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ABSTRACT
Our goal in this paper is to design cost-aware result caching
approaches for meta-search engines. We introduce different
levels of eviction, namely, query-, resource- and entry-level,
based on the granularity of the entries to be evicted from
the cache when it is full. We also propose a novel entry-
level caching approach that is tailored for the meta-search
scenario and superior to alternative approaches.

1. INTRODUCTION
The problem of combining search results that are obtained

from several different and/or heterogeneous data sources
are well studied in the IR and DB literature under vari-
ous names, such as meta-search, federated-search and data
fusion/aggregation (e.g., see [13]). In the context of Web
search, a meta-search engine is a tool that forwards a submit-
ted query to component search systems (so-called resources
hereafter), collects the local top-k results from each of these
systems and merges them to obtain a global top-k result.
Although we have witnessed the domination of market by
general purpose search engines in the last decade, the idea
of a meta-search engine can be still useful in the context of
specialized domains, such as shopping, healthcare or educa-
tion. In such specialized domains, the result of a query sub-
mitted to a meta-search tool can be either directly presented
to end-users, or can be post-processed to be consumed by
other applications (e.g., extracting the product information
for a price comparison engine in the context of shopping).
In either case, the re-use of the results for previously seen
queries, typically by constructing a result cache, is important
not only for the efficiency and scalability of a meta-search
system, but also for the availability (i.e., when the resources
are temporarily unavailable [4]) and financial effectiveness
(i.e., when a resource charges a processing fee per query).

Our goal in this work is to design cost-aware and dynamic
result caching approaches to be employed in a meta-search
scenario. To this end, as our first contribution, we intro-
duce three different levels of eviction, namely, query-level,
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resource-level and entry-level, that arise naturally in the
meta-search setup and indicate the granularity of the en-
tries to be evicted from the cache when it is full. For each
such eviction level, we utilize the well-known traditional and
cost-aware eviction policies [11] to identify the actual entries
that will be evicted, and hence, end up with several combi-
nations representing alternative caching approaches. To the
best of our knowledge, none of the earlier works consider the
eviction at different granularities within a cost-aware frame-
work, as we do here. Next, we propose a novel entry-level
caching approach that is again cost-aware and exploits the
special requirements of the meta-search scenario, i.e., the
embarrassingly-parallel nature of processing a given query
at each resource. These alternative caching approaches are
evaluated using the cache miss-cost metric [11] in a large-
scale simulation setup where the impact of various parame-
ters (such as the number of resources, cache size and query
cost distribution) is also investigated. Our simulation results
show that the highest performance is obtained by using the
entry-level caching approaches; and furthermore, our newly
proposed approach outperforms both the traditional base-
lines and other cost-aware competitors.

2. RELATED WORK
For general purpose search engines, result cache is a key

component that improves the system efficiency and reduces
the load at the backend. In earlier works, query results are
cached in terms of the document identifiers [5, 8, 10] or full
result pages including the title, URL and snippet of top-k
results [9, 5, 2]. For the typical meta-search scenario with
non-cooperative resources, the internal documents ids are
neither available nor useful, and hence, we assume that the
cache stores the results in the latter format.

The caching strategies can be broadly categorized as ei-
ther static or dynamic [9]. A static cache determines items
to be cached based on previous usage statistics and keeps
the cache content intact until the next periodic update. In
contrast, the dynamic caching strategies employ an eviction
strategy to decide on the item to be removed when the cache
is full; and they typically rely on the frequency and recency
of the cached items, as in the well-known Least Frequently
Used (LFU) and Least Recently Used (LRU) policies, re-
spectively. More recently, the cost of generating and/or
fetching the cached item is incorporated into the cache evic-
tion policies; and furthermore, employed as a more realistic
metric for evaluating the cache performance [11, 6]. Follow-
ing this line of research, in this study, we tailor cost-aware
caching approaches for meta-search engines.
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In contrast to the case of general purpose search engines,
caching for meta-search engines is an area that is left un-
explored with the exception of a few works. In one of the
earliest studies, Chidlovskii et al. propose a semantic cache
at the client-side for a meta-search system [4]. Their work
also mention the possibility of designing eviction strategies
that take into account the cost of the cached entries; how-
ever the experimental evaluation only considers typical LRU
policy and hit-rate as the efficiency metric. Lee et al. de-
scribe a popularity-driven caching strategy for meta-search
engines; but again do not consider the notion of cost during
caching and evaluation [7], as we do in this paper.

3. CACHING FOR META-SEARCH
We consider a meta-search framework where a broker

search system forwards the query to component search sys-
tems that may include general purpose search engines as well
as the APIs of Web 2.0 platforms, like YouTube or Twitter.
The top-k result lists, Ri, from each such resource ri, are re-
turned to the broker; and merged there to obtain the global
query result. We assume that for a given query q, there is
an associated cost Ci to obtain the result Ri, which is the
elapsed time for query processing at the target resource plus
the network transfer time. Remarkably, the same resource
can yield different costs for different queries, and the same
query can incur different costs from different resources.

For a given query q and assuming there are N dif-
ferent resources r1 to rN , we store the vector Rq :
〈(R1, C1), . . . , (RN , CN )〉 in the result cache. We believe it
is preferable to store the local results from each resource
rather than storing the merged (global) result (as in the ear-
lier works like [4, 7]), as it allows more flexibility to switch to
a different result merging algorithm and to apply separate
mechanisms to invalidate cached results (e.g., results from
more dynamic resources can be assigned a smaller time-to-
live value). We consider a dynamic caching setup, as ear-
lier works show that for reasonably large caches, dynamic
caching approaches outperform the static counterparts [9].

3.1 Cost-aware eviction strategies
In the following discussion, a cache entry e can denote ei-

ther the query result vector Rq, or a pair (Ri, Ci) in this vec-
tor; C(e) denotes the cost of generating this entry, F(e) de-
notes the frequency of this entry (i.e., submission frequency
of the corresponding query in the past) and S(e) denotes the
entry size (in bytes). Using this notation, we summarize the
cost-aware strategies that are described in [11] for evicting
the entries from a dynamic result cache, as follows:

Least Costly Used (LCU). Evicts the cache entry e with
the minimum cost C(e).

Least Frequently and Costly Used (LFCU). Evicts the
cache entry that has the minimum H(e) value that is com-
puted as H(e) = C(e)×F (e)K , where K(> 1) is a parameter
that aims to emphasize the impact of larger frequencies [11].

Greedy Dual Size (GDS). Evicts the cache entry that
has the minimum H(e) value that is computed as H(e) =
C(e)
S(e)

+L, where L value serves as an aging factor [3]. The L

value is initialized to 0, and every time an entry gets evicted,
it is set to the H(e) value of the evicted entry.

Greedy Dual Size Frequency (GDSF). Evicts the cache
entry that has the minimum H(e) value that is computed

as H(e) = C(e)
S(e)

× F (e)K + L, where Kand L values are

computed as in the LFCU and GDS eviction strategies, re-
spectively [1]. This strategy combines all four dimensions;
namely, size, frequency, recency, and cost of the cached en-
tries, while deciding the entry to be evicted. While the latter
three dimensions are more likely to vary, we expect the size
of the cached entries to be almost the same in practice; and
hence, without loss of generality, all our discussions here-
after assume that the results from each resource take the
same amount of space.

3.2 Eviction levels for meta-search
Our choice of storing the entire result vector Rq :
〈(R1, C1), . . . , (RN , CN )〉 in the cache naturally and
uniquely allows us to consider different granularities of evic-
tion, as it is possible to evict the entire result vector of a
query; or one or more entries from one or more result vectors.
In this paper, we define three different caching approaches
based on the eviction granularity (level), as follows:

Query-level (QL) eviction: When the cache is full, QL
eviction determines a victim query using one of the cost-
aware eviction strategies described in Section 3.1, and then
evicts the entire result vector of the victim query. While
doing so, the cost-aware strategies consider the cost of the
evicted query, C(e), as max(C1, . . . , Cn) where (Ri, Ci) ∈
Rq, since in meta-search the query is processed at all re-
sources in parallel ; so the overall latency is the maximum of
these individual costs.

Resource-level (RL) eviction: In this approach, instead of
evicting a query result as a whole, we first uniformly parti-
tion the cache space for each resource. Then, when the cache
is full, the cost-aware eviction strategy determines a victim
(R, C) pair to be removed from each resource partition.
Example. To illustrate the difference between query-

level and resource-level approaches, we represent the cache
content with the matrix M (for brevity) as shown in Figure
1. In the matrix, each row (column) is a query (resource),
respectively; and the entries denote the cost of retrieving a
query result from a particular resource. For simplicity, as-
sume that we apply LCU as the cost-aware eviction strategy.
In this case, when the cache is full, the QL approach evicts
the entire result for q2, i.e., the second row of the matrix,
as C(q1), C(q2) and C(q3) are 45, 24 and 51, respectively.
In contrast, the RL eviction approach determines the least-
costly entry per resource; and in this case, the entries M [1, 1]
(i.e.; the result of q1 from r1), M [2, 3] and M [3, 2] are re-
moved. In this case, the cache miss-cost is 1 + 4 + 8 = 13,
assuming q1, q2 and q3 are re-submitted in the near future.

Entry-level (EL) eviction: As a third alternative, we con-
sider each (Ri, Ci) pair as an independent cache entry; and
when the cache is full, the eviction policy determines N vic-
tim pairs to be removed, so that a new query result vector
R can be stored. Note that, in this case, several pairs from a
particular query or resource can be removed. For instance,
considering the cache contents in Figure 1 and assuming
LCU, the entries M [1, 1], M [3, 1] and M [2, 3] should be re-
moved, as their costs lead to minimum total cost; i.e., 7.
Optimal solution for EL eviction. As the astute reader
will realize, while the caching approach with entry-level evic-
tion has much lower miss-cost than its competitors, it is not
optimal. Indeed, a better solution should take into account
the observation that if two pairs (Ri, Ci) and (Rj , Cj) are
evicted for a query q ; the miss-cost will not be Ci + Cj ;
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M=


r1 r2 r3

q1 1 12 45
q2 5 24 4
q3 3 8 51

 QL+LCU:M [2, 1],M [2, 2],M [2, 3]
RL+LCU:M [1, 1],M [3, 2],M [2, 3]
EL+LCU:M [1, 1],M [3, 1],M [2, 3]

Figure 1: Cache contents shown as a matrix (left) and
evicted entries for each eviction level with LCU (right).

but max(Ci, Cj), as Ri and Rj will be retrieved from the
resources ri and rj in parallel. For example, in Figure 1, the
optimal solution (i.e., with the least possible miss-cost) is
evicting M [1, 1], M [2, 1] and M [2, 3], as the incurred miss-
cost would be 1 + max(5, 4) = 6.

The optimal solution for the entry-level eviction can be
computed using dynamic programming, in a similar fash-
ion to that of the well-known 0-1 Knapsack problem. Let’s
define the matrix A to store the cost of query q using r re-
sources in ascending order of the costs. Then, in each step,
we attempt to add a new query to the solution, and while
doing so, we compute (and store in a table) the costs when
we evict entries for r resources from this new query, where
0 ≤ r ≤ N , and entries for N − r resources from the ear-
lier queries. Hence, the recursive formula for the dynamic
programming solution is:

d(q, n) =

{
0 if n = 0,

min
0≤r≤N

(d(q − 1, r) + A(q, n− r)) if n > 0.

(1)
Obviously, even computing the optimal cost has the com-

putational complexity O(MN2), where M and N denote
the number of queries in the cache and number of resources,
respectively. Moreover, there is an additional overhead of
updating the costs (using Equation 1) after each cache-miss
and subsequent eviction of entries. Based on these run time
requirements, it is not affordable to use the optimal solution
as a cache management approach in practical systems.
Greedy solution for EL eviction. As a remedy, we pro-
pose a novel greedy algorithm that also takes into account
the aforementioned parallel processing effect in meta-search
scenario. In a nutshell, the algorithm works as follows:
While storing the vector Rq for a query, the entries (Ri, Ci)
in the vector are sorted wrt. Ci values. Next, for a pair that
is at position p in the sorted list, its C′ value is defined as
Ci
p

. Intuitively, this indicates that if we remove the entries
up to and including position p; we will have size-p free space
and the miss-cost for this query will be Ci; so the cost per
space is Ci

p
. Once these C′ values are computed, any of the

eviction strategies described in Section 3.1 can be employed;
but taking into account the C′ values while computing H(e)
values. Finally, when an entry (Rp, Cp) at position p is re-
moved (along with all the entries at positions p′ < p); we
reduce the cost of all entries at higher positions by Cp; since
the Cp (the current miss-cost for the query q) will be anyway
incurred from this point on. For these entries, the C′ values
are also recomputed with respect to modified cost values.
The new algorithm is called Greedy Parallel-Aware Caching
Strategy (GPACS).

Example. To illustrate how GPACS operate, consider
Figure 2 where each result vector Rq (of Figure 1) is sorted
with respect to Ci values and corresponding C′ values are
shown per entry in the matrix M ′. Note that, in practice,
these values can be stored along with the actual entries; the
matrix view is just for the illustration purposes. We again
use LCU to evict entries; and in this case, we evict the entries
M [1, 3] and M [2, 2] that have the lowest total costs (i.e., 1

Rq1 :<(R3, 45), (R2, 12), (R1, 1)>
Rq2 :<(R2, 24), (R1, 5), (R3, 4)>
Rq3 :<(R3, 51), (R2, 8), (R1, 3)>

M ′=


p1 p2 p3

q1 15 6 1
q2 8 2.5 4
q3 17 4 3


Figure 2: Re-sorted result vectors (left) and corresponding
C′ values shown as a matrix (right).

and 2.5, respectively) and yield a total of 3 empty spaces,
as required to store a new query result. Note that, C′ for
(R1, 5) is 2.5; as 5 is divided by its position index, which 2.

Recall that selecting M [2, 2] means that we evict (R1, 5)
pair at position 2 and all pairs in lower positions (i.e., (R3, 4)
at position 1), so that we obtain 2 empty places in the cache.
Finally, once (R1, 5) and (R3, 4) entries are evicted for q2,
the cost of the remaining (R2, 24) entry is updated as 19,
since evicting this entry will bring an additional cost of 19
from this point on.

4. EVALUATION AND DISCUSSIONS
Setup. While there are public datasets (e.g., from TREC
FedWeb Track) to evaluate the effectiveness of meta-search,
the number of queries in these datasets are too small (i.e.,
up to 1,000 queries) to evaluate the performance of a result
cache. Therefore, we construct a simulation setup as fol-
lows. We use an excerpt from the AOL query log [12] to
simulate the repetition patterns of queries. For each query,
we assume results from N different resources are retrieved
and cached. For each such resource, we define an interval
that represents the cost of retrieving results from this re-
source. Then, for each query q and resource r, we sample a
cost value uniformly at random from the interval associated
with this resource. We store these (Ri, Ci) values generated
per query so that all caching strategies are evaluated under
the same conditions.
Parameters. In our simulations, we used 500,000 queries
from AOL log [12] in timestamp order. First 300,000 queries
are used to warm-up the cache, and the rest are used for
evaluation. We assume N ∈ {10, 50}, and all cost values are
in [0, 1] range. We set the cost intervals for these resources
in an ad hoc manner to model the fast, medium-speed and
slow resources that exist in a real-life setting (e.g., fast and
slow resources have the cost ranges [0, 0.3] and [0.8, 1], re-
spectively). Note that, in practice, a meta-search engine can
simply record the retrieval time for each query and resource,
to apply the proposed caching approaches. We report simu-
lation results for three different cache sizes, namely, caches
that can store 10K, 50K and 100K query results for N = 10.
We assume the same cache capacity when N is set to 50 (for
the sake of fair comparison), hence the number of queries
that can be cached drops accordingly, as 2K, 10K and 20K.
Evaluation metric. Since our goal by employing a cache is
to reduce the total time cost for the meta-search system, we
evaluate the proposed strategies in terms of the cost reduc-
tion percentage they achieve with respect to the no-caching
case; i.e., when all results have to be retrieved for all 200,000
test queries from the scratch. As discussed before, for a
given query q, if only some entries of Rq are located in the
cache (i.e., cache hit), the miss-cost incurred for this query
is maximum cost among the Ri’s that caused a cache-miss.
Results. In Figure 3, we report the performance of query-
level (QL), resource-level (RL) and entry-level (EL) caching
approaches coupled with six different eviction strategies (i.e.,
traditional LRU and LFU strategies as well as the cost-
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Figure 3: Performance of query-level (left), resource-level (middle) and entry-level (right) eviction for N=10.
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Figure 4: Performance of query-level (left), resource-level (middle) and entry-level (right) eviction for N=50.

Table 1: GPACS vs. best EL competitor (both with GDSF)
N=10 N=50

Size EL+GDSFGPACS+GDSF Size EL+GDSFGPACS+GDSF

100K 38.4% 39.1% 20K 31.1% 31.9%
50K 35.6% 36.2% 10K 26.1% 28.3%
10K 27.7% 28.4% 2K 18.2% 19.9%

aware strategies LCU, LFCU, GDS, and GDSF) for N=10
resources. Our findings are as follows: First, traditional
strategies LRU and LFU are inferior to cost-aware strategies,
especially, GDS and GDSF, in all cases. In particular, using
only cost dimension is ineffective (as LCU is the worst per-
former in Figure 3) as an eviction strategy, while the GDSF
strategy that takes into account all available clues (i.e., the
cost, frequency and recency of queries) almost always yields
the highest reduction in miss-costs. These findings are in
line with those for web search engines [11]. Second, we com-
pare the performances among the caching approaches with
different eviction levels. Figure 3 shows that, in general,
query-level eviction is better than resource-level eviction;
and entry-level eviction outperforms both of the latter. For
instance, the reduction in miss-costs is 37.6%, 37.0%, 38.2%
for QL, RL and EL eviction approaches with GDSF strategy
(for the cache of size 100K), respectively. This indicates that
EL eviction is the most effective approach in the meta-search
scenario. Figure 4 presents the results for N=50. We see
that absolute gains slightly drop as the same cache capacity
can now store a smaller number of queries. However, all the
trends observed before also hold in Figure 4, implying the
robustness of our findings under different settings.

Finally, Table 1 compares the performance of our novel
GPACS algorithm to the best-performing case using EL
eviction. It turns out that GPACS can yield up to 2% abso-
lute improvements in terms of the cost reduction percentage.
Conclusion and future work. We introduced alternative
eviction levels for result caches in a meta-search scenario,
and showed that caching approaches with entry-level evic-
tion outperforms those with query- and resource-level evic-

tion. We also proposed a novel entry-level caching algorithm
that is specifically tailored for meta-search and can further
improve the performance. Our future work involves explor-
ing cache refreshment issues in this setup.
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