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ABSTRACT

Online forums are becoming a popular way of finding useful
information on the web. Search over forums for existing dis-
cussion threads so far is limited to keyword-based search due
to the minimal effort required on part of the users. However,
it is often not possible to capture all the relevant context in a
complex query using a small number of keywords. Example-
based search that retrieves similar discussion threads given
one exemplary thread is an alternate approach that can help
the user provide richer context and vastly improve forum
search results. In this paper, we address the problem of
finding similar threads to a given thread. Towards this, we
propose a novel methodology to estimate similarity between
discussion threads. Our method exploits the thread struc-
ture to decompose threads in to set of weighted overlapping
components. It then estimates pairwise thread similarities
by quantifying how well the information in the threads are
mutually contained within each other using lexical similari-
ties between their underlying components. We compare our
proposed methods on real datasets against state-of-the-art
thread retrieval mechanisms wherein we illustrate that our
techniques outperform others by large margins on popular
retrieval evaluation measures such as NDCG, MAP, Preci-
sion@k and MRR. In particular, consistent improvements of
up to 10% are observed on all evaluation measures.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval Models

Keywords

Forums, Threads, Retrieval, Similarity

1. INTRODUCTION
Online forums are fast becoming a very popular data source

on the web. They are an easy way to publish knowledge since
composing a post in a forum is much easier than composing
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a web page. Further, forums are interactive spaces where
many people contribute and hence are live (as against web
pages that are often static); making them more attractive
to contribute to. Forums are monitored by many people
making spurious information easy to detect and point out;
hence, it may be expected that contributors would exercise
some caution to ensure that the information that they post
is correct and useful. It may also be observed that forums
mostly contain subjective knowledge (e.g., opinions) and
hence are often complimentary to other knowledge sources
such as Wikipedia1. Despite such uniqueness, there have
been only a few forum search engines23 and searching forum
threads is still only an emerging topic [28, 10, 12].

In this paper, we consider the problem of finding simi-
lar threads to a given thread. Threads in online discussion
forms are collections of posts that are posted in response
to a common starting post. Finding similar data objects
in other popular data sources such as text collections [13],
web documents [8], images [34], websites4, social network
profiles [15], linked entities [19] and relational data [9] have
been a subject of much research. However, finding similar
threads in online forums, to the best of our knowledge, has
not received enough attention.

Applications: Much like finding similar objects in other
knowledge sources, finding similar threads has many poten-
tial applications. For example, a user browsing a thread in a
discussion forum could be provided links to similar threads
for a more detailed reading on the same or related topic.
Likewise, links to related threads (much like grouping of news
articles in systems such as Google News5) could be of use in
thread retrieval systems [12]. A notion of similarity among
threads would also help developing a clustered interface for
search results (e.g., Yippy6) in thread retrieval. A knowl-
edge author who seeks to read through discussions forums
(e.g., developer forums) and document problems and solu-
tions from them would most likely prefer to read through
similar threads together since that would help minimize con-
text switch, by enabling her to cover one type of problems in
entirety before moving to the next. Though finding similar
threads has many potential applications as outlined above,
we focus on the scenario of providing a functionality of find-
ing similar threads to a given thread (e.g., the thread the

1http://en.wikipedia.org
2http://www.boardreader.com
3http://www.boardtracker.com
4http://www.similarsites.com/
5http://news.google.com
6http://search.yippy.com
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user is reading currently) and evaluate the effectiveness of
the similarity measure that we propose, using classical In-
formation Retrieval evaluation measures.

User:0
My Beetel 220 modem has suddenly stopped working.

The data led has stopped blinking. Can somebody help?

Thread T1 Thread T2
User:1 User:2a
You could restart the modem and It would most likely

see whether it works. Else, be solved by a modem

it may be due to some problem restart.

in the splitter. Try connecting

the line directly to modem

User:2b
If the above solution
doesnt work, try
connecting the line
directly without splitter.

Table 1: Example Thread Patterns.

Challenges vis-a-vis Document Similarity: Threads
in discussion forums, despite being largely composed of tex-
tual content, have various properties that distinguish them
from regular text documents such as newswire articles. The
latter are mostly authored by a single author, whereas dis-
cussion forum threads involve many contributors. This makes
them less coherent, and more vulnerable to abrupt jumps in
topics. Further, discussion forum threads have an inherent
structure; this could be visualized as a tree structure where
posts form nodes and edges linking posts to their replies.
The intuitive method of estimating similarity that considers
each thread as a large document comprising of all the compo-
nent posts followed by usage of traditional similarity metrics
such as tf.idf cosine would obviously lead to large posts being
able to influence similarity more than smaller ones; this is
undesirable since the length of a post is more often related
to other factors such as author’s style than the utility of
the post. At the other end of the fragmentation spectrum,
is that of considering each thread as a bag of posts, with
similarity between them being quantified as an aggregate of
the pairwise similarities between the posts. Consider two
hypothetical threads T1 and T2 spawned out of the same
first question in Table 1. Despite being very similar due to
the nature of content posted, no pair of posts (one from each
thread) have a high lexical similarity. This is due to the con-
tent in the single post in T1 getting split across two posts
in T2. Such fragmentation is common in discussion forums
due to varying expertise levels of content authors and dents
the effectiveness of the bag of posts approach. The third
solution is that of selecting highly informative words to form
summaries of each thread and using them as a keyword query
in keyword search systems that operate on forums [28, 10,
12]. However, such selection of words is often hard making
it difficult to capture the entire context of the query thread.
We address the above challenges in developing a methodol-
ogy for finding similar threads.

Our specific contributions are as follows:

• We propose a novel methodology for estimating pair-
wise similarities for discussion forum threads that lever-
ages structural information of threads by decomposing

threads into weighted overlapping components. For
our choice of component types, we show that the sim-
ilarity computation can be performed efficiently.

• An extensive empirical evaluation that illustrates that
our methodology outperforms state-of-the-art baselines.

2. PROBLEM DEFINITION
Consider a discussion forum thread X and a set of threads

Y. We would like to develop a method that heuristically
estimates the similarity between X and each thread in Y.
Given such a method S(., .), one can rank the threads in Y
in the non-increasing order of similarity with X, such that
the following condition is satisfied:

∀y ∈ Y − {Y1, Y2, . . . , Yi−1}, S(X,Yi) ≥ S(X, y)

where Yi denotes the ith thread when threads in Y are
arranged in the non-increasing order of similarity wrt X.
The above condition simply suggests that Yi has a score at
least as much as any of threads not ahead of it in the ranking.

2.1 Thread and Posts
Since we will make many references to threads and posts,

we hereby informally outline what we mean by them. We
define a post as the smallest unit of communication in online
forums that consists of content posted by a user. Each post
has associated meta-data such as user ID of the user posting
the post, time of posting the post etc. A thread starts off
with a post (that we call as the first post, whose title is
the thread title too), and comprises all posts in reply to the
initial posts. There is a recursiveness in the definition in that
it includes all posts in reply to posts already in the thread.
A thread tree is formed by the posts in the thread as nodes,
and with a directed edge from a post to all direct replies
to it. In such a thread tree represented in Figure 1(b), B2
is a direct reply to B1 whereas B4 was posted in reply to
B2. In most online discussion forums, the thread structure
is apparent due to the restrictions imposed (a reply having
to be attached a specific post); if not, the thread structures
could be identified heuristically [25].

2.2 Thread Components
Threads being composed of posts, an intuitive way to

model thread similarity would be to consider a thread as a
bag of posts, wherein the scoring function could be posed as
an aggregate of the pairwise similarity between posts. How-
ever, such a formulation would not be robust to fragmen-
tation of information across posts, as seen in Section 1. In
short, we would do better by allowing for collections of posts
in a one thread to be mapped to collections of posts in an-
other, while performing similarity calculations. Thread sub-
structures have been exploited for online community search
in [28] where four substructures were considered viz., the
entire thread, single posts, post-reply pairs and the dialogue
(a chain of posts from root to a leaf). The results therein
suggest that the dialog substructure was not very useful.
Based on such conclusions, we also opt to consider single
posts and post-reply pairs as the substructures for consider-
ation. For this choice of substructure types, we will show
in a later section, that our similarity computation is very
efficient. Though we only consider the above two types of
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Figure 1: Threads with Post-Reply Substructures.

substructures, the framework of our methodology is generic
and can accommodate any kinds of substructures.

For a thread represented by nodes as posts and reply-to
relations as edges, in addition to the individual posts, the
set of substructures would include the pairs indicated by the
ovals as shown in Figure 1. Consider the thread in Exam-
ple 1(b); the component substructures would then be {B1,
B2, B3, B4, [B1, B2], [B1, B3], [B2, B4]}. It may be noted
that such a modeling does not fully solve the information
fragmentation issue since it does not allow a set of three
posts to match to a single post, even if that happens to be
the real nature of fragmentation in a specific case. However,
it goes one step forward than matching posts to posts, and
could allow for matching the two posts in T2 in Table 1 to
map to the single post in T1. We will use post and post-reply
substructures (which we refer to, as components, hereon) in
estimating similarity between threads in Section 3.

3. OUR APPROACH
We now describe the techniques that we propose for esti-

mating thread similarity; we will first describe a framework
and then go on to describe instantiations of the framework
that we use in our empirical evaluation. The basic problem
is that of estimating the similarity between two threads X

and Y . Once we have a means of estimating such thread
pairwise similarities, it is easy to build a retrieval engine
that finds the top-k similar threads to a given query thread,
as seen in Section 2.

3.1 Modeling Thread Similarity
We now outline our concerns in modeling the similarity be-

tween threads, S(X,Y ). Firstly, threads in discussion fora,
due to intervention by many people, could steer away from
the main topic in the course of time and digress to tangential
topics; all posts are typically not equally important to the
central topic of discourse. Thus, a methodology for estimat-
ing thread similarity would have to weigh posts differentially,
based on heuristics such as relevance to the central topic(s)
or author reputation. Secondly, a thread is a collection of
posts, and the number of posts in a thread could vary very
widely. For example, a thread in a technical discussion fo-
rum could be composed of just 2 posts (e.g., the statement of
a problem, followed by a reply with the solution), or could be
a long drawn discussion (involving scores of posts) between
participants that culminates in finding the solution to the
problem posed in the first post. In finding similar threads
to a given query thread, one may have to compare threads
of widely varying sizes. Due to these properties of thread
posts having to be weighted differentially, and threads being
composed of widely varying number of posts, we find it very
intuitive to decompose the notion of thread pairwise simi-

larity into two distinct components; one that measures how
well the information in X is subsumed in Y (where Y could
contain other extra information), and another that measures
how well Y is subsumed in X. Towards this, as detailed in
Section 2.2, we decompose threads into a set of potentially
overlapping components with an associated weight for each,
weights indicating the importance of the component to the
thread in consideration.

For a pair of threads, X and Y , our estimate of similarity
between them (that we denote by S(X,Y )) would consider
three factors:

• PS(X,Y ), a score that denotes how well the thread X

is subsumed by (i.e., contained in) Y .

• PS(Y,X), an analogous score that estimates how well
Y is subsumed by X.

• Sim(Xheadpost, Yheadpost), the similarity between the
titles and the first posts of the threads.

Xheadpost denotes the document formed by collating the
title and the first post of the thread X. We use several
popular text similarity metrics in estimating Sim(., .).

3.1.1 Estimating Subsumption

In estimating how well X is being subsumed by Y , we
roughly try to find the best matching component of Y for
each component in X. In particular, many of Y ’s compo-
nents may be left unmatched; this is because while estimat-
ing how well X is contained in Y , we would intuitively not
want to penalize Y for the extra information that it may
contain. To recollect, the components of the thread in Ex-
ample 1(b) (which we refer to as X) are {B1, B2, B3, B4,
[B1, B2], [B1, B3], [B2, B4]}. We associate a score with each
component Xi w.r.t Y :

ScoreY (Xi) = max{Sim(Xi, Yj)|Yj ∈ Y } (1)

where Sim(., .), the similarity between components, de-
notes the text similarity and Xi denotes the text document
formed by putting together the text from posts within Xi.
Essentially, for each component of X, we estimate the max-
imal similarity with any component in Y .

As can be seen, B2 has its representation in 3 of these 7
components of X; it is easy to see that a post would have
representation in as many pairs as it has immediate children
(if not a root, it is also represented in a pair with its par-
ent). However, we would not like to allow certain posts to
influence the PS(X,Y ) score more than others by design. In
particular, we want to choose a set of components of X such
that each post is only represented once across the set.

Figure 2 represents a graph with the components of the
thread X as nodes; we call it the component graph. We
induce an edge between components that share a node. The
scores (computed as described above) are shown against the
nodes. Now, our problem reduces to finding the maximum
weight independent set7 (MWIS)[27] of such a graph. The
non-adjacency property of the MWIS set ensures that no
post is counted twice, due to the nature of inducing edges.

To be fair in comparison between components that con-
tain single posts and those that contain two, we use an intu-
itive weighting scheme where the score of each component is

7http://en.wikipedia.org/wiki/Maximal independent set
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Figure 2: Component Graph.

weighed as much as the number of posts it contains. Thus,
the MIS shown in white in Figure 2 would have a score of
0.5 + 0.6 + 0.7 ∗ 2 = 2.5; for the graph in our example, the
white nodes denote the MWIS as well.

Theorem 3.1. For the component graph of a thread, the
MWIS can be computed in polynomial time and always cov-
ers each post exactly once.

Figure 3: Transformed Graph.

Proof: In Figure 2, we used nodes as components for the
sake of simplicity. Now, we illustrate a new graph where
the nodes in the component graph (i.e., components of the
thread) are translated to edges; this is given in Figure 3. In
this graph, we use two nodes to represent each post p, one
node to stand for a post (that we denote as p itself, at the
risk of overloading notation), and another one that we use
as a pseudo-node, p′ to avoid self-edges (since we are about
to talk about matching and most literature on matching is
silent about graphs that contain self-edges). A pair com-
ponent {p1, p2} is represented by the edge p1 − p2 whereas
the edge p1 − p′1 represents the singleton component {p1}.
Now, the MWIS problem for component graphs corresponds
to the problem of finding the Maximum Weighted Matching
(MWM) in the transformed graphs like in Figure 3. This
transformation is possible since we have modeled the com-
ponent graph as one where each component can at most
contain two posts, thanks to our choice of components that
can at most span two posts. The MWM problem is known
to be solvable in polynomial time [14]; this proves the first
part of the theorem.

We now informally clarify as to why the maximum match-
ing of the new graph would cover every post exactly once. A

post is deemed to be covered in a matching if the matching
contains an edge that is incident of a node or the pseudo-
node of the post. Matching, by definition, would not allow
for covering a node (either of p or p′) multiple times. Our
informal proof as to why every post is covered works by
contradiction. Let us assume that an MWM does not cover
post p. This implies that neither the node p, nor p′ (the
pseudo-node), is included in it. Hence, we can simply add
the edge connecting p and p′ to the matching without vio-
lating the property of it being a matching (no node incident
on multiple edges). Since we assume (like in most cases in
literature) that edge weights are non-negative, this can only
improve the weight of the matching, and also includes more
nodes. This negates the initial premise that the matching
that excluded p was the MWM and completes the proof.

Our formulation of PS(X,Y ) is now the following:

PS(X,Y ) =

∑
Xi∈MWIS(X,Y ) wX(Xi)× ScoreY (Xi)

# posts in X

where MWIS(X,Y ) denotes the MWIS for the compo-
nent graph constructed from thread X w.r.t thread Y and
ScoreY (Xi) is computed as in Equation 1. Normalizing the
sum by the number of posts in X is kosher since each post
is represented exactly once in one of the terms in the numera-
tor (the one corresponding to the component inMWIS(X,Y )
that contains the post). The only term that has not yet been
introduced yet is wX(Xi); we delve deeper into this weight-
ing parameter in the following subsection.

Complexity of finding MWIS(X,Y): As we have al-
ready illustrated, the problem of finding MWIS(X,Y) re-
duces to finding the Maximum Weighted Matching in our
case. MWM is solvable in O(m

√
n) where m denotes the

number of edges, and n denotes the number of vertices in
the transformed graph. However, very fast approximations
have been proposed recently [11], thus making the compu-
tational expense not of much concern.

3.1.2 Differentially Weighting Components

Consider a thread about a technical issue (e.g., bluetooth
not connecting in symbian) and two posts from it, one of
which talks about the core issue (e.g., bluetooth fix for sym-
bian), whereas the other talks about a tangential issue (e.g.,
comparsion of iphone with android and symbian ); we would
intuitively want to weigh the former higher since it is more
central to a topic. This is all the more important for generic
posts (e.g., please help me solve the problem) that would
have to be weighed lower to limit their influence. To en-
able this sort of weighting, we represent post as a mixture
of topics.

wX(Xi) =
∑

topic∈X

P (Xi|topic)× P (topic|X)

Now, P (Xi|topic) can be interpreted as the likelihood of
the topic model generating component Xi under the “bag-
of-words” assumption. Similarly, P (topic|X) measures the
importance of the topic to the thread. We estimate these
weights over a specified number of topics (that are maxi-
mally represented in the thread) with the number of topics
taken as a system parameter.
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3.1.3 Putting it all together

Having described our formulation of PS(X,Y ) (and thus,
the analogous PS(Y,X)), we now describe how we combine
the three factors outlined in Section 3.1. Since we are inter-
ested in finding similar threads, similarity being quantified
by means of containing similar content, we would intuitively
prefer finding such Y s (in response to a query thread X)
which have to high values of PS(X,Y ) and PS(Y,X). Either
of these being low is a strong indication of the asymmetry,
and thus, we choose to give the lower of the two values more
preference by using the lowest of the three means (harmonic,
geometric and arithmetic) to aggregate these. Our measure
of similarity then takes the following form:

S(X, Y ) = λ harmonic mean(PS(X,Y ), PS(Y,X))

+(1− λ) Sim(Xheadpost, Yheadpost) (2)

λ balances the weight given to the subsumption term
against that given to the headpost similarity. It may be
noted that though we model similarities using feature sets
like in [33], we stick to a symmetric notion of similarity as
is popular for similarities between textual entities.

3.2 Approach Instantiations
In modeling thread similarities, we have outlined how we

exploit substructures and differentially weigh them using
topics. To show the incremental utility of substructures and
topics, we consider four different techniques:

• SUB:This denotes the subsumption based thread sim-
ilarity approach where we do not consider post-pairs
as components (thus, the only components would be
individual posts) and weigh them all equally.

• SUB-TOP: While considering only individual posts
as components, we now harness the topic clusters to
weigh each component (i.e., post) differentially.

• SUB-STR: This improves upon the SUB approach
by considering post-pairs as components (in addition
to individual posts); however, we weigh all components
equally (do not use topics).

• SUB-STR-TOP: This denotes the full-fledged ap-
proach where the set of components is made up of
both individual posts and post-pairs and components
are weighed using the topics.

4. BASELINE METHODS
Since the problem that we are addressing in this paper

has not been subject of prior research (Ref. Section 6), we
outline a series of intuitive methods to estimate thread sim-
ilarities. We outline the techniques under two heads; one in
which the query thread summaries or extracts are used as
queries to retrieve threads harnessing state-of-the-art thread
retrieval models, and another in which the threads are di-
rectly compared against each other.

4.1 Using Thread Retrieval Models

4.1.1 Pseudo Cluster Selection (PCS)

The title and the first post of a thread are important since
they are very influential in setting the agenda of the thread;
they have been found useful for thread retrieval [2]. We

put together the title and the first post of the query thread
as a query and employ the Pseudo Cluster Selection (PCS)
model for thread retrieval (proposed in [28]) with the system
parameter k set to 5.

4.1.2 Summarization Techniques

Summarization techniques [22] process a document and
produce a concise version encompassing the most important
concepts in the document. We use those to summarize the
query thread to a text snippet; the snippet is then passed to
the PCS thread retrieval model to retrieve similar threads.

We use two popular summarization techniques. MMR [6]
focusses on increased diversity (and thus, reduced redun-
dancy) while choosing sentences from the document to add
to the summary. Submodular [21] is a recently proposed
technique that models the summarization problem as that
of maximizing a submodular function under a budget con-
straint. We denote these approaches as Q.MMR or Q.SM

depending on what summarization technique is used (Q in-
dicates that the query thread alone is summarized).

4.2 Comparing Threads
Here, we outline intuitive techniques (based on current

trends in text processing) to find similar threads.

4.2.1 Bag Of Words (BOW)

The most widely used model for representing documents
in Information Retrieval is that of considering a document
as a collection (i.e., a bag) of the component words [1]. In
this baseline, we consider a thread as a large document (un-
der the large document model [12]) formed by putting to-
gether the text from all the component posts. Now, the
similarities between threads can be estimated as the simi-
larities between such documents as assessed using one of the
popular text similarity measures that use the bag of words
(BOW) model. We will experiment with measures such as
cosine similarity of term frequency vectors, cosine similarity
of tf.idf vectors [16] and Jaccard similarity co-efficient[17].

BOW (X,Y ) = Sim(X,Y ) (3)

where Sim(., .) stands for the text similarity between the
document representations of the threads.

4.2.2 Bag of Posts (BOP)

In this method, we consider each thread as a bag of the
component posts [12]. Now, to compute thread pairwise sim-
ilarity, we aggregate the postwise BOW similarities (between
a pair of posts, one from each thread) using the arithmetic
mean to arrive at a single measure of thread pair similarity.

BOP (X,Y ) = mean{BOW (tx, ty)|tx ∈ X, ty ∈ Y } (4)

Such aggregation of pair-wise similarities using the arith-
metic mean is used in methods such as UPGMA and (Average-
Link) Hierarchical Agglomerative Clustering [18].

4.2.3 Title and First Post (HeadPost)

Since the first post of the thread initiates the thread, it is
intuitive for the thread initiator to provide a representative
title for it to attract relevant attention from the forum. In
many threads like those in support forums, the first post
conveys the problem and subsequent posts typically contain
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solutions or (requests for) more elaborate descriptions of the
problem. The contents of the first post and its title can be
thought of setting the agenda of the thread, and thus being
more representative of the thread than other posts [2]. Here,
we estimate the similarity between threads as a function of
the similarity between their titles and the first posts.

HeadPost(X,Y ) = Sim(Xheadpost, Yheadpost) (5)

where Xheadpost and Yheadpost denote the text documents
formed by putting together the title and the first post of the
thread X and Y respectively.

4.2.4 BOP+HeadPost

This denotes a linear combination of BOP and HeadPost.

BOP +HeadPost(X,Y ) = αBOP (X, Y )+
(1− α)HeadPost(X,Y ) (6)

We set α = 0.45 since that was empirically found to be
the choice yielding the best performance.

4.2.5 Maximum Similarity between Posts (MAX)

The BOP method (Section 4.2.2) may not be very robust
to noise. Consider comparing a long thread with a thread
containing just two posts, one of which is a noisy post; the
noisy post would then affect half of the values on which the
arithmetic mean is computed, and thus reduce the thread
pairwise similarity considerably. Such considerations lead us
to the MAXmethod that uses the maximum BOW similarity
between a pair of posts to estimate similarity.

MAX(X,Y ) = max{BOW (tx, ty)|tx ∈ X, ty ∈ Y } (7)

This method is analogous to the similarity computation
used in the popular Single-Link Hierarchical Agglomerative
Clustering method [18].

4.2.6 Top-k Similarities (Top-k)

Instead of considering just the max similarity (like we do
in MAX above), we now consider the mean of the top-k
pairwise similarities.

Top-k(X,Y ) = mean(top-k{BOW (tx, ty)|tx ∈ X, ty ∈ Y })
(8)

where the top-k(.) method, when applied to a set of
scores, returns the subset of top-k values.

4.2.7 Central Post Similarity (Central)

In this method, we use a UPGMC [23] style aggregation
of pairwise similarities. Unlike UPGMC that computes the
similarity between centroids of collections (i.e., threads), we
choose to use the similarity between the central posts of the
two threads (similar to using the most central entity to rep-
resent the collection in K-medoids [26]), centrality estimated
by mechanisms such as those outlined in [12]. This leads to:

Central(X,Y ) = BOW (Xcentral, Ycentral) (9)

where Xcentral denotes the most central post in X.

4.2.8 Summarization Techniques

Unlike Section 4.1.2 where the query thread alone was
summarized, we now summarize each of the threads in the

corpus to separate documents. We then retrieve similar
documents using traditional IR techniques using the query
thread summaries as queries. Based on the summarization
technique used, we denote the technique as either All.MMR

or All.SM (All denotes that the query as well as the cor-
pora are summarized). For each of the summarization tech-
nique, we summarize each corpus thread to between 25 and
50 words and pick the summary size that yields best perfor-
mance; it turns out that the best performance was consis-
tently achieved for summaries between 30 and 40 words.

HeadPost threadID

Safari Crashing : ...safari is crashing almost every
5 minutes while surfing the web. I get immedi-
ately returned to the homepage and have to start
over.....

1033829

Light leakage: Just upgraded from an original
iPhone on Sunday to the iPhone 3g....I noticed
that all down the left side between the iPhone
casing ad the glass screen.. there is light leaking
through..,

1968289

iPhone 4 Speaker Volume: ....earpiece volume on
each has been astoundingly bad...speakerphone
function is basically worthless and seems no
louder whether it is on or off...

2459984

No sound in one earbud: .. when I play my music,
no sound is emitted to one of the earbuds. ...

2537835

iPhone 4 in endless reboot: ..If I plug it into a
USB power adapter .. connect to iTunes.. unplug
the phone from the USB power adapter it shuts
off ...get the endless reboot if I plug it into my
MBP

2475944

Table 2: Sample queries. “threadID” is used to iden-
tify the thread in online apple discussion forums

5. EXPERIMENTAL EVALUATION
We now describe the empirical evaluation where we com-

pare our techniques (listed in Section 3.2) against the base-
line techniques detailed in Section 4. We use several stan-
dard measures (NDCG, MAP, MRR, Precision) in evalu-
ation. We measure NDCG and Precision at various rank
cut-offs of the search results (5, 10 and 15 results). We first
describe the dataset used followed by describing an exhaus-
tive set of results across techniques and performance mea-
sures, with all techniques using the tf.idf cosine similarity
measure to model the Sim(., .) function. We then analyze
the techniques across other popular similarity measures and
varying values of algorithm parameters.

Total Query Annotated

Total number of Threads 147,000 38 3412

Avg #posts per Thread 6 11 12

Avg #words per posts 76 81 91

Avg #words in title 7 6 8

Avg #words in first post 79 78 84

Table 3: Summary statistics of dataset used

5.1 Dataset
We crawled a dataset consisting of ∼147K threads from

Apple Discussion Forums (https://discussions.apple.com/ ),
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Apple’s official discussion forum for sharing tips and solu-
tions with other users. All the crawled web-pages were pre-
processed and posts present in different webpages but be-
longing to the same thread were identified. For each thread,
the crawl contained information such as title, firstpost, other
posts, author information, reply-to link and time stamp.

The queries (threads) for this dataset were generated by
identifying threads related to popular issues8 in iPhone. In
total, we generated 38 queries9. Some of the sample query
threads are listed in Table 2. For each query thread, we
query the collection using the keywords in the query thread
to identify candidate threads. For a given query thread, we
sought the help of human labelers to assign ternary rele-
vance judgments to each candidate thread; 2 for high rele-
vance, 1 for partial relevance and 0 for irrelevant. We had
∼ 85 candidate threads per query for the final evaluation
and the labeling effort was roughly 60-80 minutes per query
thread, leading to a total of 45 hours of human effort spent
in labeling. It was often difficult to distinguish between
high relevance and partial relevance threads; hence we com-
bined these two relevance levels to give a binary labelling
(relevant/irrelevant), used to evaluate our system. Inter-
annotator agreement of 89% and 61% with Kappa coeffi-
cient of 0.68 & 0.42 was observed for the binary and ternary
relevance judgements respectively.

5.2 Evaluation on Cosine tf.idf Similarity
Table 4 presents the performance of the various tech-

niques considered, when the tf.idf cosine similarity is used
for estimating text similarity within each of them. Under
each measure, we highlight the best performing technique.
All the approaches that use thread retrieval techniques are
seen to be competitive to each other, with minor varia-
tions among performance trends. The better approaches
among the ones that compare threads (i.e. BOP, HeadPost
and BOP+HeadPost) significantly outperform the thread
retrieval baselines. This is expected since thread retrieval
techniques work with thread summaries (or excerpts such
as first posts) whereas the thread comparison techniques
such as BOP, HeadPost and BOP+HeadPost have the entire
query thread at their disposal. MAX, Top-K and Central,
techniques that use only a few pairwise post similarities are
seen to not perform as well as BOP; this is likely to be be-
cause of certain generic posts (e.g., help me please) in the
query thread that could spuriously boost the thread similar-
ity estimates with those threads that also contain such posts.
More significantly, the subsumption based approaches that
we propose significantly outperform all the other techniques.
Among them, the SUB-STR-TOP that uses both substruc-
tures and topics is found to perform the best in seven out of
the eight evaluation measures considered.

5.3 Evaluation on other Similarity Measures
We considered two other similarity measures in our evalu-

ation; the cosine similarity between normalized term-frequency
vectors, and the Jaccard similarity co-efficient[17]. The per-
formance trends on these similarity measures are largely
similar to those observed in Table 4; hence, we plot only
the NDCG@10, MAP and MRR values. The performance
on the Cosine Similarity and Jaccard measures are given in

8http://www.iphonefaq.org/faq
9Please contact the first or second author to obtain a copy
of the dataset with queries and relevance judgements.

Figure 4: Results on Cosine Similarity

Figure 5: Results on Jaccard Similarity

Figure 4 and 5 respectively. BOW is seen to consistently
beat BOP in these charts unlike in Table 4; this is expected
since the lack of idf while comparing small text documents
(BOP compares posts) could spuriously enhance similarities
of dissimilar posts that contain common words. Our tech-
niques are seen to be outperforming the others on all the
evaluation measures with SUB-STR-TOP being consistently
the best among on all the three evaluation measures.

5.4 Value of Usage of Components
Our technique incorporates the HeadPost-style similarity

and the subsumption based assessment to arrive at an overall
measure of similarity between threads. Usage of weighted
post and post-reply pairs as components in subsumption-
based similarity assessment is at the core of the technique
that we propose. In this section, we isolate and analyze the
benefit of using components in subsumption based similarity
assessment independent of other factors such as HeadPost-
style similarity and topic-based weighting.

Table 5 compares ranking of some selected candidate threads
for the HeadPost and SUB-STR− (which denotes SUB-STR
without the HeadPost i.e., the setting λ = 1) systems; the
starred ones were judged as relevant by human labelers. For
these chosen threads, title is indicative of their first post
content; hence we have only shown title of the candidate
threads. As evident for threads 1 and 2, highly similar ti-
tle (and first posts) could mean that the threads are very
similar; thus, the top few threads based on HeadPost sim-
ilarity end up being relevant to the query thread. It is,
hence, natural to expect that HeadPost would perform very
well when the top few results alone are considered, such as
indicated by NDCG@5 and MAP@5 measures. The effec-
tiveness of HeadPost, however, deteriorates when threads
with very similar titles and first posts are exhausted. This
can be seen for candidates 5, 6 and 7 (that are all relevant)
that have minimum title overlap with the query thread, thus
falling behind in the ranking. Thus, HeadPost is less effec-
tive when more results are considered. This is indicative
of the complementary nature of the thread content based
similarity assessment and the HeadPost based similarities.

Figure 6 compares various techniques: BOP, SUB-STR− ,

141



Method NDCG@5 NDCG@10 NDCG@15 P@5 P@10 P@15 MAP MRR

PCS 0.741 0.737 0.703 0.775 0.738 0.695 0.771 0.779

Q.MMR 0.712 0.729 0.714 0.734 0.727 0.691 0.737 0.754

Q.SM 0.735 0.692 0.699 0.754 0.710 0.675 0.758 0.770

BOW 0.727 0.693 0.678 0.749 0.679 0.644 0.752 0.851

BOP 0.808 0.791 0.765 0.841 0.801 0.770 0.809 0.857

HeadPost 0.820 0.773 0.749 0.851 0.786 0.748 0.801 0.864

BOP+HeadPost 0.831 0.812 0.789 0.855 0.824 0.783 0.825 0.871

MAX 0.695 0.684 0.688 0.729 0.717 0.696 0.731 0.780

Top-K 0.706 0.707 0.721 0.759 0.749 0.724 0.765 0.819

Central 0.710 0.683 0.655 0.737 0.699 0.636 0.742 0.770

All.MMR 0.730 0.720 0.717 0.758 0.727 0.685 0.751 0.767

All.SM 0.763 0.727 0.719 0.774 0.746 0.694 0.771 0.808

SUB 0.851 0.836 0.811 0.866 0.831 0.799 0.851 0.909

SUB-TOP 0.872 0.846 0.830 0.871 0.847 0.809 0.870 0.914

SUB-STR 0.874 0.851 0.833 0.870 0.850 0.811 0.875 0.910

SUB-STR-TOP 0.901 0.895 0.855 0.885 0.844 0.827 0.907 0.932

Table 4: Experiment Results with tf.idf Cosine Similarity Measure.

Id Title HeadPost SUB-STR−

1∗ SIM card not found message 1 4

2∗ No SIM card installed msg 5 7

3 Sim card not supported 6 9

4 swap out the micro sim into a an-
other phone?

47 11

5∗ My phone had been LOCKED!
Help plsssss....

59 8

6∗ iPhone disabled. 69 6

7∗ problems with iphone 3G update
to OS 4.0.1

77 67

8 Import Contacts isnt working 82 23

Table 5: Ranking of candidate threads for a sample
query thread with title “sim card not installed”. *
indicates that the candidate was adjudged relevant
by the annotators.

HeadPost (i.e., SUB-STR with λ = 0), BOP+HeadPost and
SUB-STR. BOP+HeadPost and SUB-STR are able to lever-
age the complementarity of the HeadPost and content based
similarity aspects to beat approaches that consider only ei-
ther of them. While SUB-STR outperforms BOP+HeadPost
consistently, SUB-STR− is also competitive to BOP+HeadPost
thereby indicating effectiveness of component based approach.
SUB-STR− system has its own pitfalls due to not consider-
ing the HeadPost similarity, for e.g., it fails for cases when
there is high lexical similarity between the candidate thread
and the query thread but different aspects are discussed.
This is evident from candidate 4 and 8 that are ranked high
by SUB-STR−, where a different issue related to iphone sim
is discussed. This confirms the complementarity of Head-
Post and content based similarities, and underlines that our
notion of components is able to achieve significant gains over
just considering threads as Bag Of Posts.

5.5 Significance Tests
Table 6 presents results of randomization tests [29], con-

ducted for the most competitive baselines (i.e., BOP, BOP +
HeadPost) and the various configurations of our techniques.
While our techniques provide results that are statistically
significant at a p-value < 0.05 over the baselines, it is in-
teresting to note that SUB-STR-TOP’s performance is sta-
tistically significant on each of MRR, NDCG@10, MAP wrt
all the other techniques.

To further verify the utility of the post-reply pair sub-
structure, we conducted another statistical significance test
where in, apart from single posts, random post pairs were fed
to SUB-STR as post-reply pairs; we call it SUB-STRRandom.
The null-hypothesis that SUB-STR and SUB-STRRandom

are equivalent was rejected easily with a two-sided p-value <
0.015, thus empirically establishing the utility of real post-
reply pairs over random post-pairs.

5.6 Effect of System Parameters
Our approaches have two parameters, λ, the relative weight-

ing between subsumption based similarity and HeadPost
similarity and then, the number of topics being considered.
In this section, we analyze the sensitivity of our approaches
to variations in these parameters and illustrate that our tech-
niques are insensitive to variations on these parameters over
a large range of their values.

5.6.1 Sensitivity to λ

Figure 6: Effect of Usage of Components
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Figure 7: Sensitivity to λ

To enable analyze the effect of λ independent of the num-
ber of topics and usage of post-pairs as components, we plot
the performance of SUB across varying values of λ in Fig-
ure 8. When λ = 0, the approach degenerates to the Head-
Post technique, whereas at the other extreme, it discards the
title and first post based similarity altogether. More inter-
estingly, it fairs better than HeadPost (the left-most point
of the curves) for any non-zero value of λ and is rather in-
sensitive to λ values between 0.3 and 0.8.

Figure 8: Sensitivity to number of topics

5.6.2 Sensitivity to number of topics

Selecting the right number of topics is an important prob-
lem in topic modeling [30]. Nonparametric models like the
Chinese Restaurant Process [3] are not scalable to large
datasets as can be expected in thread retrieval scenarios.
Due to the popularity of generative approaches in topic
modeling, we used LDA [4] for representing a component
(and hence the entire thread) as mixture of topics. One
could potentially use any other method for doing the same.
To estimate the topic distribution for each component, we
built our LDA model over a collection of 20000 threads with
#topics = 100. This is an offline process. Since we use
topics to weigh the components, the number of topics in a
component is another important parameter for our system.
We plot the performance of the SUB-TOP on varying num-
ber of topics (restricting the component to belong to at most
k topics). Similar to the observations for λ, the approach is
largely insensitive to variations between 2 and 5.

6. RELATED WORK
The problem of finding threads similar to a given thread,

to the best of our knowledge, has not been considered be-
fore, in literature. In this section, we provide a brief review
of related literature. Firstly, we describe literature dealing
with processing of discussion threads. Secondly, we review
prior works focussing on finding similarities between semi-
structured content such as XML (we will see shortly that dis-
cussion threads may be considered as semi-structured data).

Work on Discussion Threads: A forum thread, unlike text
documents, are authored by multiple people and contain
discussions on a particular topic. Upto 75% of the links
from forums are found to link to noise pages like user pro-
files and login pages [35]; this makes traditional web page
ranking techniques like PageRank [5] and HITS [20] inap-
plicable since such links are not indicative of recommenda-
tions. Thread/forum retrieval, the task of identifying rel-
evant threads or posts within them in response to a user
query (e.g., a phrase or 3-4 words), has been of much in-
terest in recent years. One of the early works on forum
retrieval attempted to adapt the random surfer model to in-
duce links with content information (to content-wise similar
pages) to rank forum pages better [35]. An extension to this
model that utilizes information about common posters for
link induction was presented in [7]. Subsequent works on
thread retrieval moved away from the considering threads
as collections of pages to considering them as collections of
posts. [12] shows that thread retrieval improves by consid-
ering only some relevant posts, instead of all the posts in a
thread. [28] illustrates that considering the post-reply pair
(a post along with a reply to it) substructure in threads im-
proves accuracy in thread retrieval. Though the problem
that we address is significantly different in that we attempt
to rank threads based on similarity to a given thread (which,
unlike a user query, is typically larger and has a well-formed
structure), we have evaluated our technique against adapta-
tions of thread retrieval methods (in Section 5).

Work on XML Similarity: A forum thread may be repre-
sented as a tree with posts as nodes where a parent-child re-
lationship exists between a post and it’s reply. Additionally,
siblings (multiple replies to the same post) may be ordered
based on the temporal ordering. Each of these nodes (posts)
could have attributes like time and poster id. It is intuitive
to think of an XML schema to represent such threads due
to the hierarchical nature (i.e., the tree). This leads to the
question whether we can use XML similarity measures to
estimate similarities between threads. However, traditional
XML similarity measures make heavy use of the structural
similarity [24] whereas we may not want to rely too much on
structural similarity in estimating thread similarities. This
is so since the content is likely to be more important than
structure; the example in Table 1 shows two threads that
are very similar despite the structural dissimilarity. Though
macro-level structural similarity clearly cannot be used off-
the-shelf to estimate thread similarities, certain types of sub-
structures (e.g., post-reply pair) have been found to be use-
ful in thread processing [28]. In this context, it is useful to
note that research on XML similarity has gone beyond plain
structural similarity [24] to hybrid methods that make use
of semantic similarity of content [31]. A survey of XML sim-
ilarity methods appears in [32]. In short, we argue that esti-
mating thread similarities is different from estimating simi-
larities between XML data since the notion of thread similar-
ity relies more on content and certain sub-structures (unlike
XML similarity where the similarities between macro-level
structures is seen to be useful).

7. CONCLUSIONS AND FUTURE WORK
In this paper, we considered the problem of finding sim-

ilar discussion forum threads to a query thread. Similar-
ity Search on threads has numerous applications such as
an enabler to providing links to similar threads in discus-
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Method BOP BOP+Headpost SUB SUB-STR SUB-TOP SUB-STR-TOP

SUB mrr,ndcg,map mrr,ndcg,map –

SUB-STR mrr,ndcg,map mrr,ndcg,map map –

SUB-TOP mrr,ndcg,map mrr,ndcg,map map –

SUB-STR-TOP mrr,ndcg,map mrr,ndcg,map mrr,ndcg,map mrr,ndcg,map mrr,ndcg,map –

Table 6: Randomization Test Results. The measures on which the left column method is significant over the
top row method at a p-value < 0.05 are indicated in the appropriate cell. We consider the mrr, mdcg (NDCG
@ 10) and map evaluation measures.

sion forums and providing a clustered interface to present
results in thread retrieval systems. Our similarity measure
revolves around the notion of how well the threads being
compared are mutually contained within each other. To es-
timate pairwise thread similarities, we model threads as a set
of weighted overlapping components, whereby containment
is quantified by the lexical similarity between components
from the threads under consideration. Specifically, we use
the post-reply component that has been found to be useful
in discussion forum search, in addition to using individual
posts as components; we proved that our similarity compu-
tation can run in polynomial time for this choice of com-
ponent types. We outlined several intuitive methods that
use thread retrieval techniques and direct thread compari-
son and evaluated our approaches against them. Through
an extensive series of experiments on real world data, we es-
tablished the effectiveness of our technique on popular sim-
ilarity measures such as NDCG, MAP, Precision and MRR.
Specifically, our techniques are seen to outperform the base-
lines by approximately 10% on an average on each of the
measures.

We have considered two kinds of sub-structures, individual
posts and post-pairs, in our technique. Incorporating more
sophisticated structural components may enable better qual-
ity retrieval possible at the expense of increased similarity
computation costs. Devising indexing techniques that could
enable looking at just a subset of threads in response to a
query thread could enhance performance. We are currently
exploring ways to build a parameterized thread similarity
measure that could be continuously tuned in response to
user feedback. In email discussion groups, a single post may
involve replies to multiple previous posts. Identifying such
relationships and utilizing them in similarity modeling could
potentially improve the retrieval quality.
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