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Abstract We introduce a new technique for analyzing 
combination models. The technique allows us to make 
qualitative conclusions about which IR systems should 
be combined. We achieve this by using a linear regression 
to accurately (T ’ = 0.98) predict the performance of the 
combined system based on quantitative measurements 
of individual component systems taken from TREC5. 
When applied to a linear model (weighted sum of rel- 
evance scores), the technique supports several previously 
suggested hypotheses: one should maximize both the in- 
dividual systems’ performances and the overlap of rele- 
vant documents between systems, while minimizing the 
overlap of nonrelevant documents. It also suggests new 
conclusions: both systems should distribute scores simi- 
larly, but not rank relevant documents similarly. It fur- 
thermore suggests that the linear model is only able to 
exploit a fraction of the benefit possible from combina- 
tion. The technique is general in nature and capable of 
pointing out the strengths and weaknesses of any given 
combination approach. 

1 Introduction 

Many Information Retrieval researchers have tried to im- 
prove the performance of individual systems by combin- 
ing the results of multiple IR systems or queries, a tech- 
nique commonly referred to as fusion. In so doing, they 
hope to exploit one or more of three effects enumerated 
by Diamond [4]: 

l The Skimming Effect happens when “retrieval 
approaches that represent their collection items dif- 
ferently may retrieve different relevant items, so 
that a combination method that takes the top- 
ranked items from each of the retrieval approaches 
will push non-relevant items down in the ranking.” 

l The Chorus Effect occurs “when several retrieval 
approaches suggest that an item is relevant to a 
query...this tends to be stronger evidence for rele- 
vance than a single approach doing so.” 

l The Dark Horse Effect in which “a retrieval ap- 
proach may produce unusually accurate (or inaccu- 
rate) estimates of relevance for at least some items, 
relative to the other retrieval approaches.” 
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It should be noted that when choosing how to combine 
the results from different IR systems, the Dark Horse Ef- 
fect is at odds with the Chorus Effect. Likewise, a large 
Chorus Effect cuts into the possible gain from the Skim- 
ming Effect. These phenomena argue for a sophisticated 
combination model which is able to predict when these 
effects will occur and take advantage of them. 

However, most current research on IR system combi- 
nation focuses on much simpler combination models. One 
of the simplest ways to combine multiple IR. systems is to 
merely take a linear combination of their relevance scores 
(also known as RSV’s - retrieval status values). In other 
words, the real-valued relevance p of a document d to a 
query q depends on the weights d = (WI, WZ..) given to 
each individual IR system: 

P(G, d, !I) = C wiPi(d, q) 
systems 

Or, for only two IR systems: 

P(w~, ~2, d, q) = W~PI (d, q) + w&d, q) (I) 

This straightforward approach can obviously take ad- 
vantage of the Skimming Effect, as long as both systems 
are equally weighted (and assuming pi and pz have sim- 
ilar distributions). The Chorus Effect may be exploited 
in many more situations - if both systems rank relevant 
documents highly and both are given positive weights, or 
if a poorly performing system is given negative weight. 
The Dark Horse Effect, however, is unlikely to be ex- 
ploited because the combination model does not take 
into account which document is being scored. Thus, even 
though one system may produce accurate scores for some 
documents, the optimal linear combination would not be 
able to take advantage of this. The weight on that system 
would have to be low in order to account for the remain- 
der (and presumably the majority) of the documents - 
the ones for which the score was inaccurate. 

Nevertheless, this approach has been used with vary- 
ing degrees of success by a number of researchers (e.g., 

PI, PI, PI, [I317 P41, and [15]). However, consistent, sig- 
nificant improvement has been elusive. An interesting 
question is: when is it even possible to improve the per- 
formance of two IR systems by linearly combining their 
estimates of relevance? 

. 

One study by Lee [lo] has attempted to answer this 
question. Lee used five different combination functions 
with five entries on all 50 queries to the TRECJ “adhoc” 
task. Three of the five combination techniques which he 
examined are a subset of the linear combination model, 
but others (Min and Max) cannot be simulated by simple 
linear combination. However, he found that the three lin- 
ear methods were generally superior to the others. Lee’s 
hypothesis (also suggested in whole or part in [3], [12], 
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and [2]) is that: combination ia warranted when the aya- 
terns return similar aeta of relevant documents but differ- 
ent aeti of nonrelevant documents. This basically asserts 
that the Chorus Effect is the primary source of potential 
for improvement. Lee defines two messures of the amount 
of overlap of relevant and nonrelevant documents (Orcr 
and Ononrel, defined below). Although he does not for- 
mally analyze whether his hypothesis is correct, we have 
been able to verify that for the data presented in his pa- 
per, performance of the best mixture is in fact negatively 
correlated with Ononrel (correlation of -0.73), which sup- 
ports the second half of his hypothesis. Unfortunately, 
there is no correlation between Orcr and performance of 
the mixture, so his data does not support the first half of 
the hypothesis (although, as our study will show, there 
is reason to believe it is true). 

The research presented here outlines a more compre- 
hensive answer to the question of when it pays to com- 
bine. We describe a technique for analyzing the individ- 
ual IR systems and use this analysis to predict the perfor- 
mance of the combined system. The technique involves 
measuring various properties of the individual IR systems 
(including the use of Lee’s two measures), and using them 
in a linear regression to predict the average precision of 
the combination. By examining how the measures are 
weighted, we gain an intuitive feel for when combination 
pays off. 

2 Method 

Our overall approach is to examine a large number of 
pairs of actual IR systems, 6nd the best possible linear 
combination for each, and then use various measures of 
the pairs to predict performance of their combinations. 
As used in this study, an “IR system” is actually a list of 
up to 1000 documents and their relevance scores for a sin- 
gle query. The 61 entries from TREC5’s [7] “adhoc” track 
are used. For queries #251-#270, every pair-wise combi- 
nation is examined (1830 pairs per query, or 36,600 total). 
For each pair of IR systems and each query, the best lin- 
ear combination is estimated by llnding the weights which 
result in the highest average precision (precision averaged 
over all recall levels). Because systems are combined on a 
per-query basis, this experimental setup most accurately 
simulates the routing (fixed query, changing document 
collection) task, as opposed to the adhoc (any query, fixed 
document collection) task. Furthermore, since all of the 
individual systems draw upon the same document collec- 
tion, this simulates the data fusion problem (as opposed 
to collection fusion, where each system indexes a different 
collection). 

Since all that really matters is the mnking given by 
the combined system, only the ratio of the two weights 
and the relationship of the signs on the weights are im- 
portant. Thus, equation (1) can be replaced by: 

p(w,d,q) = {-I, 0, I]pl(d,q) + w&,6) (2) 

Before combination, scores from all systems are normal- 
ized by dividing them by their respective means. Then 
for each query, each pair of systems, and each sign (plus, 
minus, or zero) on the first system, the single weight 
w is optimized using golden section search [ll] starting 
with points [-50,0,50], and the best w is used to gener- 
ate a combined system (of 1000 documents) according to 
equation (2). 

One subtle issue arises when combining lists of top- 
ranked documents - what score should be given to doc- 
uments returned by one system but not the other? We 

assumed that for such documents, the system which did 
not return them gave them a score of zero. This sssump- 
tion has two unwanted side-effects. First, for systems 
which give negative scores, the unreturned documents get 
ranked above those with negative score. Luckily, of the 
1220 system/query pairs, only 14 had significant num- 
bers of negative scores. The second unwanted side-effect 
caused by this assumption is that it tends to amplify the 
Chorus Effect. This occurs because the combined list 
will mostly contain those documents returned by the sys- 
tem with higher “weight” (after taking into account the 
ranges of scores from the individual systems). Thus, the 
lower-weighted system effectively only contributes to the 
scores of documents in the intersection, and (for positive 
weights) the combination only boosts those documents. 
Despite these side-effects, we maintain that zero scores 
for unseen documents is a reasonable choice - the vast 
majority of documents are not relevant, and most sys- 
tems give a zero score to nonrelevant documents. 

2.1 Individual Measures 

Because it seems likely that the combined performance 
could depend on the component systems’ performances, 
we made two measures of the performance of each IR 
system individually: average precision (pr ,pz), and a dif- 
ferent measure of system performance (51, Jz). By con- 
vention, system #l is always the one with higher average 
precision. J is defined as: 

J _ Cd,d5drqd’ p (4 4 4 - P(w’, d, Q) 

-2 d,d’:d+qdJ Idw’, 4 q> - P(w’, d’, q>I 

where d +* d’ indicates the user prefers document d to 
document d’ on query q. Note that J has a maximum 
value of 1 when the numerator and denominator are the 
same (i.e., the IR system ranks documents exactly as the 
user would), and a minimum value of -1 when the oppo- 
site is true. J is a rank order statistic that measures how 
close an individual IR system is to the user’s ranking and 
is correlated with average precision ([l], [15]). Note that 
J is simply the Guttman’s Point Alienation (GPA, de. 
6ned below) between an IR system and a user’s relevance 
judgments. 

2.2 Pairwise Measures 

Additionally, we make a number of measures which are 
meant to reveal how similar the two systems are to each 
other, to test the hypothesis that the systems should be 
“different” in order to maximize the improvement in per- 
formance. The first of these is Guttman’s Point Alien- 
ation (GPA) [5]. GPA is a measure of how similar two 
rankings are to each other, and can be calculated for any 
two systems pi, pz and query q as: 

GPA = Cd,d’(f+,q) - pl@,q))b+,q) - @(d’,q)) 

Cd,d) InMq) - m(d’>q)llm(4q) - m@‘,q)l 

The second measure we calculate is the number of doc- 
uments in the intersection of the two lists of returned 
documents (n). The third measure is the correlation co. 
efficient from a linear regression of the scores of docu- 
ments in the intersection of the two systems (C). Note 
that C is actually just the r2 value from a regression 
which uses one system’s scores to predict the other’s, 
but we use C to avoid notational confusion later. We 
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Table 1: Examples of Measures Associated with Individual Systems 

25G70 Q SYS 1 SYS 2 GPA GPA 
-l..l -l..? 

GPA rcl C C 0 nonrcl 
-l..l O..:OOO o.?Gm o..i 01;' 0.2 o..i 

254 Cor5A2cr genrll 0.896 0.859 0.977 450 37 0.320 0.541 0.779 0.434 
264 colml fsc1t3 0.504 0.645 0.803 84 7 0.072 0.306 0.111 0.117 
251 anu5autl anu5man6 -0.778 -0.307 0.700 34 5 0.110 0.218 0.145 0.030 

Table 2: Examples of Pairwise Measures 

also measure the number of unique relevant documents 
contributed by each system (Vi, UZ). U is the number of 
relevant documents returned by one system but not the 
other (&unique ) divided by the number total number of 
relevant documents returned by that system (&): 

Az such, U ie a pairwise measure, but is associated with 
one of the two systems in the pair. U was included be- 
cause Lee’s hypothesis would indicate that it should be 
low for systems which combine well. We also calculate 
Lee’s overlap measures: 

Orcl = 2x 
RI + R2 

0 
2xrl nonrcl 

nonrei = N + N2 

where & is the number of relevant documents returned 
by system i, and Ni is the number of nonrelevant. Fi- 
nally, because it seems likely that measuring the simi- 
larity of the two systems on nonrelevant documents is 
less important than on relevant ones, the first three mea- 
sures are also calculated using only relevant documents, 
and are denoted: GPA,,l, nrclr &I. One last measure, 
GPAni (for “not irrelevant”) is the GPA using pairs of 
documents where at least one is relevant. All of these 
measures indicate in varying ways how similar the two 
systems are to each other. Although some of these mea- 
sures will be correlated with others, it is hoped that the 
variety is sufficient to allow prediction of the combina- 
tion’s performance. 

2.3 Examples 

T&bles 1 and 2 show both the individual measures and 
pairwise measures for three randomly selected pairs of 
systems. The first pair, {Cor5A2cr, genrll} on query 
254, are similar to each other by most measures. ‘able 1 
indicates that Cor5AZcr exhibits decent performance, as 
measured by both average precision and J. Also, about 
35% of its relevant documents are not returned by genrll. 
On the other hand, gem11 shows relatively poor perfor- 
mance, and also retrieves very few unique relevant docu- 
ments. One would guess from Table 1 alone that the two 

systems are diiimilar. However, Table 2 shows the oppo- 
site is true. All three variants of GPA are very high, indi- 
cating that both systems rank documents (both relevant 
and nonrelevant) very similarly. Furthermore, there are 
a lot of common documents in their intersection, as well 
es relevant documents in the intersection (query 254 has 
85 total relevant documents). Their scores are somewhat 
correlated (C), and even more so on relevant documents. 
As might be guessed by the size of their intersections, 
they have both high overlap of relevant and nonrelevant 
documents. 

The example tables also demonstrate a number of 
other points. Table 1 shows that although p and .I 
are roughly correlated, they do measure performance 
in slightly different ways. In able 2, the values of GPA 
and GPA,,l for the (auu5aut1, anu5man6) pair show 
that two systems cau disagree strongly on most scores, 
and yet still agree on relevant documents (this is also 
somewhat discernible by examining C and C&r). Fi- 
nally, we note that large U values correspond to low Orcl 
- more on this later. 

2.4 Analysis 

We made the aforementioned measures for all 36,600 
pairs of systems/queries. We then performed a multiple 
linear regression (using the UNIX*STAT “regress” pro- 
earn), using the measuree as predictor variables and the 
average precision of the optimal combination as the ter- 
get. 80% of the pairs (29,280 total - the “training set”) 
were used in the regression. A linear regression attempts 
to fit a linear model to data. With one predictor vari- 
able, it fits a line, with multiple variables, a hyperplane. 
The coefficients of the resulting regression equation can 
be interpreted as indicating how much each predictor 
contributes to the overall estimate of the target. Thus, a 
large positive coefficient indicates that the corresponding 
predictor should be maximized in order to maximize the 
target. Conversely, a negative coefficient indicates the 
predictor should be minimized in order to maximize the 
target. In addition to producing a linear equation, the 
regression also gives an indication of how significant the 
correlation is between each predictor and target in the 
form of an F value (larger means more significant). It 
also reports on how good the fit iz using the r2 measure, 
a value in [O,l] which measureS the percentage of the 
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Measure 

Normalized 
Regression 
Coefficient 

0.8993 
-0.1202 
-0.0401 
0.0431 
0.0308 

-0.0359 
-0.0232 
-0.0519 
0.0125 
0.0137 

-0.0427 
0.0088 

-0.0099 
-0.0149 
0.0023 

F 

129141.5501 
405.5097 
393.1853 
346.1357 
241.5460 
220.1937 

99.0202 
55.8835 
35.8910 
22.6715 
20.9289 
17.5199 
8.9850 
2.3284 
1.2025 

Table 3: Results of Linear Regrezsion for Predicting 
Combination’s Average Precision (r2=0.94) 

variance in the data accounted for by the linear model. 
Finally, the actual coefficients of the regression equation 
are normalized based on the distributions of the indi- 
vidual predictors, so that their magnitude can also be 
compared. 

3 Results and Discussion 

Table 3 presents the results of the multiple regression. 
Measures are sorted by decreasing F value, indicating 
roughly how important each measure is in predicting the 
average precision of the optimally combined system. All 
measures above the horizontal line in the table contribute 
to some degree (as indicated by F values much larger 
than 1). The r2 = 0.94 value indicates that the fit of the 
model is very accurate. Furthermore, the model gener- 
alizes extremely well to new data - when the remaining 
20% of the pairs (the “test set”) were plugged into the 
model, r2 = 0.98. This can be seen graphically in Fig- 
ure 1, which plots the actual average precision versus the 
predicted value on the test set. The clustering of points 
around the line v = x indicates a good fit. 

Pl, Jl,P2, Jz : The upper part of Table 3 indicates that 
in order to maximize average precision, one IR system 
must be very good (the normalized coefficient for pl is 
positive and much larger than any other, and JI’S coef- 
ficient is also positive) but the second IR system should 
also be good (52’s coefficient is positive). Examining the 
actual combined systems supports this conclusion: the 
six best mixtures of IR systems (when averaged over 
all 20 queries) are all comprised of systems which are 
ranked among the top 10 individually. However, this 
rule is not hard and fast: mixtures {ibms96b, uwgcxo}, 
and {ibmgel, ETHmel} are ranked 7th and 12th (out of 
1830 possible mixtures) and yet they make use of rela- 
tively poor systems (ibmgel is ranked 32nd and ibms96b 
is ranked 46th out of 61 systems). Thus, even with one 
poor IR system, we can get significant improvement. In 
fact, the negative coefficient on pz indicates that we may 
want the second system to perform poorly, when perfor- 
mance is defined by average precision. This conclusion is 
also supported by another linear regression presented in 

11 Normalized 1 I 

Table 4: Results of Linear Regression for Predicting 
Combination’s Average Precision (r2=0.94) 

the next paragraph. 

Ul , uz, Orel, awnret : Another interesting conclusion 
from Table 3 is that maximal precision can be achieved by 
minimizing the percentage of relevant documents which 
are unique to each system (Vi and Uz have negative coef- 
ficients). This indicates exploitation of the Chorus Effect. 
One would also expect that Lee’s OrLl should be maxi- 
mized, a conclusion not supported by the table. A simple 
analysis explains this anomaly. It can be shown that: 

1 1 1 -=- 
2a.1 1 - Ul +1-u2 

Thus, minimizing Ui and Uz mtimizes Orcl. In fact, 
if the regression is repeated without Ul and Uz as pre- 
dictors, the resulting model is just as good (r’ = 0.94), 
and Orei has the second highest F value (after pl), with 
a large, positive coefficient. Thus, the original regression 
mislabelled Orcl simply because it was redundant infor- 
mation. The large contribution of Ore1 provides support 
for the first part of Lee’s hypothesis, that both systems 
should return the same relevant documents. The second 
part of Lee’s hypothesis - that the two systems should 
retrieve different sets of nonrelevant documents - would 
suggest a negative coefficient on Ononrel , which is indeed 
what is observed. In fact, by repeating the regression 
using only pi,pz,Orel and Ononrcl, we can predict the 
combined system’s precision with nearly the same accu- 
racy as the original regression (r2 = 0.94, see Table 4). 

GPA, GPA,,l,GPA,i, Crel,nrel : The positive coef- 
ficient on GPA indicates that this messure should be 
maximized. In other words, the two systems should gen- 
erally rank documents in their intersection similarly and 
the distribution of scores by both systems should be sim- 
ilar to each other. Knaus, et al. [9] have indicated that 
problems may occur when linearly combining systems 
that distribute RSV’s differently, so this result is not 
surprising, and is also supported by the positive coeffi- 
cient on C&r. On the other hand, the negative coeffi- 
cients on GPA,,, an d GPA,i indicate that these mea- 
sures should be minimized. In other words, each sys- 
tem should rank relevant documents differently than the 
other system. Here again, we see the Chorus and Skim- 
ming Effects in play. By preferring those systems that 
mix nonrelevant documents in with relevant documents 
differently (low GPA,i), nonrelevant documents will get 
pushed down the list. By preferring systems that rank 
relevant documents differently (low GPA,,l), we can be 
assured that no relevant document has a low score from 
both experts, a situation which would allow it to get lost 
in the noise of nonrelevant documents. Finally, we note 
that the positive coefficient for n,,l also supports the first 
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Figure 1: Actual Average Precision versus Average Precision Predicted by the Regression Model on the ‘I&t Data 

part of Lee’s hypothesis, that the number of relevant doc- 
uments returned by both systems should be maximized. 

In summary, the best time to linearly combine two IR 
systems is when: 

at least one exhibits good performance, 

both return similar sets of relevant documents, 

both return dissimilar sets of nonrelevant docu- 
ments, 

both distribute scores similarly, but 

both do not rank relevant documents in a similar 
fashion, 

with the first three points being the most important. 
The discussion of Ur, Ur vs. Ore1 above, and the in- 

clusion of a second regression (in Table 4), point to a 
subtle difficulty in our use of regression - the problems 
of correlated predictor variables and variable selection. 
The typical technique for dealing with large numbers of 
predictor variables is to select a subset of relevant vari- 
ables via stepwise regression or some similar approach. 
Unfortunately, these approaches do not fare well when 
the predictor variables are well correlated, as is the case 
for the variables used in the above regressions (every mea- 
sure is correlated with at least one other measure with 
r2 > 0.2). Thus, it was necessary for us to spot vari- 
able correlations manually. It was also necessary for us 
to examine various different subsets of the predictor vari- 
ables, based on the correlations and our own hypotheses 
of which would prove most informative. 

Other Observations 

The methodology used in the above experiment provides 
us with a large set of systems which are nearly optimally 
combined (using the linear model). A quick analysis of 
these systems leads to a number of conclusions which 
have implications for the fusion problem in general. 

1. 

2. 

3. 

4. 

5. 

6. 

Even with this simple model, we can often 
achieve improvement. For 88% of the pairs, 
some improvement is possible. For 50% of the pairs, 
improvement is at least 5% over the better of the 
two systems, and for 11% of the pairs, improvement 
is at least 50%. The median improvement is 5%. 

By choosing wisely, we can beat any system. 
On a per-query basis, 5% of the pairs beat the best 
individual IR system for that query. Most of these 
(60%) did not include the best system in the com- 
bination. 

Queries with fewer relevant documents may 
have a greater clmnce for large improvement. 
Figure 2 shows that when there are few relevant 
documents, the ratio of improvement (the average 
precision of the combination divided by the aver- 
age precision of the better system: y) is much 

more varied, and capable of being much higher 
than for queries with many relevant documents. 
This seems logical, since with small numbers of rel- 
evant documents, changes in document rankings 
can greatly affect the value of average precision. 

Expertise is ofien query dependent. Only 53% 
of the pairs of IR systems have one IR system which 
is consistently better than the other (i.e., better on 
over 70% of the queries). 

Weights are often predicted by performance. 
About 88% of the time, p1 and pr are ordered the 
same as the best weights. 

Negative weights are common. About 34% of 
the 36,600 query/system triplets have an optimal 
weighting scheme where at least one system is neg- 
atively weighted. 1% have both systems negatively 
weighted. 

The first two points provide support for the use of 
fusion models in general - even when the underlying sys- 
tems have very high performance. The third point illus- 
trates the influence of the characteristics of each individ- 
ual query on the ability to combine systems and, along 
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Figure 2: The Median Improvement Ratio ( T) as a Function of the Number of Relevant Documents. Error bars 
are one quartile. 

with the fourth point, argues that solving the routing 
problem with a fusion system may be easier than solving 
the adhoc problem. The fifth point indicates that the 
simple heuristic of weighting the better system higher 
may be sufficient for achieving some improvement. Fur- 
thermore, the last point indicates that it is often the csse 
that a system’s judgement of which documents are rel- 
evant is exactly wrong. In light of the fifth point, it 
seems likely that the negatively weighted systems are 
poor performers, so subtracting their scores effectively 
downweights the nonrelevant documents near the head of 
the list which are also in the intersection, thus improv- 
ing combined performance. The last point also illustrates 
the importance of negative weights - previous implemen- 
tations of the linear model have generally ignored the 
possibility of negative weights, but here we see that they 
are clearly desirable. 

Limitations of Linear Combination 

The above analysis hints that the linear model primar- 
ily exploits only the Chorus Effect. Perhaps this effect 
is the only one worth exploiting, and thus we need not 
consider more complicated models. One way to illustrate 
the effectiveness of a combination model is to compare it 
to the theoretically optimal fusion. The optimal fusion 
would rank all of the relevant documents in the union 
of the two systems above all nonrelevant documents. As 
it turns out, such a system would have an average pre- 
&on equal to its total reca.ll. If we compare the ratio 
of each combined system’s average precision to its opti- 
mal (e), we find that the average value for this ra- 

tio over all query/system-pair combinations is 0.34, with 
standard deviation 0.27, and median 0.28. Thus, despite 
the occasional impressive gains in performance reported 
above, the linear model only achieves about one third 
of the theoretically optimal performance. Although it is 
improbable that the optimal performance is actually con- 
sistently achievable, there is nevertheless much room for 
improvement, presumably by using a more sophisticated 
combination model. 

4 Conclusions 

We have introduced a general technique for analyzing 
the behavior of combination models which allows us to 
predict with extraordinary accuracy the performance of 
a combined system based on measurable characteristics 
of the component systems. We have applied this tech- 
nique to a linear combination model. The main conclu- 
sions - maximize individual performance and the overlap 
of relevant documents while minimizing the overlap of 
nonrelevant documents - are in agreement with previous 
theories, specificalIy those put forth in [lo]. The analysis 
also elicits two other hypotheses for explaining when it 
makes sense to linearly combine systems: both systems 
should distribute scores similarly, but not rank relevant 
documents similarly. 

It should be noted that these conclusions are for the 
linear model only. Other, more sophisticated combi- 
nation techniques would most likely take advantage of 
more than just the Chorus Effect, and thus require a 
new analysis. However, we stress that our analysis tech- 
nique (computing a regression using measurements of 
the component systems) is not limited to analyzing a 
linear combination model - it is capable of pointing out 
the strengths and weaknesses of any given combination 
approach. Obviously, the particular measures used as 
input to the regression may include ones besides those 
used here, and should be chosen based on some knowl- 
edge of how the combination model works. Finally, we 
note again that our experiment was limited to the rout- 
ing, data fusion setting. 

5 F’uture Work 

Our analysis begs the question of how to determine the 
best weights for a linear model on two fronts. First of all, 
the golden section optimization technique only works for 
models with a single parameter. If we were to combine 
more than two systems, we would have to use another 
technique. More importantly, we have no idea whether 
our “optimal” weights would generalize to new data. Our 



current work involves exploring techniques for training 
the linear model in order to guarantee generalization to 
new data, as well as to be able handle multiple-parameter 
models. These techniques range from direct optimization 
of average precision, to gradient-based techniques based 
on optimizing J, which is correlated with average preci- 
sion. 

As the above analysis indicates, the linear model pri- 
marily takes advantage of the Chorus Effect. Our future 
work will involve more sophisticated (neural network) 
models which can exploit the Skimming and Dark Horse 
Effects by using representations of the documents and 
queries as inputs to the combination model. Our hope 
is that the training techniques we develop for the linear 
model will generalize to these more complicated models. 

Our current work focuses on combining two systems. 
Previous studies [3] have found that “more is better” 
when it comes to the number of systems. We intend 
to verify this conclusion using a methodology similar to 
that used here. Ultimately, we hope our work will shed 
some light on why combination works, and when it works 
best. 
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