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Abstract

Information retrieval systems are being challenged to manage larger
and larger document collections. In an effort to provide better
retrieval performance on large collections, more sophisticated re-

trieval techniques have been developed that support rich, structured
queries. Structured queries are not amenable to previously pro-
posed optimization techniques. Optimizing execution, however, is
even more important in the context of large document collections.
We present a new structured query optimization technique which
we have implemented in an inference network-based information

retrieval system. Experimental results show that query evaluation
time can be reduced by more than half with little impact on retrieval

effectiveness.

1 Introduction

Speed has always been an important factor in the success and accep-
tance of information retrieval systems, If an information retrieval
system is too slow it will be intolerable to use, regardless of its

ability to identify relevant documents. Recent trends in the vol-
ume and availability of information suggest that system speed will
only become more important. Commercial document collections

already contain tens of gigabytes of data, and projects involving

digital librarles forecast document collections containing hundreds

of gigabytes of data. As document collections become larger, doc-

ument retrieval inevitably becomes more expensive. Moreover,
more sophisticated retrieval techniques are necessary to identify
relevant documents. Unfortunately, more sophisticated retrieval
typically implies more expensive retrieval, compounding the prob-
lem of providing answers quickly and efficiently.

The goal of our work here is to reduce the cost of evaluating
queries in sophisticated retrieval systems. In particular, we are
interested in statistical models that support structured queries. An

example of such a model is the inference network-based information
retrieval model [19], as implemented in the INQUERY full-text in-
formation retrieval system [4]. INQUERY has established itself as a

solid performer in terms of retrieval effectiveness [6], or the ability
to satisfy a user’s information need by identifying the documents
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that contain the desired information. lNQUERY’S retrieval effec-

tiveness is due to the power of the inference network model, which
treats document retrieval as an evidential reasoning process. Evi-
dence from a variety of sources may be combined using smrctured

queries to produce a final probabilistic belief m the relevance of a

given document. While tbe power of this model yields strong re-
trieval effectiveness, the structured queries supported by the model
present a challenge when considering optimization techniques.

We have addressed this challenge by developing an optimization
technique applicable to systems that support structured queries. We

have implemented and measured our technique in INQUERY and
found that query evaluation time is reduced by over 50%. Further-

more, this is accomplished with no noticeable impact on retrieval

effectiveness. In the next section, we describe query evaluation in
INQUERY. In Section 3, we describe our new optimization tech-

nique. Implementation details are considered in Section 4. Sec-
tion 5 contains a discussion of our experiments. In Section 6 we

discuss related work, and in Section 7 we offer concluding remarks.

Our contributions include a new optimization technique applicable
to information retrieval systems that support structured queries, and

an evaluation of the technique using an actual implementation on
realistic document collections.

2 Structured Query Evaluation

In INQUERY, a user’s information need is satisfied by expressing

that need as a query and evaluating the query against a collection

of documents. Evaluating the query for a given document produces

an estimate of the probabi Iity of that document satisfying the in-
formation need, expressed as a final belief score. After all of the
documents in the collection have been evaluated, they are ranked
based on their final belief scores. A ranked document Ilst is then
returned to the user.

A query consists of indexed concepts, belief operators, and
proximity operators. These elements are combined in a tree struc-

ture with indexed concepts at the leaves and operators at the internal

nodes. An example query is shown in Figure 1, where operators

are prefixed with a hash mark (#). An indexed concept is a term or
other special object identified at indexing time. A proximity opera-

tor produces constructed concepts by combining indexed concepts
and other constructed concepts at query processing time. 1 Concepts
contribute belief values for every document in which they appear.
Belief operators describe how to combine these belief values to
produce the final belief score.

‘ This definition of concept is a dlght departure from the formal detinttion tn the

inference network 119 ] The d]st]ncuon between indexed and constructed concept~ I&

introduced here to facilimte diwuswon from mt ]mplementimon perspecuve

and/or fee.
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Figure 1 Example query in internal tree form.

Belief operators operate on belief values and return belief val-

ues. The belief operators include and, or, not, sum, weighted sum,
and maximum. The first three are probabilistic implementations of
the traditional boolean operators. The next two return the average
and weighted average, respectively, of their children’s belief values.

The last operator returns the maximum of the belief values from its

children.
Proximity operators operate on proximity lists and return either

a new proximity list or a belief value. A proximity list contains

the locations where its associated concept occurs in a given doc-
ument. For example, in Figure 1 the proximity list for the term
“information” in document j would contain the locations of each

occurrence of “information” in document j. When the #phrase op-
erator combines that proximity list with the proximity list for the
term “retrieval” in document j, a new proximity list for the phrase
‘“information retrieval” is constructed that contains the locations
where “information retrieval” appears in document j. This may be

returned to a parent proximity operator, or a belief value may be

computed from the proximity list and returned to a parent belief
operator.

The proximity operators include phrase, ordered distance n,
unordered window n, synonym, and passage sum. The ordered
distance n operator identifies documents that contain all of the

operator’s child concepts {c I . CL} with the constraint that the
concepts must appear in order and be spaced such that the distance

between c; and c,+1 is less than or equal to n, The unordered
window n operator is similar except that all of the child concepts

must appear within a window of size n and they may appear in any

order. The phrase operator is initially evaluated as an ordered
distance n with n = 3. However, depending on the quality of the
resultant phrase, the operator may ultimately be evaluated as an

ordered distance n with n = 3, a sum, or a maximum of these
two.

The synonym function combines two or more proximity lists
into a single proximity list by taking the union of the locations for

each document in the lists. The new proximity list represents a
constructed concept that occurs anywhere any of the child concepts
occur.

The last function, passage sum, calculates a belief for a doc-

ument as follows. First, the document is divided into fixed size
overlapping passages, where the last half of each passage overlaps
the first half of the subsequent passage. Next, a belief score for

each passage is calculated based on the number of occurrences of

each of the child concepts within the passage and any weights as-
sociated with the child concepts. Finally, the maximum passage
belief is returned as the belief for the document. Proximity lists are
required from the chi Idren to determine concept occurrences within

each passage. and a belief list is returned from the passage operator
itself.

The belief value contributed by a concept for a given document

is calculated using a probabilistic version of the /f. ia!f score. The

tf weight is directly proportional to the within document frequency
of the concept, such that the more times the concept appears in
the document, the greater the belief value. The icf weight is in-

versely proportional to the concept’s document count (the number

documents in which the concept appears), such that the greater the
document coumt, the smaller the belief value. The details of belief
value calculation can be found in the Appendix.

The document counts, within document frequencies, and prox-

i mit y lists for indexed concepts are extracted and stored in an in-
verted file [5, 8] when the document collection is indexed. An
inverted file (consists of a record, or inverted list, for every in-
dexed concept that appears in the document collection. A concept’s
inverted list contains its document count and an entry for every
document in which that concept appears, identifying the document
and giving the within document frequency and proximity list of the
concept within the document.

To facilitate locating information about a particular document

in an inverted list, the document entries are stored in document
id order. This naturally leads to the following query processing

strategy. First, each node in the query tree is initialized with the

next document id (NID) to be processed at that node. For indexed
concept (leaf) nodes, this is simply the id of the first document that

appears in the inverted list for that concept, Operator (internal)

nodes are classified as either union or intersection style operators.
Union style operators calculate a result for the current document if
at least one of its children contributes a result for that document

(e.g., weighted sum). Intersection style operators calculate a result
for the current document only if all of its children contribute a
result for that document (e. g., ordered distance n) A union style
operator is initialized with the minimum of its children’s NIDs,
while an intersection style operator is initialized with the maximum

of its children’s NIDs
Processing is performed document-at-a-time with the current

document to process determined by the NID at the query tree root
The query tree is evaluated In a depth-first fashion for the current
document. When a node representing a concept is encountered.
a belief value for the current document is computed. The belief
values flow from the leaves to the root, being combined according

to the belief operators along the way. [n addition, as each node is
evaluated the node’s NID is updated appropriately from its children.

When the root node returns the tinal belief score for the current

document, it is saved in a list for later ranking. This process repeats

until the NID at the root node indicates that all documents have been

processed. The list of final belief scores can then be sorted and the

ranked listing returned. Note that the only documents evaluated are
those that appear in the inverted lists for the indexed concepts in

the query. All other documents receive a default final belief score.
It turns out that an extra query processing step is required. In

order to calculate a belief value for a constructed concept (e g , a
phrase), we need the concept’s idf weight. The idf weight depends

on the number of documents in which the concept occurs. This
is unknown until the constructed concept has been evaluated for
all of the documents. Therefore, a preprocess ng step is needed

to fully evaluate the constructed concepts and determine their tdf
weights. The results of this preprocessing step are saved in tem-
porary inverted lists, allowing proximity lists and belief values to

be immediately obtained from constructed concepts during the final
query evaluation phase.

3 Optimization of Structured Queries

There are two factors that determine the cost of query evaluation.
First, there is the complexity of the query. The discussion in Sec-
tion 2 suggests that queries may be quite complex. The more com-

plex the query, the more processing required for each document

in order to evaluate the document’s final belief score. The second

31



factor is the size of the set of documents that must be evaluated, or
the candidare document set. This set may be quite large. Moffat
and Zobel [12] found that for queries containing around 40 terms,
using the terms’ inverted lists to populate the candidate document
set caused near] y 75% of the documents in the collection to be
placed in the candidate document set. This is consistent with our
results reported below, where our unoptimized candidate document

set typically contained over half of the documents in the collection.

Given the relatively small number of top documents a user might

actual] y review in an interactive system, such a large candidate doc-

ument set seems exorbitant. If our document collection contains one
million documents, the system may have to evaluate over five hun-

dred thousand documents, while the user probably won’t consider
more than the top one thousand documents. Therefore, the goal
of our optimization technique is to constrain the set of candidate
documents. If we can reduce the size of the candidate document

set, we will reduce the number of per document evaluations of the
query tree, reducing overall query processing time. Moreover, if
we are no longer processing every document that appears in the

inverted lists, we maybe able to skip portions of inverted lists [ 13].
If the skipped portions are large enough and our inverted list imple-
mentation provides the necessary functionality, the overall number

of disk 1/0s might be reduced.
To constrain the set of candidate documents, we want to add

just those documents that have a strong chance of satisfying the
user’s information need. Without actually evaluating the query, the
best we can do to estimate this chance for a given document is to
consider the belief contributions from the indexed concepts in the
query. Recall that the belief value for concept i in document j is a
product of the idf weight for concept i and the tf weight for concept
i in document j. This leads to the following two observations and
corresponding rules:

1. Due to their large idf weights, rarely occurring concepts are

likely to make large contributions to a document’s final belief
score. Therefore, they will identify good candidate docu-

ments. For a concept whose idf weight exceeds some thresh-

old, add to the candidate document set all documents that
contain the concept (i.e., all documents that appear in the

concept’s inverted list).

2. More frequently occurring concepts may still contribute sig-
nificant belief values for the documents in which they appear
frequently (i.e., have a large tf weight). For a concept that

does not exceed the idf weight threshold, add to the candidate
document set the documents associated with the concept’s top
n tf weights.

An indexed concept’s idf weight is inversely proportional to

the length of its inverted list. Rather than establish an idf weight
threshold for candidate set population, we use an inverted list length
threshold. An inverted list is short if it can be obtained in a single
disk read, otherwise it is long. From our first rule, all of the
documents that appear in a short list will be used to populate the
candidate document set. The cost associated with this activity is
a single disk read per short inverted list. Since one disk read
is required anyway to access an inverted Ii st for later processing,

populating the candidate document set with a short list will incur
no extra 1/0 costs.

From our second rule, we need to obtain the documents associ-
ated with the top n tf weights in the long inverted lists. This suggests

that the inverted lists should be sorted by tf weight. However, query

evaluation is document driven and requires that the inverted lists be
sorted by document identifier. Instead, if n is defined to be relatively
small, we can maintain a separate list of the documents associated
with the top n rf weights for each long inverted list. Zipf’s Law[21 ]

suggests that there will be relatively few long inverted lists, but they

will consume the majority of the space in the inverted tile, If each

top document list is constrained to be smaller than a disk page, then
the overhead associated with the top document lists will be a small
percentage of the total space occupied by the long inverted lists.
Furthermore, obtaining the top document list for a long inverted list
will require a single disk read.

Using our two rules, the candidate document set is created in a
final preprocessing pass over the query tree, after the constructed

concepts have been built. When an indexed concept with a short
list is encountered, all of the documents in that list are added to

the candidate set. When an indexed concept with a long hst is

encountered, the documents with the top n tf weights from that list
are added to the candidate set. When a constructed concept built

by a proximity operator is encountered (e.g., a phrase), it could
be handled in the same way as an indexed concept. However, for
simplicity in the current implementation, constructed concepts are
treated like short lists and all of the documents in a constructed

concept’s inverted list are added to the candidate set.

One special case is the not operator. In this case, we ignore
the subtree below the not altogether. Theoretically, the not would
add every document that does not contain the concept represented

by its child node. [n the probabilistic implementation, the not does
not increase the belief in documents that do not contain the negated
concept, but mere] y reduces the belief i n documents that do contain

the negated concept. Therefore, it is sufficient to ignore the not
when establishing the candidate set and simply evaluate the not on

the candidate set established from the rest of the query tree.
The final candidate document set is used to drive the document

evaluation process. Rather than choose the current document to
evaluate based on the NID at the root of the query tree. we simply
evaluate each of the documents in the candidate set. Otherwise,
query evaluation proceeds as described in Section 2. Each document

in the candidate set is fully evaluated and receives an accurate final
belief score. The final relative ranking of the documents in the

candidate set wil 1be the same as if no optimization had been used.

The only difference will be that documents that were not added to

the candidate set will receive the default document score and may

appear lower in the final ranking than they would have had they

been evaluated.

4 Implementation

Our optimization technique places certain functionality require-
ments on the inverted file implementation. First, we must be able

to store the top document lists for the long inverted lists. Second,
we must be able to skip through long lists if we are to realize any
savings in 1/0. Fi nail y, we must be able to distinguish between
the different types of lists and handle them accordingly at indexing

time, query processing time, and collection modification time.
Fortunate y, these functionality requirements are easil y met i n

INQUERY. INQUERY’s inverted file is managed by the Mneme
persistent object store [14, 2]. Mneme provides storage and re-
trieval of objects, where an object is a chunk of contiguous bytes
that has been assigned a unique identifier. Mneme does not interpret
the contents of objects, but does support inter-object references, al-
lowing the fabrication of complex data structures. Mneme IS geared

towards performance and extensibility. Policies controlling activ-
ities such as buffer management, tile organization, clustering, and
object creation (among others) may be customized for the particu-

lar client application. This is particularly important in an inverted
file environment where objects will come in a variety of sizes and

exhibit unusual access patterns. Customizing the management of
these objects will lead to improved overall performance.

Using Mneme our inverted lists are managed as follows. Short
lists are defined to be 8 Kbytes or less. This is the size of a disk
read in a typical Unix system. Short lists are stored in fixed length

.
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Figure 2: Long inverted list structure.

objects, ranging in size from 16 bytes to 8 Kbytes by powers of 2
(I e , 16, 32, 64, . . .. 8 K). A document entry in the list for term
~ consists of a document identifier j, the frequency of the most
frequent term in the document, the within document frequency of
the term in the document, and the location of each occurrence of
the term within the document.

A short list is compressed in two steps. First, the proximity list
associated with each document entry is delta encoded, where the first
location is stored as an absolute value and all subsequent locations

are stored as deltas from the previous location. This yields numbers

of significantly smaller magnitude. Then, all numbers in the list are
represented in base 2 using the minimum number of bytes (up to

four), with a continuation bit reserved in each byte. This results in
variable length numbers where the largest representable number is
,28
L.

Long inverted lists (larger than 8 Kbytes) are stored as shown
in Figure 2. A long inverted list is split into two distinct lists: a

frequencies list and a locations list. The frequencies list contains

the document id and frequency statistics from each of the document

records in the original inverted list, The locations list contains

the locations (proximity lists) from the document entries. Each
of these new lists is stored in 8 Kbyte objects accessed through a

directory. A directory entry contains a pointer to an object, along
with the document id for the first list entry in the object. To obtain
the information for a specific document, the directory is used to
identify and directly access the objects that contain the desired
information.

The directory for the frequencies list is compressed and stored
in a special 8 Kbyte object called the Frequency Head. When
the inverted list is first accessed, the Frequency Head is obtained

and the directory is decompressed. This is all that is needed to

access the frequencies list and satisfy requests for belief values

from parent belief operators. If a proximity list is required, the
Locations Head must be obtained. The Locations Head is another

special 8 Kbyte object that contains the compressed directory for

the locations list. Both the frequencies list and the locations list are
accessed simultaneously to return the desired proximity list.

The per document proximity lists in a locations list are delta
encoded and compressed just as they are in the short inverted lists.

In the frequencies list, the document ids are also delta encoded

before all of the numbers in the list are compressed using the same

compression scheme as for the short lists. Note that the document
ids in short inverted lists could be delta encoded as well, although

the additional space savings would be small.
The Head objects will store the tails of their respective lists if

there is enough room. In addition, the Frequencies Head contains
the top document list stored in a compressed format. For our

initial implementation, we set the number of top documents n to
1000. Within inverted list i, documents are ranked based on their

t~ weights, calculated as the normalized term frequency rrtfi, (see

Appendix). This produces a floating point number between 0.0

and 1,0. To increase the amount of compression possible on the

top document list, each document’s normalized term frequency was
multiplied by 16383 (i.e., 214 – 1) to produce an integer guaranteed
to fit in two bytes or less using our variable length compression
technique. This reduces the precision of our within list rsrnking
function, but yields a significant space savings. The lost precision
is seen only at the boundary score for the worst document in the

top document list, where we may not be sure that we have the best

document mapped to that integer. All documents with larger integer

scores are guaranteed to have a larger nff,.

This implementation provides the functionality necessary to

support our optimization technique, including storage of the top

document lists and the distinction between short and long inverted

lists. Moreover, the directory based access into the large inverted

lists supports skipping through the lists and the potential for disk
1/0 savings.

5 Performance Evaluation

Optimization techniques for ranking information retrieval systems
may be classified as either safe or unsafe. Safe techniques have
no impact on retrieval effectiveness, while unsafe techniques may
trade retrieval effectiveness for execution speed. The optimization

we have proposed is unsafe. Any evaluation of an unsafe opti-

mization technique requmes measuring the execution speeds of the

base and optimized systems, as well as assessing the impact of the
optimization technique on the system’s retrieval effectiveness. We
describe our evaluation below, including the platform on which

we ran our experiments, the test collections and query sets used,
the performance measured. and the levels of retrieval effectiveness
observed.

5.1 Platform

All of our experiments were run as superuser with logins disabled

on an idle DECSystem 3000/600 (Alpha AXP CPU clocked at
175 MHz) running OS F/1 V3.O. The system was configured with

64 Mbytes of main memory, one DEC 1.0 Gbyte RZ261 Winchester

SCSI disk, and one DEC 2.0 Gbyte RZ28b Winchester SCSI disk.
The executable were compiled with the DEC C compiler driver

3.11 using optimization level 2. All of the data files and executable
were stored on the larger local disk, and a 64 Mbyte “chill file’” was
read before each query processing run to purge the operating system

file buffers and guarantee that no inverted file data was cached by
the file system across runs. In all cases we allocated 15 Mbytes of

Mneme buffer space to cache memory resident inverted list objects.

5.2 Test Collections

For our experiments we used three test collections drawn from the

three volume TIPSTER document collection used in the TREC [6]
evaluations. The 7YF’STER document collection consists of arti-
cles and abstracts from various periodicals, Department of Energy
abstracts, Associated Press articles, Federal Register articles, and

U.S. Patent Office reports. Statistics for the test collections can be
found in Table 1, where Terms is the number of unique indexed

concepts and Postings is the total number of occurrences of the

indexed concepts. Tipl is volume 1, Tip12 is volumes I and 2, and
Tip123 is all three volumes.

The test collections were indexed automatically, using stem-

ming to reduce words to common roots and a stop words list to
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Table 1: Test collection statistics Table 3: Number of documents evaluated.

Collection Size (MB) Dots Terms Postings

Tipl 1206 510343 639914 112812693
Tip12 2069 741562 859121 191742705

Tip123 3181 1077872 1090896 281417622

Table 2: Inverted file space requirements (Mbytes).

Collec- lL Overheads (% of IL data) Total
tlon Dat~ Top DOCS Free Space Other

Tlpl 338 22 (6.5) I 89 (264) I 9 (2.7) 458
Tip12 574 30(5 3) 122(21 2) 11(19) 737
Tip123 836 39(4 6) 154 (18.4) 14 (1.7) 1043

eliminate words too frequent to be worth indexing. Feature rec-

ognizes were also used to identify city names, company names,
foreign country names (i.e., not the United States), and references

to the United States. Statistics for the inverted files generated dur-
ing the indexing process can be found in Table 2. For each file the

table gives the size of the inverted list data after compression, the
overheads in the file. and the total tile size. Top Dots is the space
required for the top document tables, Free Space is unused space at

the end of an object that could be allocated in the future, and Other
is data structure and Mneme overhead. Most of the free space ap-
pears in the Head objects of long inverted lists, indicating that a

better implementation could be more space efficient. Regardless,

the overall inverted files are still only 33 Y0–3890 of the size of their
respective document COIlections.

5.3 Query Sets

The query sets used in our experiments were generated locally from
topics provided for the TREC evaluations. The first query set,
Query Set 1, was generated from TIPSTER topics 51-100 using
automatic and semi-automatic methods. The resultant fifty queries
consisted primarily of weighted sums of terms, phrases, and ordered
proximities, with an average of 39 terms per query.

The second query set, Query Set 2, was generated from TIP-

STER topics 151–200 in a series of steps. First, a base query set was
created using automatic methods. Next, each base query was run

against a PhraseFincfer [9] database built from TIPSTER volumes 1

and 2. PltruseFinder returns a set of phrases extracted from the sup-

porting database based on the given query. Thirty new phrases were
automatically added to each query, forming an augmented query.
The augmented queries were then interactively modified to simulate
changes an end user might make to automatically generated queries.
The changes were limited to the deletion of words judged spurious

by the user, changes in weighting based on perceived relative im-
portance, and the addition of proximity constraints. Approximately
five minutes were spent on each query. Finally, each modified query
was duplicated and one copy was placed inside a passage sum oper-
ator with a passage size of 200, which in turn was added to the other
copy in a weighted sum. The final set of fifty queries contained an
average of 105 terms per query.

5.4 Performance Results

Each experimental configuration involved three variables: query
set, document collection, and level of optimization. Query Set 1
was run against all three document collections, while Query Set 2
was run against just the first two document collections (relevance

[ CO1lec- 1 Orv I Documents (97. chanrze) 1
tion ;e; All 1000’ - ‘ 100

Tipl 1 13436637 1057900 (–92) 382841 (–97)
2 11[31087 977694 (–9 I) 419740 (–96)

Tip12 1 21207958 1263141 (–94) 559012 (–97)
2 17384562 1181650 (–93) 611787 (–96)

t TiD123 [ 1 I 29763641 I 1439024 i–95i I 710976 (–98~

Table 4. Wail clock times

collec- Qry Seconds (% change)
tlon Set All 1000 100

-

judgments were not available for topics 15 1–200 on volume 3).
For a given query set and document collection, performance was
measured at three levels of optimization: all, 1000, and 100. all
is the unoptimized baseline, where the candidate document set is
defined by the original query processing strategy described in Sec-
tion 2. 1000 is the most conservative level of optimization we

considered, where the candidate document set is populated from

constructed concepts, short inverted lists, and the top 1000 doc-

uments from long inverted lists. 100 is a more aggressive level

of optimization, where the candidate document set is populated
from constructed concepts, short inverted lists, and the top 100
documents from long inverted lists. The level of optimization is
controllable with a run-time switch allowing the same inverted file
to be used for all optimization levels within a given configuration

Our first metric of interest is the size of the candidate document
set. Table 3 gives the total number of documents evaluated in each
query set configuration. For example, when Query Set 1 was run

against TIpl with no optimization, scores were calculated for a total
of 13,436,637 documents, or an average of 268,733 documents per
query. This is over half of the documents in the entire collection.

However, when only the top 1000 documents from long inverted
lists are used to populate the candidate document set, scores were

calculated for a total of 1,057,900 documents, or an average of

21,158 documents per query. We have reduced the number of
documents being evaluated by over 90%. The more aggressive level
of optimization reduces the number of documents being evaluated

even further. From this table it is clear that we have met our first

goal of reducing the size of the candidate document set
The more important question is how this translates into a re-

duction in query processing time. To answer this question, we
measured the real (wall-clock) time required to run each query set
configuration. Real time was measured using the GNU time com-
mand and includes all time from start to finish of the query set batch

run, including the processing of relevance judgments, In Table 4,
we report the average real time of ten separate runs for each con-
figuration. In all cases the range between the best and worst times
recorded for a given configuration was less than 3.3% of the average
for the configuration.

The query processing speedup reallzed even with our most con-
servative level of optimization is quite dramatic. In all cases, query
processing time is cut at least in half, Moreover, most of the im-

provement is realized in the more conservative 1000 configuration,

Optimizing more aggressively in the 100 configuration y]elds just
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an additional 2Y0–5% improvement over the baseline, Clearly we

have achieved our ultimate goal of reducing query processing time

With the candidate document set considerably reduced, we
would expect to be able to skip slgniticant portions of the long

inverted lists during query evaluation. To measure this, we counted

the number of whole objects skipped during long inverted list pro-

cessing Perhaps surprisingly, In all 1000 configurations there was
no increase in the number of long list objects skipped. In fact, even

at more aggressive optimization levels, the number of additional

objects skipped was minimal. Moreover, the real impact of any

skipping was measured in terms of a reduction in the number of

object faults, where an object fault occurs when a non-memory res-
ident object M accessed and must be read from disk. Even when
there was an increase in skipping, the reduction in object faults was

insignificant, indicating that we were skipping memory resident

objects which wouldn’t have required a disk read anyway.
The reason for this effect is twofold, First, the information in

the long inverted lists is very densely packed in order of document
id. Second, the membership of the candidate set is independent of
document id, meaning the entries in a long inverted list that must be
accessed during query processing should be arbitrarily distributed
over the entire list. Therefore, even though we are in fact skipping

large portions of the long lists, we still end up accessing at least one

document entry in nearly every object in the lists.

To investigate this effect further, we built our inverted tiles

using 2 Kbyte objects in the frequencies and locations Ii sts. In this
version skipping was more noticeable (especially at more aggressive

optimization levels), but again the number of object faults was
reduced by less than 270. Moreover, since disk reads are 8 Kbytes,
we wouldn’t expect to see any reduction in the number of raw disk
1/0s when compared with the version that used 8 Kbyte objects.

5.5 Retrieval Effectiveness

Along with query processing speed, we must also look at the impact

on retrieval effectiveness in order to fully evaluate our unsafe op-

timization technique. Precision at standard recall points obtained
with different levels of optimization for each of our five query

set/document collection combinations is reported in Tables 5– 9.

The relevance judgments used to generate these tables came from

the TREC evaluations. We show precision based on full rankings at
the standard 11 recall points and the 11pt average, where precision
at 0% recall is interpolated. As before, all is the unoptimized base-
line version, while 1000 through 50 are optimized versions where
the label indicates the number of top documents taken from long

inverted lists to popu!ate the candidate document set. We show a

broader range of optlmizahon levels here than in our timing test to
give a better feel for the impact on retrieval effectiveness as the op-

timization becomes more aggressive. In each of the tables, percent

change IS from the baseline version.

Consider the results for the 1000 configuration in Tables 5–

9. For all query set/document collection combinations, retrieval

effectiveness is remarkably good. At recall levels up to 70%, there
is no noticeable degradation in precision The implication here is
that the high end of a document ranking returned by the optimized
system, or the documents most likely to be considered by a user in
an interactive system, will be just as rich in relevant documents as
in the unoptl mi zed version. Furthermore, the 11pt averages are not
significantly different from those for the unoptimized version.

Now consider the results in Table 5. As the optimization be-

comes more aggressive (from 1000 to 50), we see two trends. First,
at low recall, precision actually improves somewhat and then falls

off. This indicates that the technique is doing a good job of iden-
tifying the very best candidate documents, and is consistent with
other results using similar techniques [ 16, 12]. Second, at high
recall, precision becomes significant y worse as the optimization

becomes more aggressive, This is because we are not considering

documents which have a strong combined belief from all of the

query terms, but lack a single query term belief strong enough to
place the document in the candidate set.

In Tables 8 and 9 we do not see any improvement in preclslon
at low recall as the optimization becomes more aggressive. Thm

is due to the use of the passage sum operator m Query Set 2.

The calculation of belief for concept i in document j IS slightly
modified Inside a passage operator since it is based on a passage of
the document, rather than the entire document. Thus, our ranking of

document j within the inverted list for concept i is slightly inaccurate
with respect to the passage operator. This suggests that our retrieval
performance could even be improved.

6 Related Work

Some of the earliest optimization work in information retrieval was
carried out by Smeaton and van Rijsbergen [ 18] in the context of
a nearest neighbor retrieval model, They describe how an upper
bound on the similarity of any unseen document can be calculated
based on the unprocessed query terms. If this upper bound is less

than the similarity of the current best document, processing may

stop. Perry and Willett [ 15] show how the upper bound technique

can be applied to the same model extended to support incremental

document score accumulation,

Using a system that returns a full ranking of the document col-
lection, Buckley and Lewit [3], and later Lucarella [ I 1], describe a

technique to eliminate processing of entire inverted lists, assuming
we are interested in only the top n documents. After processing

a given term, the documents can be ranked by their currently ac-
cumulated scores, establishing the current set of top n documents.
An upper bound on the increase of any document’s score can be
calculated from the unprocessed terms in the query, assummg the
maximum possible tf, idf contribution from each of those terms, [f

the n + 1“ document’s score plus the upper bound increase is less
than the trf~ document’s score, then the set of top n documents has

been found. This work and the work on nearest neighbor models

forms the basis of our first rule for candidate set population,

There are two variations on the previous scheme, both of which

share our goal of constraining the candidate document set. The first
variation, proposed by Harman and Candela [7], is called pruning,
Rather than place a limit on the number of documents returned
to the user, they establisb an insertion threshold for placing new
documents in the candidate set. In order to place a new document
in the candidate set, a term’s potential score contribution must

exceed some threshold Inverted list processing has two distinct

phases. First, during a disjunctive phase, documents are added to

the candidate set and partial scores are updated, Then, after the

insertion threshold is reached, a conjunctive phase occurs where

terms are not allowed to add new documents, only update the scores

of existing documents.

The second variation was proposed by Moffat and Zobel [12]
Rather than use an insertion threshold related to a term’s potential

score contribution, a hard limit is placed on the size of the candidate
document set. The disjunctive phase proceeds until the candidate
set is full. Then the conjunctive phase proceeds unhl all of the
query terms have been processed. Both of these schemes populate
the candidate document set using a variation of our first rule based

on id$ weight. They do not, however, incorporate a clear version of
our second rule based on tf weight.

The previous techniques use inverted lists sorted by document
id. Other techniques sort inverted lists by tf weight, Wong and

Lee [20] partition their inverted lists into pages and process the
pages in order of upper bound contribution to document score.

They describe a number of estimation techniques for determining
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Table 5: Precision at standard ~
Precision

all
83.5
60.3
527
46,8
40.6
34,9
30.4
253
199
12.1
2.4

37,2

all
836
57.2
490
43.1
37,7
32.4
27.7
22.5
173
11.2

1000 500
837 (+0,2) j 83.9 (+0.5)
60.5 (+0 2) 60.9 (+1.0)
53,0 (+0.6) 53.3 (+1.2)
47.1 (+0.6) 47.0 (+0.4)
40.9 (+0.7) 40.9 (+0.8)
35,2 (+1.0) 35.1 (+0,8)
30.6 (+0.6) 30.7 (+1 1)
25,7 (+1.7) 25.6 (+1.3)
19.8 (–0.1) 183 (–7 9)
11.6 (–4,6) 11.3 (–6.9)
I .7 (–29 2) 15 (–38.7)

37.3 (+0,2) 372 (–o 1)

all points for Tlpl, Query Set 1.
b change) – 50 quer[es

300
83.9 (+0,5)
608 (+0,8)
53,4 (+1 3)
46.7 (–0.3)
41.0 (+1 0)
35.1 (+0.7)
301 (–1.0)
24.0 (–5 1)
17.7 (–10.9)
9.6 (–20.9)
1.6 (–36,2)

36.7 (–1.2)

Table 6: Precision at standard recall points for T1p12.
Precision ~change) -50 queries

Znn1000
83.7 (+0. I)
57,5 (+0.6)
49,5 (+1 o)
43.4 (+0.8)
38.1 (+1,0)
32,9 (+1.5)
279 (+0 6)
22,8 (+1 .4)
17.0 (–1.6)
10.0 (– 10.6)

1.2 0.5 (–59.3)

I average I 34,8 I 34.9 (+0.1)

500
83.5 (–0,1)
57.7 (+0,9)
49.7 (+1.4)
43.5 (+0.9)
380 (+0.9)
32.5 (+0.3)
27.2 (–1.8)
21.7 (–3.8)
15.0 (–13.4)
8.5 (–24.2)
0.6 (–54 o)

34.3 (–1.3)

83,3 ‘-- (–0.4)
57,7 (+0.9)
49.6 (+1 1)
43.2 (+0 4)
37.3 (–1.0)
32.0 (–1.3)
260 (–6.1)
20.2 (–104)
138 (–20,0)
7.8 (–30 3)
06 (–55 4)

100
83.9 (+0 5)
614 (+1.7)
535 (+1.5)
46 I (–1.7)
38.9 (–4.2)
33 1 (–5.0)
28.1 (–7 6)
209 (–17 i)
15,8 (–20.7)
8.6 (–29.4)
16 (–36,1)

35,6 (–4 2)

IUery set 1.

50
83.9 (+0.5)
61.6 (+2. l)
531 (+0.8)
443 (–5.5)
384 (–5.5)
324 (–7 1)
27 z (– I0.4)
20.4 (–194)
14,6 (–26 4)
7.6 (–37 1)
1.6 (–33.3)

35.0 (–5.8)

100
833 (–0.3)
56,8 (–0.6)
48.7 (–0.7)
42.0 (–2,5)
349 (–7.5)
29.2 (–9.8)
23.9 (–13.6)
17.7 (–21.5)
12.2 (–29,3)
7.8 (–30.7)
0.7 (–47.5)

50
836 (+0 o)
S65 (–1.2)
48 I (–1.9)
40.3 (–6.4)
344 (–8 8)
28.7 (–113)
23.2 (–16,5)
17.2 (–23.7)
12.1 (–29.9)
7.8 (–30. [)
0.7 (–42.2)

how many ff i& weights must be processed to achieve a given Non-inverted document descriptions are then retrieved for these

level of retrieval effectiveness.
Persin [16] uses thresholds to determine how a ff. id~ weight

is processed. If the document for the current weight is not in the
candidate document set, an insertion threshold is used to determine
if the weight justifies adding the document to the candidate set. If

the document is already in the candidate set, an addition threshold is
used to determine if the weight should modify the document’s cur-

rent score. The addition threshold allows processing of an inverted

list to stop as soon as its tf kf~ weights fall below the threshold.

The insertion threshold ensures that we consider only documents

that receive a significant weight contribution from the terms.
Again, the last two schemes attempt to constrain the candidate

document set and use some version of our first candidate set pop-
ulation rule. Additional Iy, they suggest our second rule based on
r~ weights. Unfortunately, their inverted list organization does not
support document based query evaluation, as is necessary for prox-
i mit y operators. Moreover, document collection updates are very
difficult to support when inverted lists are sorted by tf weight.

None of the above ranking system techniques are directly appli-

cable to structured queries. They are all designed for flat queries,
and can make assumptions about document score to dynamically
constrain the set of candidate documents as query evaluation pro-
ceeds. While these techniques might be applicable to certain oper-
ators in a structured query tree, it is not clear that applying them in
a localized fashion is appropriate, Optimization should be coordi-
nated throughout the query tree, By pre-computing our candidate
document set, we ensure that this is the case.

The process of identifying a candidate document set followed by
evaluating the query for just those documents is similar in spirit to
the two stage query evaluation strategy of the SPIDER information

retrieval system [17, 10]. In SPIDER, a signature file is used to
identify documents that potentially match the query, and an upper

bound is calculated for each document’s similarity to the query.

documents in order of best upper bound similarity and used to
compute an exact similarity measure. As soon as a document’s
exact similarity measure exceeds all other documents’ upper bound
(or exact) similarity measures, this document can be returned as

the best matching document. It is possible that a similar signature
file scheme could be used to identify our candidate document set,

although it would be difficult to calculate reasonable upper bounds

for document beliefs from the signature information.

7 Conclusions

We have developed an optimization technique for structured queries

that provides a significant execution performance improvement by
reducing the number of documents that must be evaluated. Our
technique has been implemented in the INQUERY full-text infor-
mation retrieval system and evaluated using large, realistic docu-
ment collections. Experimental results show that our optimization

can reduce query processing time by over 50% with no noticeable
degradation in precision until better than 70% recall. In an in-
teractive system, our optimization is unlikely to impact the user’s

perception of the effectiveness of the system. However, the reduc-
tion in query processing time by more than half is certain to impact
the user’s perception of the usefulness of the system. Moreover,
the level of optimization is tunable at run-time, allowing the user to
control the tradeoff between speed and precision.

A key component of our optimization technique is our inverted
list implementation, which supports candidate set population activ-
ities and provides opportunities for disk 1/0 savi rigs. W bile our
results indicate that reduced disk 1/0 is not a significant contributor
to the performance improvement realized with our current optimiza-

tion, there are other safe optimization that we do not consider here

that can take advantage of our inverted list implementation. One

example is a boolean style intersection optimization when process-
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Table 7: Precision at standard re

Recall all 1000
0 843 84.3 (+0.0)

10 54,6 54,8 (+0.4)
20 471 473 (+0,5)
30 40.6 40.9 (+0,7)
40 353 355 (+0,5)
50 30,3 30.4 (+0.6)
60 257 25.7 (+0. I)
70 20.7 20.0 (–3.6)
80 15.5 13.3 (– 14.3)
90 9,1 7.2 (–20.9)

100 05 02 (–67.2j
average 33,1 32.7 (–1.1)

Recall
o

10
20
30
40
50
60
70
80
90

‘all
91.1
75,9
66,0
55.6
47.4
41,4
35,1
274
221
15.5

1000
91.1 (+0.0)

PrecTsion
500

84.2 (–0.1)
55,0 (+0.8)
47.3 (+0.4)
40,5 (–0.3)
34,9 (–1.3)
295 (–2 6)
240 (–6.7)
18.1 (–12.6)
11.8 (–24.1)
6.1 (–32 6)
0.1 ~–73.6)

31.9 (–3 4)

Table 8: Precision at standard r
Precision

500
91,1 (+0.0)

75$9 (–0.0)
66.0 (–0,0)
55,6 (+0.1)
47.4 (+0.1)
41.3 (–0.2)
35.0 (–0.1)
27.3 (–o 4)
218 (–1,2)

75.8 (–0.1)
6S.9 (–o 1)
55,2 (–0.7)
47,0 (–0.8)
41 I (–0.7)
34.8 (–0.8)
266 (–2.9)
21,4 (–3,1)

15.3 (–1,5) 14,6 (–6.1)
100 37 2.7 (–27.4) 2.3 (–37.0)

1—]TIaverage 43.6 (–0.4) I 43.3 (–1.1)

]ng proximity operators, which can provide additional inverted list

skipping opportunities. Another example is the specialized access

of inverted list information enabled by the separation of frequency

statistics from locations. This allows belief operators to avoid the

overhead of processing location information in the inverted lists.

Furthermore, our inverted list implementation wi 11easily sup-
port updates to the document collection. When new documents
are added, we must be able to grow the inverted lists for the in-
dexed concepts that appear in the new documents. This process
was described by Brown et al. in [ 1] using an inverted file structure

similar to that described here. The main extensions made here are
the separation of frequency and location information in the long
inverted lists and the use of directories into the long list objects.
The directories also facilitate document deletion, providing direct

access to the portion of an inverted list containing the document
entry that must be deleted.

Final] y, while our implementation and experimental evalua-

tion have been carried out in the context of the inference network
model, our technique is generally applicable to any statistical re-
trieval model that supports structured queries. As these retrieval
models are applied to larger and larger document collections, opti-
mization techniques such as ours will become ever more crucial to
the success of these systems.
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1points for Tlp12
~

300
84.1 (–0.2)
54.8 (+0.4)
47.0 (–0.2)
39.7 (–2,3)
33,4 (–5.4)
279 (–7.9)
224 (–13,0)
17.2 (–172)
11.3 (–27.0)
58 (–35.9)
0.1 (–73,2)

31,2 (–5.5)

all points for Tipl,
; change) – 50 queries

300
91.1 (+0.0)
758 (–0.1)
65.8 (–0.3)
552 (–0.7)
47.0 (–O 8)
40.8 (–1.3)
34.5 (–1.7)
26.1 (–5.0)
21.4 (–3.1)
13.1 (–15.9)
1.8 (–51.9)

43.0 (–1.8)

Appendix

luery Set 1.

100
847 (+0.5)
536 (–1 8)
45.4 (-3 5)
372 (-8 4)
30,7 (–12,9)
257 (–150)
21 1 (–18.0)
16.7 (–192)
10.2 (–34 o)
60 (–34.2)
0.1 (–72 7)

301 (–8.8)

50
84.5 (+0,3)
53.2 (–2.5)
43,9 (–6 6)
364 (–103)
30,0 (- 14.9)
257 (–15,2)
209 (–18,5)
166 (–199)
10,2 (–34.2)
6.1 (–33 4)
0.1 (–72.6)

29,8 (–9.9)

uery Set 2.

100
91. i (+0 o)
758 (–o 1)
65.8 (–o 3)
550 (-1.1)
46.6 (–1 6)
40.3 (-2 7)
32,8 (–6.4)
247 (–9 8)
19.4 (–12.3)
11.0 (–29.4)
1.4 (–62.8)

42.2 (–3.6)

50
91 I (+0 o)
758 (–(l 1)
658 (–o 3)
54.9 (–1.3)
46.4 (–2.1)
402 (–2 9)
324 (–7 5)
246 (–102)
18.6 (–155)
106 (–31 8)

1.3 i–64.6j
42,0 (–4 o)

The belief value for concept i in document i is calculated with the

following formula: ‘

beliejl = C +(1 – C’) ntjj nidj (1)

where

(

log(y, + 0.5)
ntj, =Kr+(l –K)

log(max.1$ + 1.0) )

log((tV + 0.5)/n,)
nid$ =

log(fv + 1.0)

nt~l is the normalized within document frequency

nidf is the normalized inverse document frequency

tit, is the within document frequency

max-lj is the maximum of {lfI,. tfj,, . . }
N is the # documents in the collection
n, is the # documents in which concept i appears

The constants C and K both default to 0.4 in INQUERY, although

they may be specified by the user. C is the default belief value
returned for documents that do not contain the given concept. K
acts to increase the significance of even a single occurrence of a
concept in a document. s is used to reduce the influence of document
length for long documents. If max-tj is greater than 200, thens M
set to 200/max_rfi. Otherwise, s is set to 1.0. Additionally, if tfi, is

equal to max.tjj, then n$, is set to 1.0.
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