes tend to be more localized using this technique than that experienced
in updating the typical inverted file.

Disk w-rites are also far less frequent. Considering front end compression and redundant
marker omissions a word in the text will contribute about 3 bytes (on average) to the index.
This means that on average we can process about 17O.words in the text stream before a
disk write to the index is required. The index scheme tends to be much less I/O bound than
indexing done with inverted lists.

Retrieval Activitv

The main concern during retrieval activity is the generation of an address list for each word
in the query. When presented with a query word the search administrator task will consult
the dictionary to find the subset and marker value assigned to that word. It will then scan
the designated subset looking for any occurrence of the marker. Whenever the marker is
found addresses following it are extracted and returned as part of the required address list.

The surrogate subsets scheme just described has the following advantages:

1) Fast Loading and Appending

This is due to the buffering capability just described.

2) Fast Retrieval C

Typically, the derivation of an address list for a query word requires one disk seek’
to pull out the dictionary entry, another disk seek to get to the subset and the
equivalent of one more seek to scan the subset. As an example, consider a 200
megabyte text file to be stored on a 300 megabyte optical disk. With the subset
building techniques described above, we can create an index that uses word level
address granularity while occupying space that is about 40% of the size of the text.
Actual size will depend on various decisions regarding exclusion of stop words
from the index. The index will then be abqut 80 megabytes in size. This is
distributed over 4096 subsets giving 20K bytes per subset (on average). With a
disk transfer rate of 1 megabyte/second or 1K ‘bytes/ms we can transfer this in 20
ms which is comparable to the time to do a disk, seek.

3) Good Space Utilization

Because of the marker values, the total size of the index tends to be longer than that
possible with inverted lists. However, the extra space required is somewhat
ameliorated by the following considerations: Since index entries for low frequency
words are intermingled with one another within a subset the average difference
between successive addresses is smaller than the average difference seen when the
addresses have their own “private” lists as in typical inverted files. This means that
front end compression can be used more effectively introducing a compression
factor which tends to offset the regular appearance of marker values in these
subsets. Subsets holding high frequency words have far fewer marker values since

222 I

there is a higher chance that successive index entries are for the same word and so
the marker value is omitted as previously described.

ExDerimental Results: Choosinp; XTR

In the following experiment we sought to determine how the number of overflows varied
with respect to XTR. A newspaper database comprised of 250 megabytes was created
using one load activity of 44 megabytes followed by five append operations each adding in
about 41 megabytes each. Subsets were established using the strategy defined in the
previous sections but the free space areas following the 4096 subsets after the initial load
were made extra large so that no overflows occurred during the subsequent appends. After
the last append, data defining the final lengths of the various subsets were extracted and
passed to a program which evaluated the number of overflows that would have been
realized for various values of XTR in the range [-0.3, OS]. Results are summarr ‘zdinthe
following plot:.

r
-30 -25 -20 -15 -10 -5 0 5 '1 0 1s 20 25 30 3s 40 45 50

XTR * 100

223

When XTR = 0, the number of overflows was 1940, slightly less than half the subsets.
The significant feature about this plot is that the number of overflows rapidly decreases as
XTR climbs to about 0.20 with relatively small gains after that. For example, with XTR =
0.10, 0.15 and 0.20 the number of overflows is 444, 188 and 86 respectively
corresponding to 10.8%, 4.6% and 2.1% of the subsets. These figures indicate that small
increases in the index size allocation produce substantial returns in reducing overflows.
For example, if the size of the index is derived from equation (5) and amounts to 40% of
the size of the text, then making it 48% the size of the qext represents a l/5 increase, ie.
XTR = 0.20 and so we expect the overflows to drop to less than 2.1%.

Overflows will occur. For example, in a newspaper database the sudden popularity of a
name or topic will generate many index entries for a subset that was perhaps initially
considered to exhibit slow growth. Various strategies can be used to accomodate this
situation:

1) Spare Subsets

Some small percentage of the subsets can be set aside as overflow subsets.
Situated at the end of the subset sequence, they can have their free space reallocated
as the situation requires. The overflowing subset, can then have its contents moved
to this subset or the high frequency entries can be weeded out and moved to a spare
subset.

2) Subset Shift

When an overflow is about to occur the current subset length statistics can be used
to reassess the free spade allocation, the space can be reallocated and the subsets
shifted accordingly.

If this strategy is put in place we can essentially eliminate the initial load. A small
but comprehensive “standard” dictionary for a previously established database in
conjunction with its recommended free space allocation can be used to define the
free space for subsets in a newly started database. Appends can procede directly
but the chances of an early overflow are somewhat increased since the word
frequencies are not likely ro be similar. However, when this happens there should
be enough loaded data to do the reassessment just described.

High frequency words in the text have a frequency distribution that follows a Zipf
distribution. This gives us an advantage that we can use in indexing. Because of the
distribution, such word occurrences are fairly predictable and we can use this fact to
judiciously provide free space for the future growth of a subset. However, we have to
exercise caution when assigning entries to subsets. Plaoing entries associated with two or
more high frequency words into the same subset would cause inordinate growth within that
subset after a succession of future appends. This would result in extended scan times
which would be counter productive to fast retrieval. Cbnsequently, we rely on an initial
load activity to do some preassessment of the text, the objective being to determine with

224

reasonable accuracy, those words that are high frequency and those that are not. The high
frequency words can then be established in their own “private” subsets.

Because of the strategy used for the load activity, a low frequency word will share a subset
with other low frequency words. There is an immediate benefit. While the growth of a
subset containing one low frequency word (as in an inverted list scheme) is rather
unpredictable, the growth of a subset with many low frequency words can be more
accurately assessed since the avera= occurence of low frequency words in the database is
much more predictable.

The net result is a tendency to build subsets that have a predictable growth. Furthermore,
the subsets are as uniform as possible in length (within the constraints imposed by the
uneveness of the distribution corresponding to the high frequency words), This not only
aids storage utilization and scan time but also allows us to devise address compression
strategies that tie appropriate for each frequency level.

CONCLUSION

The indexing scheme presented in this paper provides retrieval times and storage utilization
which is competitive with typical inverted list schemes but it provides an update capability
which is significantly faster since it allows an easy expansion of lists into available free
space. This is done without significantly compromising execution times for either retrieval
or load activities. Furthermore, indexing can be done with word level address granularity
thus promoting the rapid handling of queries dealing with proximity and phrases.

ACKNOWLEDGEMENTS

The author wishes to thank The Montreal Gazette for their provision of a large newspaper
text collection which has been used in our experiments. I also wish to express gratitude to
Mr. Dennis Ablett of Infomart in Toronto for his help in arranging the acquisition of this
text. Finally I wish to thank Kent Chow of Sigscan Systems (Toronto) for work done in
the programming and testing of the surrogate subset retrieval engine thus proving its
effectiveness in various real-life text database applications.

REFERENCES

[BAY721 BAYER, R. AND MCCREIGHT, E., Organization and maintenance of large
ordered indexes, Acta Informatica, vol. 1, no. 3, 1972, pp. 173-189.

[BER87] BERRA, P. B., CHUNG, S. M. AND fiACHEM, N. I., Computer architecture
for a surrogate file to a very large data ! knowledge base, ZEEE Computer,
vol. 20, no. 3, 1987, pp. 25-32.

[CHR84] CHRISTODOLJLAKIS, S. AND FALOUTSOS, C., Design considerations for a
message file server, IEEE Trans. Software Engineering, Vol. SE-lo, No.
2, Mar. 1984, pp. 201-210.

[CHR86] CHRISTODOULAKIS, S. AND FALOUTSOS, C., Design and performance
considerations for an optical disk-based, multimedia object server,
Computer, Vol. 19, No. 12, Dec. 1986, pp. 45-56.

225

pEF88]

pEF89]

IF=841

pAL87S]

[i-LASS I]

IAR83]

[ROB791

[SAL86]

[STA86]

[TEO82]

[TSI83]

DEFAZIO, S. AND GREENWALD, C., The Mead information retrieval
system, IEEE Compcon 88, Feb. 1988, pp. 431.

DEFAzIO, S., Private communication.

FALOUTSOS,C.AND CHRISTODOULAKIS, S., Signature fiIes: an access
method for documents and its analytical performance evaluation, ACM
Trunsacrions’ on Oflice Information Systems, Vol. 2, No. 4, Oct. 1984,
pp.267-288.

FALOUTSOS, C., Access methods for text, Computing Surveys, Vol. 17,
No. 1, Mar. 1985, pp. 49-74.

FALOUTSOS, C. AND CHAN, R., Fast text access methods for optical
disks: designs and performance comparison, UMIACS-TR-87-66, CS-TR-
1958, Dept. of Comp. Sci. and Inst. for Adv. Comp. Studies, Univ. of
Maryland, Dec. 1987,29 pages.

FALOUTSOS,C.ANDCHRISTODOLJLAKIS, S.,Optimal signatureextraction
and information loss, ACM Transactiow on Database Systems, Vol. 12,
No.3, Sept. 1987, pp. 395-428.

HASKIN, R. L., Special purpose processors for text retrieval, Database
Engineering, Vol. 4, No. 1, Sept. 1981, pp. 16-29.

LARSON, P. A., A method for speeding up text retrieval, Proceedings of
ACM SJGMOD Conference, May, ACM, New York, 1983, pp. 117-123.

ROBERTS, C. S., Partid-match retrieval via the method of superimposed
codes, Proc. IEEE , 67.12 , Dec. 1979, 1624-1642.

SALTON, G., Another look at automatic text retrieval systems,
Communications of the ACM, Vol, 29, No. 7, July 1986, pp. 648-656.

STANFILL, C. AND KAHLE, B., Parallel free-text search on the connection
machine system, Communications of the ACM, Vol. 29, No. 12, Dec.
1984, pp. 1229-1239.

TEORY, T. J. AND FRY, J. P., Design df Database Structures, Prentice
Hall, Englewood Cliffs, New Jersey, 1982.

TSICHRI’TZIS D. AND CHRISTODOULAK~S,S.,M~~~~~~ files, ACM Trans.
O,fflce Information Systems, Vol. 1, No. 1, Jan. 1983, pp. 88-98.

226

