
Querying Office Systems about Document Roles

A. Celentano1~2, M.G. Fugini1~3, S. Pozzi2
(1) University di Brescia, Via Valotti 9,1-25100 Brescia, Italy

(2) CEFRIEL, Via Emanueli 15,1-20126 Milano, Italy
(3) Politccnico di Milano, Piazza L. da Vinci 32,1-20132 Milano, Italy

ABSTRACT

This paper describes the architecture of a document retrieval

system integrating classical IR features with knowledge
about the procedural and application context where

documents are used. The paper focuses on the query language

that allows the user to pose queries involving the analysis of
both the semantic network where procedures, office agents,

and events of the office context are represented as elements

accessing, modifying, filing, manipulating document, and
the document contents, i.e. their text. The coupling of the
query system with a browser tool is also discussed. The
system relies on a knowledge representation model for
document and document roles developed in previous phases
of the research.

1. INTRODUCTION

In the paper “Knowledge Based Retrieval of Office

Documents”, presented at the SIGIR ’90 Conference

[Celentano 90a], we discussed the classification and retrieval
of office documents through a knowledge based description

of their role in the office environment. The paper introduced

a research project carried on at CEFRIEL and illustrated the
overall document model and the principles of operations of
the retrieval system. As the project was going on, further

developments led to the design of a set of tools for the
classification and management of documents: the basic tool

is a browser supporting advanced navigation functionality

along the semantic network which represents the knowledge
about document roles [Celentano 90b].

In this paper the project issues related to the automatic

retrieval of documents are discussed: they include the system
architecture, integrating the user workstations with a

centralized text-based information retrieval server, the query

language, which supports the semantic model of documents

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission,

0 1991 ACM O-89791 -448 -11911000910183 . ..$505O

together with conceptual structuring and text indexation, and

theintegration between the browser andthe query processor.

The query language integrates the following features:

● it allows the user to ask for properties related to the

conceptual structure of documents;

. it allows to retrieve documents using traditional

keyword-based and index-based techniques;

. it allows to pose queries about document roles, using

knowledge on the relationships holding among

documents of the office environment. These queries
cannot be supported if the content alone is represented,
but an explicit representation of both the document
processing modes and the reasons for the existence of
documents within a given application context is
needed.

In spite of the broad scope provided for queries, the retrieval

system remains strongly oriented to documents, which are

the elements that can be directly addressed as the target of a.
query. In fact, the office environment where documents are

used is represented in the retrieval model to the extent

necessary to support queries about the document environment

and life; as opposite, in OffIce Information Systems [COIS

90] also procedures and procedural flows are explicitly
represented.

The reader is referred to the above cited papers for the
presentation of the rationale for modeling office knowledge

in document retrieval systems, the document model, the
knowledge representation, and the navigation in the

document base. However, to make this discussion self-

contained, a brief description of the document retrieval
model is surveyed in Section 2, Section 3 illustrates the

system architecture and the relationships between the
browser and the query processor. In Section 4 the proposed

query language is described. The status of the
implementation, and the current research activities are

described in Sections 5 and 6.
The examples given in the paper refer to a test case

currently used for experimenting the development of the
system prototype. The test case regards the bankinig

application domain, in particular the documents managed in
the process of granting loans to customers by a bank credit

department. It has been derived from the TODOS Esprit I

183

Project [Pernici 90]; it is a real, medium-size application,
useful to test the power of the document modeling approach
because it has a significant number of document types and a
relevant procedural complexity.

2. MODELLING OFFICE KNOWLEDGE FOR
DOCUMENT RETRIEVAL

The document model defined in this project is oriented to
classification, filing and retrieval of office documents. In

particular we made a distinction between a conceptual
document model and a document retrieval model.

The former regards the semantic, logical, and layout

representation of documents. Each document is modelled by
means of a conceptual structure, that is, a structured

collection of properties whose semantics, rather than textual

appearance, is relevant [Thanos 90]. Conceptual documents
are used in classification and retrieval activities, in order to

take into accounts the semantic aspects which are not
directly and explicitly contained in the document text.

Conceptual documents are instances of classes, which define

equivalences among documents having the same structure and

meaning. An Is-a class hierarchy defines refinement and
generalization relationships according to the object oriented

paradigm.
The document retrieval model enriches the conceptual

model with the explicit representation of both the documents
role within the office applications, and their dependencies

from the domain knowledge, i.e. rules, regulations, habits,

laws which are part of the motivation of existence of

documents. Procedures, agents and events are introduced as

individual classes for representing the tasks in which
documents are used, the actors performing the tasks, and the

temporal events triggering the activities respectively. They

are represented at the minimum level of detail required to
establish relationships among documents and they are
identified through class instantiation to distinguish among
different occurrences of the same type of task, role and
temporal event.

The document retrieval model entities (i.e. documents,
procedures, agents and events) are connected by links
describing:

● document relationships, e.g. a document belongs to a
dossier;

. causal dependencies, e.g. an event triggers a procedure
which creates a document;

. organizational dependencies, e.g. a person executes a
procedure which modifies a document.

Document relationships are modelled by links called
document links, relationships between procedures and
documents are modelled by process links, while activity
links relate events to procedures.

The model entities and the links established among them,
define a semantic network, where nodes represent the model

entities and the arcs constitute the links; it can be seen as

composed of two layers, a class and an instance layer.
Moreover for each link a named inverse link is defined, to
enable the navigation in both directions. The semantic

network describes the operational knowledge in the office.
Figure 1 illustrates a part of the class layer of such a semantic

net for the test case currently used in the prototype
developmen~ the fragment regards the credit contract
preparation: collecting customer information, preparing the
customer dossier, drafting the offer, until the contract
signing.

The explicit representation of procedural knowledge
supports the resolution of the following query types (some of
them refer to items not represented in Figure 1):

● “Retrieve all the customer information letters archived
by the secretary Susan”;

● “Which documents have been submitted by Foo&Co. for
obtaining a credit?”

. “Retrieve the reports prepared after discussing credit
grant opportunities in January 1991”

These queries are examples of operation-oriented queries

performed by the user of the system, to retrieve document

instances needed to perform specific office tasks. The system
addresses also guidance-oriented queries posted by the end-

user to get assistance; examples of such queries are the
following ones:

. “Which documents need to be sent to the customer after

the preparation of a credit offer letter?”

. “Which documents are still missing from the dossier of
Foo&co?”

Guidance-oriented queries are also the basis for setting-up,
customizing, and maintaining the retrieval system. Such

activities are perfotmed by the System Administrator.

Concepts and rules are elements of the domain knowledge

of the document retrieval model that characterize the
application context of the office. Examples of application
contexts are legal, technical, staff-support and

administration offices. In each context, sets of concepts and
dependencies peculiar of the domain can be outlined. Due to

the fact that they often involve more than a couple of
entities, and that they do not establish direct relationships,
but rather define the consistency of a set of entities,

dependencies are modelled as logic rules better than as links.

Within the domain of banking offices, for example,
concepts are loan, warrantor, amount. These concepts can be

used, in the form of predicates about the status of a specific

loan granting case, and about the related documents, to
interpret user queries by providing a synonym mechanism

for expressing complex retrieval conditions on the content
and relationships between documents. Rules express the
reasons why documents are processed in a given way;

moreover, they are used to express laws and regulations that
define mutual relationships among documents, which are not

expressed directly in the documents contents or in the
procedural descriptions. For example, using the above
referenced concepts of the loan granting domain, the
following rules (in Prolog-style notation) define when

warrants are required

needs_warrant(Loan_id) :-

loan(Loan_id,Customer),

company (Customer)
amount(Loan_id, Money),
greater(Money, 10000)

184

warranted(Loan_id) :-
loan(Loan_id,Customer),

needs_warrant(Loan-id),
warrantor(Loan_id,Wl),

warrantor(Loan_id,W2),

WI # W2

The former rule states that a warrant is needed if the loan
amount granted to a Company (as opposite to a private
customer) exceeds $10,000; the latter rule states that if the

loan must be warranted, two warrantors are required. For the

retrieval system, this rule implies the existence of two
warrant letters associated to the dossier of the credit reciDient

1

when this recipient is a company; therefore, the implicit
relationship between the Customer-Dossier document and
Warrant-Letter document is considered through a knowledge

inference process. The reader is referred to [Celentano 91] for

a more thorough discussion about the definition and use of

domain knowledge.

3. THE ARCHITECTURE OF THE SYSTEM

The system architecture design has been guided by the
following considerations:

. in most office environments it is common that

documents are archived and retrieved by means of

“traditional” IR tools [Salton 88]. They provide
effective and efficient access to large amounts of texts,

enabling the user to pose queries related to the content

of the documents. However, they do not consider the
role of the documents in the office, which is a key

concept of the proposed system. The architecture should

enable to blend a knowledge based approach with
traditional IR techniques, resulting in a significantly

more effective system;

. the main features characterizing the office environment

are the distribution and the complexity of the performed
activities. Two facts stem from this consideration.

Firstly, the construction of the proposed document

retrieval model will in general require the collaboration

of several designers, to tackle the complexity of the
office environments. The system architecture should

provide a basis to build tools enabling effective
communications among the work group [CSCW 90].
Secondly, the defined document model should reside in a

centralized repository, enabling the access of several

user workstations. This solution eases the process of
updating the model and it avoids useless replication of

data on the different user workstations.

The architecture of the system is based on the client-server
paradigm, where the user workstations act as clients,

interfacing with two servers, namely the document server and

the model server. A text based II? tool runs on the document
server: it manages the document base (i.e. the collection of

the inserted documents) thus providing a mean to solve

queries related to the documents content. On the other hand a
database management system runs on the model server: it

acts as a static repository of both the entities defined in the
model (i.e. classes and instances) and the several rules
exploited by the system during the insertion and browsing
phases. Moreover the centralized data repository can be

exploited in the future to define communication mechanisms

among the office designers. A reference obviously exists
between the document and the model bases, in order to enable

the retrieval of the appropriate documents.

The architecture of the system can be split in two

fundamental subsystems, which also refers to the two

different functional phases, namely:

. the filing phase and

● the retrieval phase.

Figure 2 illustrates the functional partitions of the system.

The filing system

The general task of this subsystem is the acquisition and
classification of documents. These processes are carried out

by the following modules:

● the Class Specification Module (CSM);

● the Instance Acquisition module (IAQ);

. the Classifier module (CLASS);

● the Semantic Net Interface module (SNI);

● the Information Retrieval System Interface module
(IRSI);

● the NeTwork Service module (NTS);

● the DataBase Management System module (DBMS) and

● the Information Retrieval System module (IRS).

CSM enables the user to define class structures. The user

defines document classes by means of a window-based user
interface, designed on top of a document definition

language. During the class definition process the user can

either browse or query the document semantic network, for

instance to obtain information about the existing classes and
links. A document class definition is inserted in the model

base, residing on a remote sewer. To connect with the remote

model base, CSM exploits the functionalities offered by SNI.

IAQ extracts the conceptual representation of the documeni

from the document text. In particular a document is

represented as a labelled tree, where the labels are the name of
the conceptual fields. The conceptual representation is then

passed to CLASS, whose main scope is the classification of
the inserted document. It is likely that such representation
will not exactly be isomorphic with an existing class

definition, due to the fact that either IAQ has not fully
recognized the conceptual structure of the document or tha(
the document class corresponding to the inserted instance

does not actually exist. A set of rules residing in the
classification rule base helps CLASS performing the
classification process, i.e. finding the class (or classes)l

name(s) whose conceptual sbmcture best matches the structure
of the inserted instance. A ranked list of the class names

resulting from the classification attempt is presented to the
user: he will choose the class which best suits his

requirements.
Moreover CLASS plugs the instance conceptual structure

into the document instances network, instantiating the

appr?prlate links. To perform such process, CLASS exploits
the insertion rules. Finally, the document textuall

representation is stored in the document base. To connect
with both the remote model base and the remote document

base CLASS exploits the functionalities offered by SNI ancl

185

IRSI.
SNI interfaces with the model server. In the filing phase,

SNI features are exploited in order to insert into the model

base the conceptual structure of both document classes and
document instances. DBMS manages the model and the rule
bases. Such databases act as repository of objects which

become alive when they are transferred in the user
workstation modules.

IRSI interfaces with IRS. In the filing phase it enables a

document instance to be stored and indexed by means of IRS.
NTS handles the transfer of query commands and data files

from/to SNI and IRSI of the user workstation to/from DBMS

and IRS resident on the model and document server
respectively.

The retrieval system

The general task of this sub-system is the retrieving of both
document classes and instances from the model base and the

document base respectively. The functions involved in the

retrieval phase are carried out by the following modules:

● the User Interface Management System module (UIMS),

split into the BROWser (BROW) and the QUery System
(QUS) modules;

● the Semantic Net Interface module (SNI);

. the Information Retrieval System Interface module
(IRSI);

● the NeTwork Service module (NTS);

● the DataBase Management System module (DBMS) and

● the Information Retrieval System module (IRS).

A document can be retrieved in two wavs: bv means of an. .
interactive browsing activity, performed on both the classes
and instances of the semantic network, and by means of a
query formulated in the defined query language. UIMS offers a
window-based man machine interface consisting in both the
browsing and the query system. It highly integrates the two
subsystems, allowing the user to interleave browsing and
querying operations.

Browsing is organized in sessions, that is, sequences of
navigation paths along the links of the network. The nodes
traversed in a browsing session can be saved and referred to

as part of a query, in order to restrict the automatic retrieval
to a selected partition of the document base.

The browser offers several hypertext-like tools which can
be exploited to navigate through the documents model. The
user browses the document base, visualizes the semantic
network describing the application document roles, and,

basing on the result of the visualization, decides either to
further explore the network, or to zoom into some nodes for

further information, or to enter new search parameters for
restricting the exploration to portions of the network.

The users of the document retrieval system can browse

both the class and the instance layers of the semantic net.
The target of a class browsing process is a set of document
types, for example, the documents needed from the customer
who applies for a credit. By moving to the instance layer, the

specific occurrences of documents can be retrieved. A detailed
description of a sample user session can be found in
[Celentano 90b].

BROW exploits also navigation rules, to infer the

existence of links which have not been explicitly created by
the user. The user interacts with the query system by means of
a menu-based interface, which has been designed on top of

the defined query language. QUS breaks up a query into the
components involving the semantic network, the conceptual
structure and the text analysis. The query components

involving the analysis of both the semantic network and the
conceptual structure are resolved by means of DBMS. On the
other hand, query components involving the analysis of the

document text are resolved by means of IRS. QUS receives
the results of the execution of the query components and
performs set operations on it, to present the result to the

user.

4. THE QUERY LANGUAGE

Several approaches to the characterization of the documents

meaning through the description of a “conceptual” layer have
been discussed in the literature (see for example the Esprit

project MULTOS [Thanos 90]). Our project shares with them

the characterization of the document concepts by formalizing
its structure; therefore the aspects of the query language

related to the conceptual component will be discussed to a

less extent while the presentation will focus on the
exploitation of the operational and domain knowledge.

The query language is based on three different facets of

documents identification:

● the text contents of the documents;

. the structured data which describe the documents static

meaning (i.e. the conceptual structure);

w the environment in which the documents are embedded,

that is the relationships holding among documents and

among documents and procedures using them.

IR traditionally addresses the first topic. Systems which use
structured description of documents (i.e., logical or
conceptual schemas) together with free text contents also
exist. The structure is helpful in identifying the meaning of a
document in a more precise way, since the conceptual
structure can be formally described. The query language aims
at integrating existing approaches with more advanced

functions about knowledge representation.

4.1 THE QUERY FORMULATION

A query is defined by the following general structure, in

which boldface denotes keywords, italic denotes fragments
defined in detail later, plain text denotes placeholders for
specific terminal items, parentheses identify syntactic
precedences, brackets and braces denote optional and

repeated elements, and the vertical bar divides alternative
choices:

retrieve class_name (types I instances)
[in partition]
[with conceptual_description]

[environment environment description]
[contents contents_descripfion]

We defer the discussion of the “in partition” clause to a later
point in this paper, since it involves also the relationship

between the query processor and the browser.

186

The target of the query: the retrieve clause

The output of the query can be a set of document instances, or

a set of types; the latter case refers to queries directed to

exploring the structure of the office document model, and
occurs when the user performs a guidance oriented search, as

previously discussed.
The name of a class is required to restrict the search to a

subset of the defined document classes; while a user
experienced in the application field can suitably select a sub-

domain on which to operate, a novice user can start with a
broader range, for instance indicating in the retrieve clause

the the root class document, if he is not able to indicate a

more specific request.

If the query target is a set of instances, the instances of

both the specified class and its subclasses are looked for. If

the query target is a set of types, the query returns the set of
the most specific subclasses which satisfy the query clauses.

The with clause

The with clause describes the static meaning of the requested
documents, in terms of their conceptual components. It is

composed of a sequence of predicates on the attributes of the

document structure, in the form of boolean expressions:

field_name relational_operator value.

Expressions can be joined by and and or operators, and

parentheses can be used to modify the evaluation order. For

instance the folIowing query

retrieve Solicitation_letter instances

with (Receiver.Name = “Foo&Co.” or
Receiver.Name = “Such&Such”)

and date >= “3/1/1991”

retrieves solicitation letters sent to the customers Foo&Co.
and Such&Such on or after march 1st 1991.

If the query target is a set of types, predicates on values are
meaningless, and the clause can only predicate the presence

of conceptual components by referencing their names. The

following query

retrieve document types
with offer_validity

retrieves only document classes having a conceptual

component called offer_validity.

The environment clause

The environment clause enables to state the relationships
which must hold between the searched document and other
office entities. Such knowledge is coded in terms of links of

the semantic network which models the document base: by

means of the environment clause the user expresses a
predicate on the role of the document in the office system. It

has the following general structure:

environment
{ link_name (node_name I { node_list } I

partition)

[subset conceptual_description] } +

where link name is the name of a link in the semantic

network; n;de list is a list of node names separated by

commas; node_;ame is the name of a class or of an instance
(in the form class-name: insfance-name) of the semantic

network; parfition is a specification similar to that used in

the “in parf it ion” clause, therefore it will be described later
The subset clause duplicates the usage of the with clause,
but applies to the referenced nodes rather than to the
requested documents. The path specification can be iterated,
resulting in compound dependencies.

The environment clause identifies as candidate results

of the query the types or instances which are connected,
through the named link, with the specified node or set of

nodes. According to the target of the query (i.e. types or

instances) the connected nodes can be types or instances,
with the following constraints:

● if the query target is a set of types, the referenced nodes
must be classes;

● if the query target is a set of instances, the referenced
nodes can be instances or classes; if they are class

names, they identify the set of instances of that class;

Examples of environment specifications are the following
ones (please refer to Figure 1):

a. the documents archived in the dossier of customer
Foo&Co.:

retrieve document instances

environment belongs_to Customer_Dossier: Foo

b. the documents (types) needed to complete the dossier of
a custome~

retrieve document types
environment is_input_of
Procedure: Customer_Dossier_Completion

c. the documents that were handled by Schultz in some
way:

retrieve document instances

environment process_link Procedure

executed_by
Agent: Schultz

d. the documents that can be handled by Schultz in some
way:

retrieve document types
environment process_link Procedure

executed_by

Agent: Schultz

In the last two queries, it is necessary to note that, even if

not depicted in Figure 1, the nodes of the network are
connected by pairs of links, establishing direct and inverse
relationships. Therefore the process link referenced in the
queries c and d stands both for docum~nts which are output by

a generic procedure, and for documents which are consumed as
inputs, thereby identifying in a correct way the concept of
“handling”.

The subset clause

The subset clause excludes from the set of nodes referenced

187

in the environment clause, the nodes which do not satisfy
the conceptual description predicates. The formulation of the

clause is subjected to the same constraints defined for the
with clause, that is:

● if the query target is a set of types, it must predicate the

presence or absence of components, but it cannot
predicate about values;

. if the query target is a set of instances, it must predicate

about values;

● as a special case, if a single node instance is referenced
in the environment clause, the subset clause acts as an

“only if” constraint, which accepts or rejects the
referenced instance according to the values of its
conceptual components.

As anexample, the query a above can also be formulatedin

this way:

retrieve document instances

environment belongs_to Customer_Dossier

subset Name = “Foo&Co.”

The contents clause

The contents clause predicates about the textual part of the
documents, bridging the conceptual and semantic description
to the actual contents. It is a usual information retrieval
query, that is, its lexicon, syntax and operational structure
are defined according the actual IR engine to which this
system is interfaced, and will not be detailed here.

The in clause

Retrieval is seldom aone-shot process; the specification of
the required documents and the sharp identification of their

relevance in the returned set are the result of a refinement
process involving several accesses to the document and

knowledge bases. The in clause defines a partition in the

document set, identified by a symbolic name which denotes
the result of a previous query, or the marking of selected
nodes during browsing; the query is then executed by taking

this partition as ifit where the whole document base, and its
associated semantic net. If specified as part of the

environment clause, the partition is used to identify the
set of nodes which are the target of the named links.

As an example, suppose that the user, while browsing the
document and knowledge base associated to the fragment of

semantic net illustrated in Figure 1, has marked as relevant
the nodes of the network excluding the procedure

Contra cl_ Signature and the associated documents,
Customer_Contract and Final_O#er, identifying this set with
the name Preparation_Phase. The execution of the query

retrieve documents instances
in Preparation_Phase
environment process_link Procedure

executed_by AgenLSchultz

retrieves the documents of type Draft_Offer and Report, but

not the documents of type Customer Contract and
Final_Offer.

—

4.2 THE DOMAIN INFERENCE

The identification of the relationships between documents

and the entities of the office domain are described in the

environment clause, explicitly indicating the links. The
burden of tracing a long navigation path can be reduced, and

the knowledge support provided by the system can be

improved, by of the definition of virtual links. A virtual link
is a kind of link which does not explicitly exists in the

model network, rather its presence can be inferred by

topological and domain rules which maintain knowledge
about complex relationships. As a simple example, consider
the query, already discussed:

“Retrieve the documents that were handled by Schultz in

some way”

which was formally stated by a two steps environment

clause:

retrieve document instances

environment process_link Procedure executed_by

Agent: Schultz

The concept of document handling by an office agent is
bound to the execution of a number of different tasks; in its
widest formulation, it can be described by the following
topological rule:

handled(Doc,Agent) :- is_instance(L,process_ link),
is_instance(P,procedure),

s_instance(E,executed_by),

links(Doc,P,L),

links(P,Agent,E).

with obvious meaning. By rewriting the left hand side of the
rule with the infix notation

Doc handled_by Agent

the query above can be written in the following way:

retrieve document instances
environment handled_by Agenti Schultz

The query execution requires a forward resolution engine to

fire the rule for identifying which real links need to be
explored.

5. IMPLEMENTATION NOTES

The system is implemented on a heterogeneous platform. The
User Workstation is a MS-DOS/MS-Windows 80386 system

running GoldWorksIIl , which is an expert system
development environment based on GCLisp, exploiting

object orientation, frame based techniques, and user
controllable production rules to represent knowledge.

The Model and Document Server are implemented in a Unix

environmen~ 0racle2 is used as DBMS, and BRS/Search is

used as the text oriented IRS. The communication between
the two environments is managed, by means of the NTS

module, using the TCP/IP protocol.

lGoldWorksII is a Trademark of Gold Hill Inc.

20racle is a TradeMark of Oracle Corp

188

Currently, the implementation effort is devoted to the
integration of the User Workstation modules; in the UIMS,

the browser (BROW), formerly developed as a first

prototype with a different Object Oriented tool

(Kool/Aida3), has been ported to the GoldWorksII
environment and interfaced to the semantic network with the
NSI module. The parsers for the Class Specification and
Query Languages and the query processor component related
to the resolution of the environment clause on the

semantic network has been implemented. The network
services have been defined and built as general purpose
interpreters of commands for task to task communication;

the DBMS and IRS interface functions have been designed.

6. FUTURE DIRECTIONS

The current research effort focuses on the formalization and

use of domain knowledge. Domain concepts and rules

increase the power of the retrieval system by allowing the

system to trace relationships deriving implicitly from the

application domain. To this aim, the query language should
also include “concepts” of the domain and automatically
derive the query processing actions to be undertaken to

exploit that concepts.

Further work needs to be done in the project on the

definition of an inferential engine for domain rules and for

extending the query language to include domain concepts. To

give an idea of the kind of knowledge that is required to take
into account domain rules, consider the following statement:

“If a customer has not answered a credit offer letter
within two weeks from the offer forwarding, he should

be solicited through a letter signed by the head of the
credit department”

A guidance oriented search, aimed at understanding the roles
of documents in the office procedures, could then use this

knowledge to answer queries like the following ones:

“Which documents should be prepared to solicit a

customer to answer an offer?”

As another example, consider the following query:

“Retrieve the Balance Sheets in the dossier of customer
Foo&Co. which have been archived by Schultz and
which are coming from the Chamber of Commerce”.

Here, the target is a set of document instances; the fact that

the Balance Sheets come from the Chamber of Commerce is

modelled through domain rules saying that:

“The Balance Sheets regarding customers are the

collection of sheets provided by the Chamber of
Commerce, by the customer itself, by other departments

and branches of the Bank. Some of these can be
missing, e.g., if the customer had no previous

relationship with the Bank”.

The amount of knowledge contained in this definition is
large compared with the previous examples. The types of
documents provided by the different organizations, the form
in which they are drawn, and the amount of information

contained in them, depend on several conditions about the

company status, its kind of business, the existence of

commercial operations with foreign countries, and so on; a

predicate based representation requires deep understanding of

the underlying laws and regulations [Kowalsky 86]

ACKNOWLEDGMENTS

We would like to thank the persons involved in the
research activity of the Office Automation area at CEFRIEL.
Namely, Dr. Paola Gattoni from Bull HN provided support to

the GoldWorksII programming environment. The students of
the Office Automation area contributed to the refinement of
the model and implemented the prototype described in the

paper. Dr. Luca Passerini, from S.G.S. Informatica, and Dr.

Mauro Lazzaretto developed the NTS modules.

REFERENCES

[Celentano 90a] A. Celentano, M.G. Fugini, S. Pozzi,

“Knowledge-based retrieval of office documents”,
in Proc. 13th ACM SIGIR Conference on

Information Retrieval, Brussels, September 1990.

[Celentano 90b] A. Celentano, M.G. Fugini, S. Pozzi,
“Document retrieval in office environment:

knowledge modelling and browsing”, CEFRIEL

Technical Report RT 90028, October 1990.

[Celentano 91] A. Celentano, M.G. Fugini, S. Pozzi, “Expert
System Support for Classification and Retrieval of

Office Documents”, Cefriel Technical Report,

March 1991.

[COIS 90] Proceeding of ACM-IEEE Conference on Office
Information Systems, Boston, MA, April 1990.

[CSCW 90] Proceedings of Conference on Computer
Supported Cooperative Work, Los Angeles, 1990.

[Kowalsky 86] R.A. Kowalsky, M. Sergot, “The Use of
Logical Models in Legal Problem Solving”, Dept.

of Computing, Imperial College, London, 1986.

[Pernici 90] B. Pernici, C. Rolland (Ed.s), “Automatic Tools
for Designing Office Information Systems”,

Springer-Verlag, October 1990.

[Salton 88] G. Salton, M.J. McGill, “Introduction to Modern,
Information Retrieval”, McGraw-Hill, 1989.

[Thanos 90] C. Thanos (Ed.), “Multimedia Office Filing: the

MULTOS Approach”, North-Holland, 1990.

3KooI and Aida are Trademak of Bull Corp.

189

*

~

9-S:..Sm ecustomerbelow IO ~dance comes With
Doss,er

be’O”g~’:’’’m%#ti=n
creates

““ @flEyqof

\ F7-4

El

Draft
086’, Sollc$t Offer

Prep.wmon Preparawm

w;
~ex=e,= /g E’e’

\B”M’O
Legenda \ creates

APPENDIX: THE GRAMMAR OF THE QUERY
LANGUAGE

The grammar is expressed in a yacc-like notation, but a
number of details have been omitted for readability.

Elements ending in _name , identifier or _operator are

syntactic terminal symbols, ref~ned at the lexlcal level in

obvious way; value denotes a constant value of one of the

basic types defined for the conceptual components of the

structured representation of documents; domain~redicat e

denotes a predicate of the domain knowledge, whose
arguments are nodes and conceptual components of the
semantic model. The precedence among the operators and the
use of parentheses are not evidenced.

objects

partition_part

conceptual_part

components

Figure 1. A fragment of the test case semantic net.
component

mRULE
BASE

Model server A

User workstation I
l—

UIMS

1

FI
mSNI

PII

~ NTS

mm

cFiIzl

t

b MODEL
BASE

D DOCUMENT
BASE

4

environment_part

connections

connection

subset_part

target

node

node_list

i

I
I

I

I

I

I

I

I

I
I

I

I

retrieve class_name objects
partition_part

conceptual_part
environment_part

contents_part

types

instances

empty
in query_identifier
in node_set_identi fier

empty
with components

component

components boolean_operator
component

field_name

field_name relational_operator
value

empty

environment connections

connection

connections connection

link_name target subset_part
domain_predicate

empty

subset components

node_name
{ node_list }

partition_part

class_name

class_name:instance_name

node_name
node_list , node_name

Document server

Figure 2. The architecture of the system

190

