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A b s t r a c t  

The term relevance weighting method has been 

shown to produce optimal information retrieval 

queries under well-defined conditions. The 

parameters needed to generate the term relevance 

factors cannot unfortunately be estimated 

accurately in practice; futhermore, in realistic 

test situations, it appears difficult to obtain 

improved retrieval results using the term relevance 

weights over much simpler term weighting systems 

such as, for example, the inverse document 

frequency weights. 

It is shown in this study that the inverse 

document frequency weights and the term relevance 

weights are closely related over a wide range of 

the frequency spectrum. Methods are introduced for 

estimating the term relevance weights, and 

experimental results are given comparing the 

inverse document frequency with the estimated term 

relevance weights. 

1 .  I n Z r o d u c t i o n  

The term relevance weight, also known as term 

precision, is defined as 

qi w i P~ " } (I) 
= l O g { l _ P i  1 - q i  

where Pi represents the probability of occurrence 

of term i in a relevant document, and qi is the 
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probability of occurrence of term i in a 

nonrelevant document. In practice it is convenient 

to replace the probabilities by frequencies, in 

which case the relevance weight becomes 

r. s. 
w. = log{~÷ i }, (2) 
i R-r l-s. 

l i 

where r. and s. represent respectively the number 
i 1 

of relevant and nonrelevant documents containing 

term i, and R and I represent the total number of 

relevant and nonrelevant items in the collection 

with respect to the query under consideration. The 

weighting function of expression (2) is defined 

simply as the logarithm of a particular proportion 

of relevant items containing a given term divided 

by the same proportion of nonrelevant documents 

containing the term. 

It has been shown that the term relevance 

factor is an optimal query weighting system under 

the following conditions [I-4]: 

i) the terms are assigned independently to the 

document of a collection; 

ii) a binary indexing system is used for the 

documents; that is, a term is either assigned 

or it is not assigned to a given document; 

iii) the similarity between a query and a document 

is computed as the inner product of the 

corresponding term vectors (that is, assuming 

document D = (dl,d2,...,dt) and query Q = 

(ql,q2 ..... qt ), the similarity is defined as 

t 

s(D,Q) = ~ qidi ). 
i=l 

Unfortunately the optimality result of the 

term relevance is of no consequence unless methods 
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exist for estimating the term occurrence 

probabilities Pi and qi' or alternatively the term 

frequencies r. and s., as well as the collection 
1 1 

statistlcs R and I. This information is easily 

generated only when exhaustive relevance 

assessments are available for each document with 

respect to each query. In practice such relevance 

assessments are of course not available before a 

search is actually conducted. Even after 

conducting an initial search effort, relevance 

information is normally obtainable for only a few 

of the retrieved documents. 

In the experiments conducted so far with the 

term relevance weights various assumptions have 

been used, leading to the generation of estimated 

term relevance values. The following main 

approaches may be cited: 

i) The available document collection is broken 

down into two halves, known as the even and 

odd collections, respectively; a single set of 

user queries is used first with the even 

collection to generate relevance information 

and compute the term relevance weights for the 

query terms. The weighted queries are then 

processed against the odd collection to test 

the effectiveness of the relevance weighting 

system. [5-8] 

ii) The previous method represents a type of 

relevance feedback where relevance information 

obtained from a portion of a collection is 

used to improve the retrieval characteristics 

of the remaining documents. However the 

process is realistic only in selective 

information dissemination (SDI) situations 

where the same queries are repeatedly 

processed against many different collections. 

A possibly more realistic testing situation 

keeps the document collection intact, but 

breaks a query collection into two pieces (the 

even and odd query sets). The relevance 

weights are then computed using the even users 

queries and later applied to new users 

represented by the odd query set. [9,10] 

iii) An even simpler approach consists in noting 

that R, the number of relevant documents with 

respect to a query is necessarily very small, 

compared to N, the total number of items in a 

collection. From this it follows that Pi ~ 

constant; N = I; and f. =s. , where f. = r + s 
1 i i 1 1 

represents ~he frequency of occurrence of term 

i in the collection. [ii] In these 

circumstances, the term precision formula of 

expression (2) reduces to 

N-f. 
w i = constant + log f ~ 

1 

(3) 

iv) Another possibility consists in taking into 

account dependencies between the terms 

assigned to the document collection. In that 

case, the user queries can be modified by 

adding dependent terms to the originally 

available query terms. The relevance 

weighting formulas (expressions 1 and 2) must 

then be appropriately modified by including 

the dependent term information. [12] 

v) A last possibility for estimating the value of 

r is to assume that a functional relationship 
1 

exists between f , the total number of items 
i 

in which a term occurs and r., the total 
1 

number of relevant items for the terms. 

[13,14] This method forms the basis for the 

experiments described in the present study. 

The details are therefore covered in the 

remainder of this report. 

It is clear that the use of term relevance 

weights raises problems of principle and procedure 

that do not arise in many other term weighting 

situations. Furthermore, the term relevance 

weights do not automatically produce large-scale 

improvements in retrieval effectiveness when 

compared with other less sophisticated weighting 

methods. One easily computable term weighting 

system that has consistently given excellent 

retrieval results is the so-called inverse document 

frecuencv (IDF) method where the weight of a term 

is inversely related to the number of documents to 

which the term is assigned. [15] 

The evidence available so far indicates that 

the term relevance weights generated by the 

previously described estimation methods do not 

produce retrieval results that are substantially 

better than IDF. The approximation process 

discussed under iii) above indicates moreover that 

under certain simplifying assumptions the term 

relevance of expression (2) reduces to a form of 

the inverse document frequency. (The weighting 

function of expression (3) increases as the 

document frequency f. decreases.) 
1 

In the remainder of this study, the 

relationship between term relevance and inverse 

document frequency are explored in detail and 

evaluation results are given to demonstrate the 

differences between the two term weighting methods. 
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2 .  T e r m  R e l e v a n c e  a n d  I n v e r s e  D o c u m e n t  
F r e q u e n c y  

A) Term Occurrence Characteristics 

To use the term relevance weights of equation 

(2) it is necessary to determine the values of R 

and I, that is, the total number of relevant and 

nonrelevant items in the collection with respect to 

a given query (R + I = N). If exact values are not 

available for these parameters, one might define R 

as the average number of relevant items in the 

collectlon for a set of previously processed 

queries, or R could be taken simply as the set of 

relevant documents which the user wishes to 

retrieve with respect to a given query. 

It remains to determine the parameters r and 
i 

s for each term of frequency fi (fi = ri + si) i 
that is, the number of relevant and nonrelevant 

documents in which a given term of frequency fi may 

be expected to occur. (The subscript i is dropped 

in the following discussion.) In choosing terms for 

incorporation into a query, a given user is 

unlikely to use the perfect terms, that is, those 

occurring only in the relevant documents and in 

none of the nonrelevant ones. On the other hand, 

the user may be expected to do better than picking 

merely average terms that are randomly sprinkled 

among the relevant items in a collection. 

Consider the frequency picture of Fig. 1 

relating the total frequency of occurrence f of a 

given term with the frequency of occurrence, r, of 

the term in the relevant documents. A random term 

of total frequency f may be expected to occur in a 

fraction (R/N)f of relevant documents; that is, r = 

(R/N)f corresponding to line OTB in Fig. i. A 

perfect term, on the other hand occurs only in the 

relevant documents assuming f ~ R. That is, for 

perfect terms r = f when 0 ~ f ~ R , and r = R for 

R ~ f ~ N . This corresponds to lines 0A and AB in 

Fig. 1. 

Following (14) it may be reasonable to assume 

that the behavior of terms actually chosen by the 

user for incorpoation in a query falls somewhere 

between the perfect and the random cases. In 

particular, the assumption is made that the number 

of relevant documents in which a term occurs is 

relatively larger for low-frequency than for high- 

frequency terms, that is, 

i)r =af for 0S f SR where R/N<a <i and 

ii) r=b+cf for R<f<N where 0<c<R/N. (4) 

The behavior of the actual query terms thus 

corresponds to the dashed lines 0M and MB of Fig. 

I. The parameters a and c represent the slope of 

lines 0M and MB respectively. 

Using these assumptions, it is now possible to 

characterize the behavior of the term relevance 

weight of expression (2). 

B) Characteristics of Term Relevance 

Theorem ~: 

For f S R 

co 

I i =  1 i " 
(5) 

Proof: For f~R, r = af 

Hence s = f - r 

= (l-a)f . 

Therefore 

r/s = a/(l-a). (6) 

By definition w(f) = log (R---~r ÷ l-s~ ) 

= log (r .I. l-s • R ) 
s R I R-r- 

Substituting (6) one obtains 

w(f)= lOg(l_-~a) + lOg(Ri) + log(~)- log(l-~). (7) 

By the normal series expansion of the logarithm, 

one has for (u) < 1 

2 i co i 
-log(l-u) = u+ IL_ .+ ~7_+...+ = ~ IL_ (8) 

2 +'" i i= 1 i 

By substitution into (7) one obtains 

oo co 

w(f) : log(1-~a)+_ log~- i:l ~ li (~)i+ i:l ~ li (R) ~ i 

(9) 

Since s ~ f ~ R << I, s/l is very small and thus 

the higher order terms of s/l can be ignored and 

the theorem is proved with the replacement of s by 

(l-a)f and r by af. 

When a is small, or when f << R, af/R is also 

very small and the higher order terms of af/R can 

also be dropped. One obtains the following 

corollary: 
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then 

Corollary ~: When a is small, or when f << R 

w(f) =lOg(l_-~a)_ + log(~) - Cl-a)f+~ R I  (I0) 

= constantl+ constant 2 • f • 

From the corollary it can be seen that w is 

approximately linear when 0 < f ~ R and when a is 

not ioo large. However as a and f increase, the 

higher order terms of f are required. As a÷l and 
OO 

f+R , the sum } " -=f(D~)i÷oo indicating that the 
i=l 

relevance weight w itself goes to infinity. 

The next theorem studies the behavior of the 

term relevance function in the region R < f & N. 

The rate of decrease of w in that region is shown 

to he approximately the same as the rate of 

decrease of log(i/f). 

Theorem i: For f > R 

I - i)+ w(f) = iog(~) + log((l_a)R 

oo 
l(~)i (Ii) 

i=l i 

To carry out the proof the following technical 

lemma is required: 

Lena 4: 

For f > R , 

i -s_  I i 
- I .  

R-r (i-a) R 
(I2) 

The proof is included in the appendix. 

The main theorem may now be proved easily. 

Proof: For f > R 

l-s 
w = log s R-r 

= log f-~r + lOg(l_-~al R - i) 
from (12) 

= log ~-.i--+ -/--i I) 
f f-r l°g(l-a R- 

= log ~ log(l-~) + I I  i) 
f - l°g(l-a R - 

OO 

f +  - . i~f; + log( I) 
i=l 

QED 

The last transformation again uses the series 

expansion (8) for the logarithm. 

When f > R, r/fSR/f < i. As f increases, r/f 

becomes very small. The theorem can then be 

further reduced as follows: 

w(f) =log(~)Z + ~+f l°g((ll)R-a - 1). (13) 

Expression (13) represents the first order case 

corresponding to (ii). Furthermore, since r ~R< f, 

I log ~r/f) I >> r/f 

w(f) = log(~)+ log((l#a)R- I). (14) 

By the assumptions leading to the frequency 

spectrum of Fig. I, r is increasing at a much 

slower rate than f when f > R. Expression (14) 

then shows that the rate of decrease of w is 

determined mainly by the rate of decrease of 

log(l/f). That is, for large f, the term relevance 

weight decreases at approximately the same rate as 

the inverse document frequency. As the next 

theorem shows, the connection between the two 

weighting systems is even stronger: Not only is 

the rate of decrease similar for the two systems, 

but in fact the corresponding values themselves are 

similar. 

Consider first an intuitive argument 

illustrated in Fig. 2. Assuming a ~ 1/2, the value 

of r is approximately equal to R/2 at f = R. Since 

r = R at f = N, the rate of increase of r between R 

and N will be R-~X~R. The value of R is normally 

much smaller than N. Hence the rate of increase of 

r will be very small, indicating that over a wide 

range of f, the value of r remains approximately 

equal to R/2. In other words, for a certain range 

of the frequency f, r ~ R-r. From expression (2) 

for the term relevance, it follows that w 

log((l-s)/s). When N >> f >> R, one has N = I >> f 

s >> R => r. That is, l-s will be close to N, 

and f close to s. Hence in that case 

w(f) ~ log N/f = IDF(f) . 

This relationship is formalized in the next 

theorem. 

Theorem ~: Given E >o, if i<~<I+~ 
2+E R 2+~ 

then 

lw(f) - IDF(f)] < llog(I/N) l + 2¢. (151 
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The conditions oz the theorem imply that r/R is not 

too far removed from 1/2 as stated earlier. 

Proof: Assume f > R 

w = log(~. R_-~r ) = log(f_-~r . ~R (1-r/R))(l-s/l) 

= log(~ r 11-s(s/l)) 
R((f-r)/f) N l-(r/R) 

= log(~ ~ ~(1-s/I) 
(1-r/f) R (1-r/R) ~) % 

= log(~) - log(l- ~f) + log(l-~)) - log(1-(l-~) 

÷ log(l- )+ log( ). 

Hence 

w-IDF = log(~) - log(l- Kf) 

+ log(l-11) + iog(1-(1-~)) - log(l- ~R ) . (16) 

To prove the thereom, it suffices to show that the 

sum of the last four terms of (16) is less than 2E. 

This is done by Lemma 6 proved in the appendix. 

The conditions of theorem 5 may be illustrated 

by taking a typical case and exhibiting the 

corresponding error bounds. Table 1 contains the 

corresponding data for a small collection where N = 

1020, R = 20, I = I000 and a = 0.53. It is seen 

from the Table that as the error ~ increases from 

0.5 to 1 and finally to 2, the frequency range for 

which the IDF approximation holds increases 

substantially. The theorem shows that the inverse 

document frequency weight is closest to the 

relevance weight at medium frequencies. The error 

increases for very low and very high frequencies as 

suggested previously in the illustration of Fig. 2. 

For the case under consideration, the error is 

less than 1.02 when f is between 90 and 221. When 

the range is expanded to 51S fS310, the error 

bound increases to 2.02. Finally, the error bound 

reaches 4.02 when the range is extended to include 

frequencies between 31 and 509. 

The experimental output included in the next 

section shows that the error bounds stated in 

theorem 5 are much larger than the real errors 

likely to be found in practice. In other words the 

actual similarity between term relevance and IDF 

will be larger than can be inferred from the 

theorem. 

3. ExDer imenta i OUtDUt 

It was shown in the previous section that for 

medium values of a, that is, for a near I/2, the 

term relevance weight can effectively be 

approximated by an inverse document frequency 

weight for term frequencies that are neither too 

small nor too large. To obtain a better idea of 

the usefulness of the IDF approximation, actual 

values are calculated for the case illustrated in 

the previous section (N = 1020, R = 20, I = I000) 

for three different values of a (a = 0.25, a = 

0.53, and a = 0.75). Four different weighting 

formulas are used experimentally: 

i) The actual term relevance (expression (2)) 

wl(f~,, = log( r l-f+r ) 
f-r " R-r 

ii) the first order approximation of the series 

expansion for the term relevance (expressions 

(I0) and (13) respectively): 

iR-s+r for f<R w2(f) = log( _ )+ log I R 

and 

w2(f) = log(~)+ r+ log( I - I) for f > R. 
f (l-a)R 

iii) the tenth order approximation of the series 

expansion for the term relevance (expressions 

(5) and (II) limited to i0 terms for the 

infinite series): 

I0 
IR s+ l(r)i forf >R. 

w3(f) = lOg(l_-~a)+ log - I i~ 1 i R 

and 

i0 
w3(f) = log(~) + log((1%a) R- I) + ~ l(r)ii f for f 

i=l 
> R. 

iv) the inverse document frequency welght 

w4(f) = log(~) . 

In each case, the calculated values for r are 

based on approximation (4); that is, one assumes 

r = af when f ~ R 

and r = b + cf when f > R 

The calculated values are shown in Table 2, and the 

corresponding graphs appear in Figs. 3, 4, and 5 

for the three values of the parameter a. 
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The values of Table 2 indicate that there is 

practically no difference between the exact 

relevance formula w I and the tenth order 

approximation w 3. The first order approximation is 

also fairly good, except in a small neighborhood 

around f = R. The IDF method, w 4, is acceptable 

for a = 0.25 and a = 0.53 when f is greater than R. 

For the case a = 0.75, the IDF values differ from 

the relevance values. However it can be seen that 

for f > 30, w I ~ w 4 + 1.20. This supports the 

previous claim that the rate of decrease of w I is 

about the same as that of w 4. The development in 

this section also lends theoretical support to the 

previously mentioned method by Croft and Harper 

[II], where the term relevance function was 

approximated by an inverse document frequency 

factor plus a constant (expression (3)). 

To summarize, if one assumes the conditions 

given in (4), then it can be seen that the 

relevance weighting measure first increases nearly 

linearly. For document frequencies greater than R, 

the relevance weight decreases at the same rate as 

the IDF scheme. Furthermore, for the medium 

frequency terms, the IDF and relevance weights are 

similar. Since most query terms used in practice 

may be expected to fall in the medium frequency 

range where the difference between w(f) and IDF(f) 

is small, it is not surprising that the available 

experimental data show little improvement when the 

simple IDF system is replaced by the term relevance 

weights. 
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A p p e n d i x  

Lemma ~: For f > R, l-s = ~ i -I 
R-r (l-a) R " 

Proof: From the original assumptions (4), one 

has 

r = af for 0 < f < R and 

r = b+cf for R < f < N 

(AI) 
(A2) 

Since r must be continuous at f = R one obtains for 

r=R 

aR = b + cR or 

b = (a-c)R (A3) 

Since r = b+cf in the region under consideration in 

this lemma, one has at f = N 
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R = b + cN • (A4) 

From (A3) and (A4) one obtains 

(a-c)R = R-cN . 

(1-a)R 
Hence C = (A5) 

N-R 

Using (A2) and substituting successively (A3) and 

(A5) one has 

r =b+ cf 

= (a-e)R + cf 

[a- (IN-.aR}R] R+ N-_I~R ] f 

= [aN-r + L ~  ] R 

Hence ~ : aN-R+ (l-a)f and (A6) 
R N-R 

1 - .E = ( l - a ) ( N - f )  (A7) 
R N-R 

A similar development is now used to obtain an 

expression for s/l. 

s= f-r 

= f -b - cf 

= f(l-c) - (a-c) R 

= f( I - (1N-tR)R) -(a-~) R 

= (N-R-R+aR)f - (aN-R)NRR_ 

(aN-R)R 
= S=l (N-R-R+aR)f- (N-R)I (A8) 

by definition 

from (A2) 

from (A3) 

Using (A6) and (AS) and noting that N = R+I, it 

follows that 

-~=aNl-Rl+ f- laf- Nf+ Rf+ Rf- aRf+ aNR-R 2 
R I (N-R)I 

aNI-RI- laf+ Rf-aRf+ aNr-R 2 
= 

(N-R)I 

aNN-RN- Naf+ Rf 
(N-R)I 

(aN-R) (N-f~ 
(N-R)I 

(A9) 

The expression needed in the lemma is first 

rewritten as 

_ .i.(l_~) _ r 

(R - I )  
R l_r 

R 

(At0) 

By substituting (A7) and (A9) into (AI0) one 

obtains: 

l-s_l (l-a) N-f~l+ (aN-r)(N-f) . 
R-r - R (N-R)I 

(l-a) I + (aN-R) 
R(l-a) 

= ~+ aR-R 
R(l-a) 

=I 1 -I . 
R (l-a) 

(because aN - al = aR) 

(All) 

This proves the lemma. 

L~mma~: 

a) llog(l-~)I < ~/2 

b) llog(l-~)l < E/2 and 

c) ilog(l - ( 1 -~ ) )  - l o g ( l - ~ ) l  < ( • 

(A12) 

(A13) 

(AI4)  

if and only if 

Proof: Consider first part a). 

Since log(l-~) ~ log(l-~) < o 

ilog(1-~)i ~ llog(1-~)i < ~/2 

if and only if log(l-~)>- ~/2 

if and only if (I-~) >e'E/2 

f > R/(l-e-g/2). 

one obtains 

(A15) 

Consider now part (b) of the lemma: 

Since 

log(l-f) ~ log(l-~)<o , one obtains 

Ilog(l-~)[ g llog(l-~)l < g/2 

if and only if log(l-f)> - ~/2 

if and only if (l-f)>e-E/2 

if and only if f < l(l-e-~/2) (A16) 

To prove part (c) it is necessary to use the 

fol. low. ing identity 2 
(xl-y I) : (x-y) (x1-1+x i- y + .... + xyl-2+ yi-l) (AIT) 
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There are two subcases: 

i) Assume r/R Z 1/2, so that (1-N/R) ~ r/R. 

In that case 

o < log(i-(1-~)) - log(1-~) (AIS) 

=- i=l ~ i(l-R) + i~I'= ( )l 

(using the series of expansion (8)) 

oo 
= ~ (2~R_I) l[(r)i-I 
i-I i "R" + (~)i-2(I-~)~"~ 

r r i-2.,, r~i-l~ 
+...+R(I-R) ~I-R~ j (using (AFT)) 

oo (r~ i-I (l_R) < ~) 
=< (2~R-I) ~ li "R" (since 

i=l i 

r I 
= (2R-l)l_(r/R) 

=< (2(2++~E)-I) (]---~+~)(by the assumption of theorem 5) 
l- ~ 

2+e 

=E 

ii) Assume now r/R < 1/2, so that (i - r/R) > r/R. 

In that case 

0 < - (log(l-CI-Rl) - log(l-~)) (AI91 

oo oo 
= ~ l(l_~)i - ~= l(r)i (using expression (8)) 

i= l  i i 1 i R 

oo 
= ~ (I-2 R) l[(l-R)i-i + (l-r~ i-2r 

i R" R 
i=l 

+ + 

oo i.,. r,i-I 
< (l-2R) i} 1 i I'I-R' 

..~_ _ L  
< (1-22+e)  1 (by a s s u m p t i o n  of  theorem 5) 

2+~ 

=E 

The lemma shows that (AI2) holds under conditions 

(AI5). Similarly (AI3) is true under the condition 

(AI6). Finally, (AI4) is strictly true for both 

subcases (i) and (ii). Hence the sum of the last 

four terms of (16) is less than 2 E under the 

conditions of theorem 5. 

QED. 
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lower frequency bound 

R/(l-e -e/2) 

upper frequency bound 

l(l_e -¢/2) 

{log(I/N){ 

{w(O - IDF{ 

¢-0.5 ¢:i ¢-2 

90 51 31 

221 393 632 

0.02 0.02 0.02 

<1.02 <2.02 <4.02 

Error Bounds of ' "--Iw(f) - IDF I of Theorem 5 

Table 1 

r=af r=R r=b+cf 

~ = (R/N) f 

• m 
R N 

Frequency Spectrum for One Term Relating r and f 

Fig. 1 

i f  

R 

R/Z - -- 

I 

0 R 

---r 

<_-r~_ ~ __--~_> f 

IDF Approximation of Term Relevance 

Fig. 2 

£ 

2 

5 

IO 

15 

20 

30 

i00 

200 

300 

400 

500 

600 

700 

a) 

w 1 

2.837 

2.874 

2.939 

3.010 

3.085 

2.611 

1.468 

0.9668 

0.7312 

0.5905 

0.4961 

0.4281 

0.3768 

I w2 w 3 w 4 Wl-W 2 Wl-W 3 

2.837 2.837 6.234 3.1x10 -a -l.lxl0 -6 

2.872 2.874 5.318 2.0×10 -3 -7.0x10 -6 

2.931 2.939 4.6250 8.5xi0 -3 -2.8xi0 -5 

2.990 3.010 4.2195 2.0x10 -2 -6.3xi0 -5 

3.048 3.086 3.9318 3.7xi0 -2 -l.lxlO -4 

2.594 2.611 3.5263 1.6×10 -2 4.1xlO -I0 

1.466 1.468 2.3234 2.0×10 -3 5.7xi0 -15 

0.9660 0.9668 1.6292 7.6xi0 -4 -1.5×10 -16 

0.7307 0.7312 1.2237 4.8xi0 -4 -5.5xi0 -17 

0.5901 0.5905 0.9360 3.6xi0 -4 2.7xi0 -17 

0.4958 0.4961 0.7129 3.0×10 -4 -l.2x10 -16 

0.4279 0.4281 0.5306 2.6×10 -4 -9.7xi0 -12 

0.3765 0.3768 0.3764 2.3xi0 -4 1.3xlO -16 

Wl-W 4 

-3,407 

-2.444 

-1.685 

-I. 209 

-0.845 

-0.916 

-0. 854 

-0. 6624 

-0.4926 

-0. 3456 

-0. 2168 

-0.1024 

2.8×10 -3  

Comparison of Term Relevance and Inverse Document Frequency 

(N = 1020, R = 20, I = I000, a = 0.25) 

f w I w 2 

2 4.085 4.084 

5 4.172 4. 162 

i0 4.335 4.292 

15 4.532 4.422 

20 4.778 4.553 

30 4.066 3.982 

i00 2.602 2.595 

200 1.931 1.929 

300 1.582 1.581 

400 1.353 1.353 

500 1.189 1.189 

600 1.064 1.063 

700 0.9638 0.964 

b) 

w 5 w 4 Wl-W 2 

4.085 6.234 1.4 10 -3 

4.172 5.318 9.6 10 -3 

4.335 4.625 4.2 10 -2 

4.532 4.219 I.i i0 -I 

4.778 3.931 2.2 i0 -I 

4.067 3.526 8.4 10 -2 

2.602 2.323 6.9 10 -3 

1.931 1.629 1.9 10 -3 

1.582 1.223 1.0 10 -3 

1.353 0.936 6.4 10 -4 

1.189 0.712 4.7 10 -4 

1.064 0.530 3.6 ]0 -4 

0.9638 0.3764 2.9 10 -4 

Wl-W 3 Wl-W 4 

-4.4 i0 -7 -2.149 

-2.7 10 -6 -I.146 

-I.I 10 -5 -0.290 

-1.9 10 -5 0.313 

1.2 10 -4 0.847 

1.5 10 -6 0.540 

4.0 10 -12 0.279 

5.3 10 -15 0.302 

8.8 10 -16 0.359 

8.8 10 -16 0.417 

8.8 i0 -16 0.477 

1.0 10 -20 0.534 

-6.6 10 -16 0.587 

Comparison of Term Relevance and Inverse Document Frequency 

(N = 1020, R = 20, I = 1000, a = 0.53) 

f w I w 2 w 3 w 4 Wl-W 2 

2 5.088 5.085 5.088 6.234 2.9×10 -3 

5 5.217 5.196 5.217 5.318 2.0×10 -2 

I0 5.478 5.383 5.478 4.625 9.5xi0 -2 

15 5.833 5.569 5.833 4.219 2.6xi0 -I 

20 6.392 5.755 6.379 3.931 6.3×10 -1 

30 5.300 5.105 5.300 3.526 1.9×10 -1 

100 3.590 3.576 3.589 2.323 1.3×10 -2 

200 2.844 2.840 2.844 1.629 3.3×10 -3 

300 2.443 2.441 2.443 1.223 1.5xlO -3 

400 2.172 2.171 2.172 0.936 9.1×i0 -4 

500 1.970 1.969 1.970 0.712 6.1×10 -4 

600 1.811 1.811 1.811 0.530 4.5×10 -4 

700 1.681 1.681 1.681 0.3764 3.5xi0 -4 

c) 

Wl-W 3 Wl-W 4 

-l.2xlO -7 -1.15 

-7.8×10 -7 -0.I01 

-2.6x10 -7 0.853 

3.3x10 -4 1.614 

1.2xlO -2 2.461 

8.5x10 -5 1.774 

1.2xlO -I0 1.267 

1.3xlO -15 1.215 

1.3×10 -15 1.22 

6.6x10 -16 1.236 

4.4xi0 -16 1.258 

2.2xi0 -16 1.281 

-2.2×10 -16 1.304 

Comparion of Term Relevance and Inverse Document Frequency 

(N = 1020, R = 20, I = 1000, a = 0.75) 

Experimental Comparison of Term Relevance and IDF 

for Three Values of a (0.25, 0.53, 0.75) 

Table 2 
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6 0~I a=o.z~ ~=lozo ~=2o 

• [~|~LL~ w I represents the exact formula f o r  relevance welghtlng 

["I~ w 2 and w 3 . . . .  p~r~xl£~clo~ to t h e  t e l  ....... i g h t  
/ 

|'I\~_0~- 0 v 4 
3. [ 

s t  ~ 2 " ~ 9 " ~ "  a v I v 2 = v 3 

o ~ 1oo ~oo "~'oo- ,~oo ~oo o;o ,o0 ~2o 900 10'00 

Graphical Output for Data of Table 2(a) 

Figure 3 

a=O. ~ 3  N=I020 R=20 

6.C:[| W 1 represents the exact for~uls for relevance welghtlng 

v 2 an d w 3 a r e  a p p r o x i m a t i o n s  to t h e  r e l e v a n c e  w e i g h t  

4 . 5  

3 , 0  

1 . 5  

, | ,  

; . . . . .  o 0 ~ 10 200 300 400 500 600 7 0 800 900 i000 

Graphical Output for Data of Table 2(b) 

Figure 4 

6.0 

4.5 

3.0 

1.5 

a:0.~5 N:1020 R:20 

v I represents the exact formuia for relevance weighting 

v 2 and W 3 a r e  a p p r o x i m a t i o n s  to  t h e  r e l e v a n c e  w e l g h t  

w 4 r e p r e s e ~ l : s  IDF velghttng 

O=w 4 

A = v I = v 3 

X =v  2 

; i i '1 i i | 

i00 200 300 400 500 600 7 O0 
i w ~ 

800 900 I000 

Graphical Output for Data of Table 2(c). 

Figure 5 
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