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ABSTRACT
The main goal of a retrieval model is to measure the degree
of relevance of a document with respect to the given query.
Probabilistic models are widely used to measure the likeli-
hood of relevance of a document by combining within doc-
ument term frequency and term specificity in a formal way.
Recent research shows that tf normalization that factors
in multiple aspects of term salience is an effective scheme.
However, existing models do not fully utilize these tf nor-
malization components in a principled way. Moreover, most
state of the art models ignore the distribution of a term in
the part of the collection that contains the term. In this
article, we introduce a new probabilistic model of ranking
that addresses the above issues. We argue that, since the
relevance of a document increases with the frequency of the
query term, this assumption can be used to measure the
likelihood that the normalized frequency of a term in a par-
ticular document will be maximum with respect to its dis-
tribution in the elite set. Thus, the weight of a term in a
document is proportional to the probability that the normal-
ized frequency of that term is maximum under the hypoth-
esis that the frequencies are generated randomly. To that
end, we introduce a ranking function based on maximum
value distribution that uses two aspects of tf normalization.
The merit of the proposed model is demonstrated on a num-
ber of recent large web collections. Results show that the
proposed model outperforms the state of the art models by
significantly large margin.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval: Retrieval Models
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1. INTRODUCTION
To measure the weight of a term in a document, most

well known functions combine three major components -
the term frequency, the inverse document frequency and the
document length. The term frequency factor is a key evi-
dence for determining a term’s salience in a document, while
inverse document frequency is used for attenuating the ef-
fect of terms that occur too often in the collection to be
meaningful for relevance determination. On the other hand,
term frequency is closely related with document length, since
long documents tend to use a term repeatedly. Thus, term
frequency normalization, in accordance with the document
length, is necessary to remove the advantage that the long
documents have in retrieval over the short documents.

Given these three major components, the key question is
then how these components can be integrated to produce a
composite weight for each query term in each document and
that is where one model differs from the other. Most well
known weighting functions under the vector space model
compute the composite weight by taking the product of the
tf factor and the idf factor, where the tf factor is some
combination of tf and the document length. Classical prob-
abilistic models (for example BM25 [24]), adopt somewhat
the same strategy. Although, they have the same objec-
tive, the two models have very different ways of determin-
ing the functional form of the tf factor. The nature of the
tf functions under the vector space framework are gener-
ally constructed empirically, which are primarily guided by
the experimental results, while BM25 formula is derived by
approximating the logarithm of odds ratio of two Poisson
distributions- one for relevant documents and the other for
non-relevant documents. On the other hand, language mod-
els (LM) [21] differ from the above models in a fundamental
way in the sense that the documents are ranked based on the
likelihood that the query has been generated from the docu-
ment in consideration. In addition, unlike tf.idf models, lan-
guage models do not use explicit length normalization. The
length of the document is an integral part of the probabil-
ity estimation. Non-parametric probabilistic models are also
known to be very effective in information retrieval. One of
the widely used non-parametric probabilistic model is diver-
gence from randomness (DFR) [1] based approaches, where
the term weight is computed by measuring the divergence
between a term distribution produced by a random process
and the actual term distribution. One major deficiency with
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these models is that they consider only the document length
normalized tf and ignore within document relative tf dis-
tributions. Recent research [20] shows that integration of
within document relative tf into scoring model improves
performance significantly. However, it is yet not clear how
this variable can be added into the existing models formally.

This article describes a probabilistic retrieval model that
obviates empirical way of determining a ranking function,
unlike existing tf-idf models [29, 20]. The model introduces
a tf factor based on the distribution of maximum values of
normalized tf. The model achieves a number of important
goals. First, it integrates the recent multi-aspect tf normal-
ization schemes into a probabilistic framework. Second, the
model automatically factors in the distribution of normal-
ized tf in a term specific way, unlike many standard models.
Third, it uses a mixture of two maximum value distribution
to better model distributions of terms having varying heav-
iness of tails. To the best of our knowledge, this work is the
first to address the ranking problem using the distribution
of maximum values.

The effectiveness of the proposed model is evaluated on a
number of recent web test collections containing millions of
documents. We compare the performance of the proposed
method to the state of the art representative baselines from
tf-idf model, classical probabilistic model, language model
and divergence from randomness model. Our primary exper-
imental results show that the proposed model almost always
outperforms the state of the art baselines by a significantly
large margin. We carry out additional set of experiments
to compare the performance of the proposed model against
a log-logistic (LL) based model that uses multi-aspect tf
normalization. Once again, the results suggest that the pro-
posed model is often significantly better than LL model.
Moreover, the results demonstrate that our model is more
precise than the state of the art models, thereby making it
a potential choice for web search.

We organize the article as follows. Section 2 reviews the
state of the art. The proposed approach is described in
Section 3. The experimental setup is detailed in Section 4.
In Section 5, we present the experimental results. Finally,
we conclude in Section 6.

2. PRIOR WORK
Modeling term weight is the central issue in an informa-

tion retrieval system. Three widely used models in IR are
the probabilistic models [23], the vector space model [28,
27], and the inference network based model [31]. Further-
more, probabilistic models can be broadly classified into
three groups, namely the classical probabilistic model, lan-
guage model and a non-parametric divergence from random-
ness model. A large number of instances of these models
exist in the literature. In this section we mainly review the
state of the art representatives from each of these categories.

2.1 Classical Probabilistic Model
The key part of the probabilistic models is to estimate

the probability of relevance of the documents for a query.
This is where most probabilistic models differ from one an-
other. Since the introduction of full text search, a large
number of weighting formulae have been developed that at-
tempt to measure document relevance probabilistically and
BM25 [22] seems to be the most effective weighting function
from among them. BM25 model approximates the two Pois-

son model of relevance. The approximation is done using a
increasing asymptotic tf function. Although, structurally,
BM25 and tf-idf functions are very similar (in the sense that
they both use tf and idf factor), they differ in many re-
spects. First, BM25 has a well grounded theory, while most
of the tf-idf models have an empirical background. Second,
anatomically, IDF factor of BM25 discounts the collection
size by the document frequency of the term, which is dif-
ferent from the standard IDF factor. Third, BM25 uses a
different query term frequency function, unlike tf-idf models
where that function is linear. The length normalization fac-
tor uses the average document length and a parameter has
been introduced to control the relative length effect.

2.2 Language Model
Probabilistic language modeling approaches [21, 15] follow

a different principle in estimating the relevance of a docu-
ment, unlike classical probabilistic models. Typically, lan-
guage modeling approaches compute the probability of gen-
erating a query from a document, assuming that the query
terms are chosen independently. Unlike TF-IDF models,
language modeling approaches do not explicitly use docu-
ment length factor and the idf component. It seems that the
length of the document is an integral part of this formula and
that automatically takes care of the length normalization is-
sue. However, smoothing is crucial and it has very similar
effect as the parameter that controls the length normaliza-
tion factor and term specificity in pivoted normalization or
BM25 model. Three major smoothing techniques (Dirichlet,
Jelinek-Mercer and Two-stage) are commonly used in this
model [32].

Although, query likelihood model is reasonably effective,
one major deficiency with using a multinomial distribution
as a language model is that all term occurrences are treated
independently. The term-independence assumption in infor-
mation retrieval is often adopted in theory and practice, as
it renders the retrieval problem tractable. It is well known
that once a term occurs in a document, it is more likely
to reappear in the same document. This phenomenon is
known as word burstiness [18] and is a type of dependency
that is not modelled in the multinomial language model.
Cummins et al. [8] present a Smoothed Polya Urn Docu-
ment language model, which incorporates word burstiness
only into the document model. They use the Dirichlet com-
pound multinomial (DCM) to model documents in place of
the standard multinomial distribution, whereas the standard
multinomial is used to model query generation.

2.3 Divergence from Randomness Model
Amati and Rijsbergen [1] proposed a class of non-parametric

probabilistic approaches to term weighting called divergence
from randomness (DFR) model. The weight of a term in
DFR models is the amount of divergence between a term
distribution produced by a random process and the actual
term distribution. The anatomy of the weighting function
of DFR is defined as follows

w(t, d) = −log2(Prob1) · (1− Prob2). (1)

The left factor measures the information content of the term
in a document based on its distribution in the entire collec-
tion, while the right factor measures the information gain
of the term with respect to its occurrence in the elite set
(set of documents that contains the term). Prob1 is com-
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puted using various well known distributions (such as Bose-
Einstein statistics, Poisson distributions etc), while Prob2
is measured using Laplace law of succession or the ratio of
two Binomial distributions. Like other models, DFR mod-
els use the same basic components. However, the integration
of various component are derived theoretically. DFR mod-
els use explicit length normalization and following standard
practice, average document length is considered as the ideal
document length.

2.4 Vector Space Models
In vector space model, the search problem is viewed in

a different way. Queries and documents are represented as
the vectors of terms. To compute a score between a doc-
ument and a query, the model measures the similarity be-
tween the query and document vector using cosine function.
The central part of the vector space model is to determine
the weight of the terms that are present in the query and
the documents. Salton and Buckley [26] summarize a num-
ber of term weighting approaches which use various types
of normalization. It is evident that document length is an
important component in effective term weighting. Singhal
et al. [29] identify a number of weaknesses of cosine and
maximum tf normalization and they observe that a weight-
ing formula that retrieves documents with chances similar
to their probability of relevance performs better. Follow-
ing this observation, they propose a pivoted normalization
scheme that acts as a correction factor of old normalization
and is one of the most effective term weighting schemes in
the vector space framework. Typically, the term weighting
functions in vector space model are constructed empirically.
Several work tried to go beyond purely empirical approaches
and use the data instead to learn the patterns that satisfy
the data. For example, Greiff [12] uses exploratory data
analysis to uncover some important relationship between the
document frequency and the relevance of a document.

Most of the earlier work on vector space model normal-
izes the term frequency in accordance with the length of
the documents. Paik [20] argued that the length based nor-
malization alone is not sufficient to capture the different as-
pects of term salience and that within document distribution
of the terms plays an important role. He then proposed a
two-aspect normalization scheme. An asymptotic bounded
increasing function (much in spirit with BM tf function)
is then used to transform the normalized tf values. Two
tf components are then combined using query length infor-
mation. However, the main weakness of the model is its
highly empirical nature and that is where the model pro-
posed in this article differs from [20]. The proposed model
has a formal probabilistic foundation that directly produces
the weighting function.

2.5 Other Models
In inference network, document retrieval is modeled as an

inference process [31]. A document instantiates a term with
a certain strength and given a query, the credit from multi-
ple terms is accumulated to compute a relevance, which is
very much equivalent to the similarity score of vector space
model. From an operational angle, the strength of instanti-
ation of a term for a document can be considered as weight
of the term in a document. The strength of instantiation of
a term can be computed using any reasonable formula.

Some models go beyond the use of bag of words features
only and incorporates the proximity/phrases of query terms
in the documents [6, 9]. Metzler and Croft [19] develop a
general formal framework for modeling term dependencies
via Markov Random Fields. The model allows arbitrary
text features, such as occurrence of single term, ordered
phrases and unordered phrases to be incorporated as the
potential evidences of relevance. They explore full indepen-
dence (bag of words) , full dependence (between every pair
of query terms) and sequential dependence (between con-
secutive query terms) in the language modeling framework.
Since, the model has to compute the positional information
during query processing time, it is more computationally
complex than our model.

Fang et al. [10] give a comprehensive analysis of four re-
trieval models by defining a set of constraints that needs
to be satisfied for effective retrieval. Using these constraints
the strengths and weaknesses of some well known models are
analyzed and some of the models are modified. There are
also a number of recent works that focus on the constraint
based analysis of the retrieval models [4, 7].

3. PROPOSED WORK
In this section we describe the proposed ranking model.

We first revisit the key variables used in a typical ranking
model and describe the roles they play. We then describe
how maximum value can be used for ranking. Finally, we
turn on to present the maximum value based models and
their parameter estimation.

3.1 TF-IDF Model: A Probabilistic View
Within document Term frequency and inverse document

frequency (idf) are the two main building blocks of infor-
mation retrieval models that measure query-document sim-
ilarity. These two variables play a complementary role in
ranking documents in response to a query. The idf factor of
a term t (idf(t)) measures the information gain of randomly
picking a document that will fall in the elite set for t (the
set of document that contains t and henceforth we denote it
as E(t)). On the other hand, tf factor of t for a document
d, (tff(t, d)) measures the relative weights of documents
within E(t). Thus, from an operational perspective, idf(t)
balances the weight between different E(t), while tff(t, d)
adjusts the relative weights of documents within the same
elite set. Term frequency hypothesis suggests that tff(t, d)
is an increasing function of normalized term frequency. In-
tuitively, this means, if the rank of a document d having
ntf(t, d) (normalized tf of t in d) is relatively high in E(t),
the contribution made by tff(t, d) is also high. Hence, given
the distribution of normalized tf of a term in E(t), a natural
way to measure tff(t, d) is to take the percentage of docu-
ments in E(t) having normalized tf not higher than ntf(t, d).
Thus, tff(t, d) can be defined as follows:

tff(t, d) ∝ P (X ≤ ntf(t, d)) (2)

where X is the random variable on normalized tf values in
E(t).

Lv and Zhai [17] argued that straightforward non-parametric
(plain percentile based) way of estimating this probability
does not fully factor in the main objective of tf hypothesis,
since it ignores the quantum of differences of normalized tf
values. Thus, they advocate the use of parametric proba-
bility distribution functions to circumvent this limitation.
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They use log-logistic distribution for computing tff(t, d) as
follows

tff(t, d) = P (X ≤ ntf(t, d)|c, α) = F (ntf(t, d)|c, α)

=
ntf(t, d)α

cα + ntf(t, d)α
(3)

where c > 0 and α > 0 are the model parameters which can
be estimated from the normalized tf values in E(t). The
main issue in this approach is to choose the right distribu-
tion function that captures the distribution of normalized
values properly. We use maximum value distribution of two
aspect normalized tf values in the above framework to mea-
sure the tff(t, d). In the next two sections, we describe
multi-aspect tf normalization scheme followed by the maxi-
mum value based model.

3.2 Term Frequency Normalization
Raw term frequencies are known to be less effective be-

cause of its correlation with the document length. Thus,
a long document enjoys preference over a short document if
the term frequency is used as is. A document becomes longer
if it contains many unrelated contents together. Therefore,
although the frequency of a term may not increase in this
case, the document uses many distinct terms. Since, the
chance of a random match of a term between a query and
a document is approximately proportional to the number
of distinct terms in the document, long documents get an
additional advantage over shorter documents. On the other
hand, documents also become longer if they repeat the same
content, thereby resulting in higher term frequencies with-
out giving any additional useful information.

Therefore, to enhance retrieval accuracy, it is imperative
to regularize the term frequency in accordance with the doc-
ument length. A standard and successful approach for doing
this is to compare the length of the concerned document to
the length of an ideal document (pivotal document). Both,
pivoted tf-idf and BM25 effectively use this strategy where
the length of the pivotal document is the average document
length of the retrieval collection. Thus, the tf of an average
length document remain unchanged, while tf of the doc-
uments longer (shorter) than average length document are
punished (rewarded).

Recently, Paik [20] argued that the traditional length based
normalization alone is not sufficient to capture the different
aspects of term importance and proposed two normalization
formulae- one is based on within document average term fre-
quency, while the other makes use of the traditional length
based approach. These two normalized tfs are then com-
bined. We use the same normalization schemes as described
in [20], since it gives state of the art results. For conve-
nience, the normalization factors are called ritf(t, d) (rela-
tive intra-document frequency of term t in the document d)
and lrtf(t, d) (length normalized frequency of term t in the
document d). The following equations formally define the
normalization schemes.

ritf(t, d) =
log(1 + tf(t, d))

log(k +mtf(d))
(4)

lrtf(t, d) = tf(t, d) log(1 +
adl

l(d)
) (5)

The terms mtf , adl and l(d) denote the mean term fre-
quency of the document that contains t, the average docu-

ment length of the collection and the length of the document
d, and k (≥ 1) is a smoothing parameter. The proposed
model combines these frequency normalizations in a proba-
bilistic framework.

3.3 Limitations of Existing Models
In the last section we have described multi-aspect tf nor-

malization scheme. In this section we discuss the potential
limitations of existing methods and the major difficulties in
integrating multi-aspect tf normalization into the state of
the art probabilistic models.

We start our discussion with the MATF model. We reiter-
ate that, although, idf function does not vary much from one
model to the other, it is the tf function that often makes
the main difference. In [20], the function x

1+x
is used to

transform the normalized tf values to enforce term cover-
age. However, the function has a number of notable short-
comings. First, the choice of the function is purely empirical
in nature. Second, the function does not have the knowl-
edge of the distribution of tf in the elite set. Third, since
the function operates on the tf values having incompatible
range (range of ritf is much smaller than that of lrtf), one
component overpowers the other component, thereby com-
promising the ultimate effectiveness.

BM25 model is a nice bridge between tf.idf and probabilis-
tic model. Anatomically, BM25 is clearly separable into tf
and idf component, where the tf function is a special case of
log-logistic model and is guided by 2-Poisson model. BM25
normalizes tf in accordance with the document length where
average document length is used as an ideal (or pivotal) doc-
ument. However, it is not clear how to integrate relative
intra-document tf into this model, since the notion of pivot
for relative intra-document tf is hard to define. Moreover,
BM25’s tf function is also distribution independent.

Unlike the previous two models, divergence from random-
ness model (DFR) takes a more principled approach in terms
of factoring in the term distribution. Once again, it is yet
unknown how relative intra document tf (ritf(t)) can be
added to this model that will be theoretically consistent with
DFR’s basic principle. Moreover, normalized tf values are
continuous valued random variable and thus, an attempt to
integrate it into DRF will give rise to theoretical anomaly,
since DFR uses discrete distributions to measure informa-
tion gain.

Language model is very different from all the models dis-
cussed above primarily because it neither uses idf explicitly
nor it uses length normalization. Thus we confine our dis-
cussion on the models that have explicit tf and idf factors.
In the next section we describe the maximum value based
model and how it can be used to circumvent some of the
problems outlined above, followed by the development of a
model that uses two aspect tf normalization in a probabilis-
tic framework.

3.4 Maximum Value Model
Unlike existing ranking models, we attempt to measure

tff(t, d) based on the nature of some of the largest values of
normalized tf for that term. A natural consequence of using
maximum value based ranking is that it makes the weight
of a term in a document dependent upon the distribution of
normalized tfs in E(t).

To that direction, the simplest possible approach could
be to take the maximum value of normalized tf for a term t
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and then measure tff(t, d) relative to the maximum value.
Clearly, this scoring is perfectly consistent with tf hypoth-
esis, where the document having highest normalized tf gets
highest weight. We can easily think of two naive approaches
to measure tff(t, d) that are based on maximum values.
One potentially feasible approach can be percentile based
scoring that we have outlined before, while the other simple
approach can be to measure tff(t, d) as a ratio of ntf(t, d)
(or some increasing function of ratio) and the maximum nor-
malized tf for that term in the collection. To understand
the limitations of these two approaches, let us consider the
following examples.

Let x1, x2, . . . , xn−1, xn be the normalized tf values for
a term t in ascending order. As our first case, let us as-
sume that (xn − xn−1) ≈ 0. The percentile based method
may give higher weight for xn compared to xn−1 even if
they are nearly the same. This happens because percentile
based method does not factor in the magnitude of differ-
ence, which consequently violates the tf hypothesis. As a
second case, if it happens that xn � xn−1, scoring based on
ratio gives too much priority on the maximum value alone,
which results in sharp discount of scores of other documents.
As a consequence, a document even if genuinely relevant, is
undesirably punished.

These problems are addressed using a sampling based
technique which exclusively focuses on maximum values of
samples. Rather than relying on a single value, we attempt
to measure the distribution of values at the right tail where
some of the largest values fall. Hence, our main goal is to
model the nature of the right tail of ntf(t, d). We hypothe-
size that the most potentially relevant documents for a term
fall on that part of the distribution. Quite clearly, this hy-
pothesis is consistent with the standard tf hypothesis. Thus,
the main challenge is to model the nature of the right most
tail as accurately as possible. In other words, this model
measures the likelihood that ntf(t, d) will fall on the right
most tail. Thus, if the probability is higher, likelihood of d
being relevant will also be higher.

We now focus on the models for maximum values. We reit-
erate that in order to avoid the influence of a single quantity
(maximum value), the following sampling based approach is
taken to derive maximum value distributions. Let us as-
sume that N samples, each of size n are drawn from the
same population. From each sample we can get the largest
value. Thus in nN observations we have N largest values
corresponding to each random sample. The distribution of
the largest values in nN observations will tend to follow
the same asymptotic expression as the distribution of the
largest value in samples of size n. Consequently, the asymp-
tote must be such that the largest value of a sample of size
n taken from it must have the same asymptotic distribu-
tion. Formally, the maximum value distribution is defined
as follows. Let X1, X2, . . . , Xn be independent and identi-
cally distributed random variable with distribution F .
Let Mn = max(X1, X2, . . . Xn). Then,

Pr(Mn ≤ x) = Pr(X1 ≤ x,X2 ≤ x . . .Xn ≤ x) (6)

= Fn(x) (7)

Since a linear transformation does not change the form of
the distribution, the probability that the largest value is less
than x should be equal to the probability of a linear function
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Figure 1: Distributions of random samples of nor-
malized elite set term frequency of mitchell and
travel.

of x. Thus, the above equation is equivalent to

Pr(
Mn − bn

an
≤ x) = Fn(anx+ bn). (8)

Fisher-Tippett-Gnedenko theorem [11] states that if a
pairs of real numbers (an, bn) (an and bn must be functions
of n) exist such that an > 0 and

lim
n→∞

Fn(anx+ bn)→ D(x) (9)

for a distribution F , then D(x) can be Type I or Type II
distribution defined below.

The type I distribution [13] (known as Gumbel distribu-
tion) is defined as

Fg(x) = exp(− exp(−x− µ
α

)), µ ∈ R; α > 0. (10)

while type II distribution [13] (Frechet distribution) for pos-
itive random variable is defined as

Ff (x) = exp(−
(µ
x

)α
), x ≥ 0; µ > 0; α > 0. (11)

Having defined the maximum value distribution, our next
major goal is to verify that the maximum value distributions
satisfy the mandatory preconditions in order to be applica-
ble in our task. Specifically, the data must be coming from
a distribution F that satisfies Fisher-Tippett-Gnedenko
theorem. Thus, our primary goal is to fix the underlying
distribution function from which the data have been suppos-
edly generated. In order to guess F , we first examine the
distributions of normalized frequencies for a few randomly
chosen terms. We noticed that the density graphs near the
extreme right tail are not monotonically decreasing and it
happens primarily because of the presence of random noise
or extreme outliers. We empirically (by plotting) identify
the points at which the density graphs violate this smooth-
ness for the first time and ignore all the data larger than
this particular point. On Clueweb collections, our analysis
suggests that normalized tf values between 70-80 seem to be
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a reasonable cut-off point and thus, in our experiments we
set it to 75 empirically (but that value may depend on the
nature of the collection). We then plot the distributions of
the truncated data. As an example, Figure 1 shows distri-
butions for two selected terms. To better understand the
relationship between the pattern of distributions and term’s
collection level occurrence, we choose two terms (“mitchell”
and “travel”) of varying specificity. Figure 1 clearly shows
that both the terms seem to be following long tail distribu-
tions with monotonically decreasing density functions. We
consider two such long tail distributions – namely, expo-
nential distribution and Pareto distribution. Note that the
nature of the tails are different in these two cases.

Case 1.
Suppose the data have been distributed from exponential

distribution. Thus, F (x) = 1 − exp(−x/α), α > 0. If we
choose an = 1 and bn = lnn, Then

Fn(anx+ bn) =

(
1− exp(−−x− lnn

α
)

)n
(12)

= lim
n→∞

(
1− exp(−x/α)

n

)n
(13)

= exp(− exp(−x/α)). (14)

Thus, if the data is generated from exponential distribution,
for an = 1 and bn = lnn, maximum value distribution con-
verges to Gumbel distribution.

Case 2.
Suppose now the data have Pareto tail. Thus, 1−F (x) =

cx−α as x → ∞, with c > 0 and α > 0. Again if we set

an = n
1
α and bn = 0, then for x > 0 we have

Fn(anx) =
(
1− c(anx)−α

)n
(15)

= lim
n→∞

(
1− cx

−α

n

)n
(16)

= exp(−(
µ

x
)α) (setting c = µα) (17)

which turned out to be Frechet distribution. Hence, the
above results provide us the necessary evidence that the
maximum value distributions can be applied on our data.

Mixture Model.
Although, Fg and Ff are the asymptotic approximations

to maximum value models, the shapes of their distributions
are not identical. Frechet distribution has longer right tail
(Pareto tail) than Gumbel. This has some interesting co-
relation with the distribution of term frequencies in a large
collection. If a term is more general (but not really stop-
words), the frequency distribution for that term likely to
have a longer tail than that of more specific term. Figure 1
illustrates this point clearly: the density curve of “mitchell”
(which is a rare term) touches the x-axis much before that
of “travel” (which is a more general term). Thus, an attempt
to model the distribution of a term using only one of Gum-
bel and Frechet may lead to lower accuracy. Any real query
contains terms having varying collection frequency and this
motivates us to use a weighted mixture of the two distribu-
tions. Thus, our resulting distribution is defined as

G(x) = p · Fg(x) + (1− p) · Ff (x), 0 < p < 1 (18)

where p can be considered as prior of Fg(x). A straightfor-
ward way to estimate p is to use a standard method such as
gradient ascent method that directly optimizes a target re-
trieval metric (such as NDCG@20). Indeed, we adopt such
an approach, but not directly on p. As we have discussed
earlier, Fg (Gumbel) distribution seems better in modeling
the distribution of a term having relatively smaller df val-
ues (more specific). Thus, instead of optimizing the value of
p independently, we make the value of p dependent on df .
Specifically, if a term has low df (high idf) we give higher
weight to Fg(x). In other words, p should be higher for high
idf terms. We formalize this intuition using the following
well known linear model

p

1− p = β · idf (19)

which gives the following solution for p

p =
β · idf

1 + β · idf . (20)

where β (> 0) is a free parameter.

3.5 Scoring Function
We are now ready to define our final scoring function. Our

scoring function uses two aspect tf normalization in maxi-
mum value distribution framework. Formally, if X and Y be
the random variables corresponding to ritf(t) and lrtf(t) in
E(t) respectively, then tff(t, d) is defined as

tff(t, d) = α·P (X ≤ ritf(t, d))+(1−α)·P (Y ≤ lrtf(t, d))

= α ·G(ritf(t, d)) + (1− α) ·G(lrtf(t, d)) (21)

where 0 < α < 1, is the interpolation parameter. Conse-
quently, the final scoring function for a query Q = q1q2 . . . qn
and a document d is defined as

S(Q, d) =
∑
q∈Q

tff(t, q) · idf(q) (22)

where idf(t) = log(N/df(t)). The parameter α ∈ (0, 1) in
Equation 21 is set empirically.

3.6 Model Parameter Estimation
In this section we detail our method for estimating the

parameters of the two maximum value distribution models
described in the last section. These parameters play impor-
tant role in determining the actual shape of the distributions
which in turn make them term dependent. There are many
methods for parameter estimation including maximum likeli-
hood estimation (MLE), which perhaps is an obvious choice.
However, in our case, MLE does not seem to be a good choice
for the reason we detail next.

We explain the difficulty with Gumbel distribution only
(similar argument holds for Frechet). The log-likelihood
function of Gumbel based on random sample x1, x2, . . . , xn
is given by

L(α, µ) = −
n∑
i=1

xi − µ
α

− n lnα−
n∑
i=1

exp(−xi − µ
α

). (23)

The system of differential equations (used for MLE)

∂L

∂µ
=
∂L

∂α
= 0 (24)
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yields the following estimates for µ and α

µ = α(lnn− ln
n∑
i=1

exp(−xi
α

)) (25)

and

x̄ = α+

n∑
i=1

xiexp(−xiα )

n∑
i=1

exp(−xi
α

)
. (26)

Clearly, Equation 26 shows that α does not have closed
form expression. Thus, we need to apply iterative numeri-
cal methods to find value of α. Iterative methods may take
substantial amount of time for very large collection such as
Clueweb, since it needs to iterate over the set of maximum
values from each random sample for each distinct term in
the collection. This is precisely the reason we use point esti-
mates (with a somewhat empirical transformation) of central
tendencies for these models.

3.6.1 Parameter Estimation for Gumbel
The mean of Gumbel distribution is

µ+ 0.57 · α (27)

while the standard deviation is
π√
6
α. (28)

To estimate the values of α and µ we equate them with
corresponding sample mean and standard deviation, which
finally gives the following estimates.

α =

√
6

π
s and µ = x̄− 0.58 ·

√
6

π
s (29)

where x̄ and s are sample mean and standard deviation re-
spectively. Since our data is positive random variable and
originates from exponential distribution we use Equation 14
for final ranking. Thus, we do not need to worry about the
parameter µ. Our only concern is the parameter α. Sur-
prisingly, point estimate of α as is does not perform well in
practice. Thus, in practice, we use a linear transformation,
α = z1 + z2 · s, where z1 and z2 are set empirically to 2.5
and 0.04 respectively.

3.6.2 Parameter Estimation for Frechet
Mean and variance for Frechet are defined respectively as

µΓ(1− 1/α), α > 1 (30)

and

µ2(Γ(1− 2/α)− Γ2(1− 1/α)), α > 2. (31)

Once again, the above two expressions are not very conve-
nient to use since the improper integral Γ(.) needs to be
evaluated in order to compute the parameter. Fortunately,
median and mode of Frechet distribution have much man-
ageable expressions. Median is defined as

µ0.69−1/α (32)

and mode is defined as

µ(1 +
1

α
)−1/α. (33)

As in Gumbel, we can equate these two expressions to sam-
ple median and mode to estimate the model parameters.

However, unlike Gumbel, the parameters do not have closed
form solution, which can be achieved by using any stan-
dard numerical method. Note that, in this case we do not
need to iterate over the sample of maximum values, instead
mode and median computed once for a term is enough. It
is also important to note that although median for a sam-
ple is easy to determine, we need to do a little processing
to compute mode from a set of real numbers. To compute
mode of a sample, we create non-overlapping bins of num-
bers having 0.5 as the interval. We then take the median
of the bin having highest frequency as our sample mode.
We have adopted computationally efficient parameter esti-
mation methods. However, a large number of other meth-
ods exist in the literature. Thus, it may be interesting to
see whether other estimation strategies can improve the re-
trieval results without sacrificing efficiency too much.

4. EXPERIMENT SETUP
In this section, we describe the experiment setup used to

evaluate the proposed model. Our experiments have the
following two major objectives.

1. To compare the performance of the model against the
state of the art probabilistic models (Section 5.1).

2. To compare against a recently proposed multi-aspect
tf-idf weighting scheme [20] (Section 5.2).

Table 1: Summary of the test collections and topics
used in our experiments. ‘M’ stands for million.

Collection # doc topics # topics

Clueweb.B-09 & 10 50M 1-100 100
Clueweb.B-11 & 12 50M 101-200 100
MQ-2009 50M 20001-30000 684
Clueweb.A-09 & 10 500M 1-100 100
Clueweb.A-11 & 12 500M 101-200 100

We summarize the test collections used in our experiments
in Table 4. The test collections are taken from TREC web
tasks of recent years (2009-2012) as well as from million
query 2009 (MQ-2009). The collections contain web docu-
ments and real web queries sampled from a search engine log.
The documents are crawled from web and hence they have
variety of content quality. Clueweb.B collection contains
nearly 50 million documents, while ClueWeb.A collection
contains approximately 500 million web pages. In MQ-2009
collection, although many queries available, not all queries
have been judged. Thus, we use 684 queries for which judg-
ments are available. All the collections have graded rele-
vance assessment. It is important to note that, MQ-2009
queries have incomplete relevance assessment. Therefore,
our evaluation methodology skips the unjudged documents
from the ranked lists in order to compute the values of well
known metrics following the recommendation made in [25].

Documents and queries are stemmed via Porter stemmer.
Stopwords are removed from documents and queries. Sta-
tistically significant performance differences are determined
using a paired t-test at 95% confidence level (p < 0.05). All
our experiments are done using title field of the topics.
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Table 2: Retrieval effectiveness of the proposed method (MVD) compared to probabilistic models. Statisti-
cally significant improvements are indicated using the first letter of the less effective method. The highest
value per column is boldfaced. The numbers in parenthesis indicate relative improvement over LM, PL2 and
BM25, respectively.

Clueweb.B-09 & 10 Clueweb.B-11 & 12 MQ-2009 Clueweb.A-09 & 10 Clueweb.A-11 & 12
LM 0.309 0.264 0.367 0.254 0.219
PL2 0.312 0.263 0.373 0.256 0.219

ERR@20 BM25 0.306 0.253 0.372 0.248 0.221
MVD 0.337lpb 0.286lpb 0.408lpb 0.286lpb 0.257lpb

(8.9, 7.9, 9.9) (8.2, 8.8, 12.9) (11.2, 9.5, 9.8) (12.7, 11.4, 15.0) (17.8, 17.5, 16.4)

LM 0.282 0.228 0.395 0.200 0.194
PL2 0.285 0.231 0.393 0.205 0.196

NDCG@10 BM25 0.284 0.222 0.391 0.208 0.191
MVD 0.332lpb 0.268lpb 0.422lpb 0.261lpb 0.231lpb

(17.9, 16.5, 16.8) (17.3, 16.1, 20.4) (7.0, 7.4, 7.9) (30.7, 27.0, 25.3) (19.0, 17.8, 21.3)

LM 0.275 0.228 0.459 0.193 0.196
PL2 0.278 0.228 0.458 0.195 0.198

NDCG@20 BM25 0.280 0.225 0.453 0.208 0.186
MVD 0.325lpb 0.265lpb 0.479b 0.248lpb 0.228lpb

(18.4, 17.0, 16.4) (15.9, 16.2, 17.8) (4.5, 4.5, 5.8) (28.7, 27.4, 19.0) (16.4, 15.2, 22.7)

4.1 Baselines
The performance of the proposed model is compared to

a number of state of the art retrieval models from different
families. BM25 [24] is chosen as the representative base-
line from the classical probabilistic model. From language
model, we choose Dirichlet smooth version [32], since it is
known to be the most effective among the language mod-
els [10]. From divergence from randomness family, we choose
PL2 [1] as the baseline, following recent work [10, 14].

Pivoted document length normalization is chosen as a ba-
sic TF-IDF baseline. MATF [20] is chosen as another state
of the art tf-idf model. Note that, MATF is a highly effec-
tive empirical tf-idf model and one of the major objectives
of the proposed model is to advance the multi-aspect TF
model using a probabilistic foundation. Finally, since our
model attempts to capture the distribution of normalized
tf, we also compare to multi-aspect TF normalization with
a log-logistic distribution which has similar purpose. Thus,
our set of baselines contains members from all state of the
art families.

4.2 Free parameters and evaluation metrics
All the baseline models (except MATF) and the proposed

model contain one or more free parameters. It is impor-
tant to note that the parameters of these models often in-
fluence the performance to a statistically significant degree.
Hence, for the sake of reliable and competitive comparison,
the parameters are optimized using 5-fold cross validation
with the corresponding evaluation measure (ERR@20 [2],
NDCG@10 [16] or NDCG@20) as the target metric.

We choose expected reciprocal rank (ERR), NDCG@10,
and NDCG@20 as our evaluation measures. ERR has been
the primary evaluation metric for recent TREC web tracks [3].
NDCG@k leverages graded relevance and also has a position
wise discounting. Thus, it reflects the overall quality of the
documents at top k. On the other hand, ERR@k is a preci-
sion bias metric that leverages graded relevance assessment.
Thus, ERR is more suitable metric for web search.

Clueweb collections contain substantial number of spam
documents. Thus, following previous work [5], we have fil-
tered out spam documents from the collections. Specifically,
documents assigned by Waterloo’s spam classifier [5] with a
score below 70 were filtered out from the initial corpus. The
score indicates the percentage of all documents in ClueWeb
that are presumably“spammier”than the document at hand.
The models are then run on the residual corpus to produce
final ranked lists.

5. RESULTS
In this section we summarize retrieval performance of the

proposed method and the baseline methods. Throughout
the result section MVD denotes the proposed model.

5.1 Comparison to Probabilistic Models
Table 2 compares the performance of MVD to that of

the three probabilistic models, namely, language model with
Dirichlet prior, BM25 and PL2. First, we compare the per-
formances measured by ERR@20. Table 2 shows that, on
two Clueweb.B collections, MVD outperforms LM, PL2 and
BM25 by a margin of 8% to 12% and all the differences
are statistically significant. On MQ-2009 collection, MVD
is once again always statistically significant compared to all
the baselines with a margin more than 9%. Similarly, on
two Clueweb.A datasets, MVD is unequivocally superior to
the baselines and quite clearly the performance differences
are even larger than that on Clueweb.B and MQ-2009. The
baseline methods seem to be performing nearly equally and
in none of the cases, the performance differences among the
baselines found to be statistically significant.

Our next goal is to analyze the results measured in terms
of NDCG@10. Once again, MVD gives consistent perfor-
mance improvement over LM, BM25 and PL2 on Clueweb.B
collections. The performance differences are always statisti-
cally significant with more than 15% relative improvements.
Results on MQ-2009 collection also show that MVD is sig-
nificantly more effective than all the baselines, however the
relative differences are smaller compared to Clueweb collec-
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Table 3: Retrieval effectiveness of the proposed method (MVD) compared to tf-idf models. Statistically
significant improvements are indicated using the first letter of the less effective method. The highest value
per column is boldfaced. The numbers in parenthesis indicate relative improvement over PIVOT, MATF and
LL, respectively.

Clueweb.B-09 & 10 Clueweb.B-11 & 12 MQ-2009 Clueweb.A-09 & 10 Clueweb.A-11 & 12
PIVOT 0.263 0.234 0.367 0.169 0.196
MATF 0.283 0.282 0.388 0.227 0.251

ERR@20 LL 0.290 0.275 0.391 0.244 0.240
MVD 0.337pml 0.286pl 0.408pml 0.286pml 0.257pl

(27.9, 18.8, 16.0) (22.0, 1.5, 3.9) (11.2, 5.1, 4.4) (69.6, 26.1, 16.9) (31.2, 2.7, 7.1)

PIVOT 0.219 0.196 0.381 0.177 0.175
MATF 0.276 0.240 0.402 0.197 0.213

NDCG@10 LL 0.287 0.234 0.418 0.207 0.206
MVD 0.332pml 0.268pml 0.422pm 0.261pml 0.231pml

(51.6, 20.5, 15.8) (36.6, 11.4, 14.5) (10.8, 5.0, 1.0) (47.5, 32.3, 25.8) (32.5, 8.7, 12.5)

PIVOT 0.212 0.200 0.442 0.181 0.171
MATF 0.286 0.243 0.466 0.202 0.209

NDCG@20 LL 0.284 0.235 0.477 0.201 0.198
MVD 0.325pml 0.265pml 0.479pm 0.248pml 0.228pml

(53.5, 13.5, 14.4) (32.0, 9.0, 12.7) (8.3, 2.8, 0.4) (37.2, 22.7, 23.0) (33.2, 9.4, 15.0)

tions. One reason for smaller difference is that the base-
line NDCG@10 numbers are very high, which makes the
relative improvements smaller. The effectiveness of MVD
on Clueweb.A collections is even more encouraging. MVD
surpasses the baselines on Clueweb.A-09 & 10 collection by
more than 20% margin which is clearly highly significant.
We observe similar trend on the other Clueweb.A collection.
As in ERR@20, the baselines seem to be performing with
equal effectiveness.

We notice very similar (as in ERR@20 and NDCG@20)
behavior of MVD on Clueweb.B collections measured by
NDCG@20. Once again, MVD is consistently and signif-
icantly better than all the baselines with noticeably large
margin of relative improvement. The picture is slightly dif-
ferent on MQ-2009 collection. Although, MVD is better
than all the baselines, difference against BM25 only found to
be significant. We suspect that sparser relevance judgements
of MQ-2009 collection is a possible reason behind smaller
differences. Finally, MVD beats the baselines by a convinc-
ingly large margin thereby maintaining its consistency as in
the previous cases.

Overall, the results indicate that the proposed model based
on distribution of maximum values yields consistent and sig-
nificant retrieval performance improvement over the three
state of the art probabilistic baselines from different cate-
gories measured by NDCG measures. We conclude that the
proposed model is significantly more precise than the base-
lines on all the collections, thereby making it a very suitable
for web search. The experiments also reveal that the perfor-
mance of the baselines are very similar to each other, irre-
spective of the collection, which corroborates earlier findings
that if parameters of the models are properly optimized, lan-
guage model, BM25 and divergence from randomness model
are closely comparable.

5.2 Comparison to TF-IDF Models
The experiments in this section are designed to compare

the proposed method to a number of tf-idf models. By this
set of experiments, we intend to achieve the following major
goals.

1. How does the proposed model perform compare to a
basic tf-idf model that uses only pivoted document
length normalization?

2. Since MVD is based on multi-aspect term frequency
normalization in a new probabilistic framework, how
does it compare against a recent tf-idf model (MATF)
that introduced multi-aspect tf normalization? We re-
iterate that this is the main issue we sought to address
using maximum value based model.

3. We mentioned before that MATF combines the two
normalized tf using an empirical tf function that trans-
forms normalized tf values. Moreover, it does not fac-
tor in the distribution of normalized tf in the elite set
for the particular term. Thus, in this section we com-
pare the performance of MVD to a method that uses
log-logistic probability distribution of two normalized
tfs. The method is denoted as LL in the table. The pa-
rameters of this model is estimated using the method
detailed in [17].

Table 5.2 compares the performance of tf-idf methods and
MVD. First, it is clear from the table that MVD is highly
significantly better than PIVOT. This holds for all collec-
tion and measured by all three evaluation measures. The
performance differences are unequivocally statistically sig-
nificant. On Clueweb (both A and B) collections, MVD
gives upto 50% relative improvement over PIVOT. Second,
MATF, which is based on relative intra-document tf nor-
malization and length based normalization (which we call
multi-aspect tf normalization), is always poorer than MVD
and the differences are almost always statistically significant.
More importantly, the margin of improvement by MVD is
often noticeably high.

Thus, we conclude that maximum value distribution has
large impact on retrieval performance. Finally, we com-
pare the proposed method to log-logistic distribution based
method denoted as LL in the table. Note that LL uses dis-
tribution of multi-aspect tf normalization for estimating rel-
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evance and thus has probabilistic interpretation. Table 5.2
once again shows that MVD often significantly surpasses LL.

6. CONCLUSION
In this paper we introduce a probabilistic information re-

trieval model. The proposed model is guided by the principle
that given the normalized frequency of a term in a docu-
ment, the score is proportional to the likelihood that the
normalized tf is maximum with respect to its distribution in
the elite set for the corresponding term. We use a mixture
of two maximum value distribution, that factors in varying
specificity of query terms. The proposed model, integrates
multi-aspect tf normalization scheme proposed recently in a
probabilistic framework. Unlike many existing models, the
proposed model takes into account the term specific distri-
bution in the elite set. However, the unique contribution
is that the model measures the likelihood of relevance fo-
cussing on the maximum values of the distribution, which
we believe the first such effort to view ranking problem from
this perspective. An empirical evaluation on large web col-
lections containing millions of documents and hundreds of
real world web queries demonstrates that the model signifi-
cantly outperforms the state of the art probabilistic models
from different families. As a future work, we plan to in-
corporate term proximity (ordered and un-ordered bigram)
information into our model.
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