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Abstract

We use data from the TREC routing experiments to explore

how relevance feedback can be applied incrementally-using

a few judged documents each tim~to achieve results that

are as good as if the feedback occurred in one paas. We

show that relatively few judgments are needed to get high-

quality results. We also demonstrate methods that reduce

the amount of information archived from past judged docu-

ments without adversely tiecting effectiveness. A novel sim-

ulation shows that such techniques are useful for handling

long-standing queries with drifting notions of relevance.

1 Introduction

An information filter monitors a stream of documents and

selects those that match a query. Information filtering dif-

fers from more traditional information retrieval in several

respects: the documents arrive continuously rather than re-

siding in a collection; the query is long-lived rather than

one-shot (it might exist for days, weeks, or even years); and

the matching process requires a yes/no decision rather than

a ranked list.

Relevance feedback techniques provide a means for auto-

matically correcting a query to more accurately reflect the

user’s interests: a set of ‘(good/bad” relevance judgments on

documents are “fed back” into the query to generate a better

query. Researchers interested in feedback generally explore

the problem using a test collection such as that provided
by the TREC routing task, [Har96] which consists of some
queries and a collection of documents that are known to be
relevant or not relevant for each query. The documents are
broken into training and test sub-collections, the queries are
improved baaed upon the training sub-collection, and the
results are checked using the test collection.

We are interested in a combination of those two idea.r—
i.e., relevance feedback for information filtering-and the
new questions that arise in that setting:
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1.

2.

3.

This

Do standard feedback techniques work when relevance

judgments arrive a few at a time rather than in a

batch? If so, how quickly do we achieve a “high qual-
it y“ query?

How much information from past relevance judgments
must be archived for a query in order to maintain that
“high quality” but reduce space requirements? Is it ad-
equate to archive a few select judgments, or can more
canonical (so more concise) information be saved in-
stead?

Can relevance feedback techniques cope with “query
drift ,“ a slow shift in the focus of the user’s interest
over time? (Query drift should not be confused with

“concept drift,” where the meaning of an indexing con-
cept changes over time. [BR93] The two are related in
that a query concept could drift and cause the query
proper to drift, but we are interested in more general
cases where the idea of “relevance” changes.)

work investi~ates each of those auestions. We focus on
relevance feedbac~ when the judgments are presented a few

at a time rather than all at once, a process we call incre-
mental feedback. The intent is that successive applications
of feedback will incrementally converge on a query as good

as that which could be achieved when all the judgments are
applied simultaneously.

Although relevance feedback and the TREC routing task

have been researched extensively, there has been little work
that addresses the questions above in the context of incre-
ment al feedback in a filtering environment.

Section 2 starts by describing the information filtering
environment in more detail and how we constructed experi-
ments to answer the questions raised above. Section 3 briefly
answers the question of whether relevance feedback works
incrementally, and Section 4 addresses storage issues by ex-
ploring two approaches to incremental application of feed-
back that remember only selected information from paat cy-

cles. Section 5 demonstrates that the incremental approach
can successfully cope with query drift and finally, Section 6
summarizes the results and presents some open questions.

2 What is incremental feedback?

In information filters, documents arrive continuously, though
the number of documents arriving at any time may vary.
A retrieval system monitors the stream of documents and
when it finds one that matches a user’s query, the document
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is saved. This part of the retrieval problem is handled by
various existing filtering engines, both in the research com-
munity (e. g., SIFT[YGM95] and InRoute[Ca196]) and the
commercial setting (e.g., Logicon[Yoc85]).

When documents have been selected, the user reads them
and has the opportunity to mark them as relevant or not.
These judgments are combined with the query to generate
a new query—perhaps after several judgments have been
made, perhaps after every one. The new query is then used
to monitor the flow of incoming documents. This cycle con-

tinues until the query is no longer needed.

On the surface, the feedback in this process appears
to be straightforward relevance feedback. However, unlike

in other settings, older relevance judgments must be re-

tained so that unusual information in newly judged docu-
ments does not accidentally bias the feedback in the wrong

direction. This situation arises in interactive situations, but
the longevity of a filtering query means that it may not be
practical to archive all paat relevance judgments because of
limited storage space.

Work on iterative query formulation using feedback is
fairly well known, but has only been applied to an interactive

setting where the database remains constant. [Sa171, Bo088,
IJA92] Some work haa been done on deciding how many doc-

uments are needed to help feedback generate a good query

and how many expansion terms should be used. [BSA94]. In
the area of text classification, efforts have been made to re-

duce the amount of training needed to build a reasonable
classifier. [LG94]

Aalbersberg’s work on incremental feedback[IJA92] is
very similar to one of the cases of this study (saving all
context from past judgments), though he is concerned with
a static collection and the interactive setting. The prob-
lems of archival space and query drift are usually of little

consequence in such situations.

2.1 Simulating incremental feedback

A complete evaluation of incremental feedback in an infor-

mation filtering context requires either extensive user studies

or complex simulations of the process using a carefully con-
structed ordering of documents. To simplify the problem,
we ignore the actuaJ selection of documents: we are only
interested in the stream of relevance judgments that results
from the selection and presentation to some user. This ap-

proach limits the conclusions we can draw from this study,

but creates a simpler platform for initial experiments.

For these experiments, our initial queries are the descrip-
tion sections of TREC queries 51 through 100. These queries

are short (4 to 30 words), so are a reasonable model of a gen-

uine user’s initial query. [CCW95] The queries are improved
by feedback on TREC disks 1 and 2; the resulting query is
tested on TREC disk 3.

The relevance judgments are used in the order they we
listed in the files as distributed. For full feedback runs, the
order is actually unimportant. For incremental feedback
runs, the judgments are fed back a fraction at a time until

all judgments for a query are exhausted. That is, the first

feedback cycle uses the first ~ of the judgments for each
query, the second cycle uses the second nth, and so on.

Table 1 presents some statistics about the set of rele-

vance judgments for disks 1 and 2 (those used for feedback).
The immense number of judgments—an average of almost
1800 per query !—would require substantial time to process,

so we chose a random subset for all of our experiments by

\ Judgments Per Query

in set Min Max Avg

full 89179 1047 2890 1784
ful~ only rel 16386 40 894 328
rl&d6m– CubsZt– ‘“- 8~~- - ‘g~ - ‘332- - 17~ -

subset, only rel 4916 7 276 98

Table 1: Number of relevance judgments in the entire train-
ing set (tip 12) and in the randomly selected subset. A break-
down including only the positive judgments is also included.

selecting about 10% of the full set of judgments, biased in
favor of documents judged relevant (to ensure a reasonable
likelihood of successful feedback). Judgments were selected
from the relevant set with a 30% probability and from the
non-relevant with a 570 probability.

2.2 Relevance feedback algorithm

In all experiments discussed below, feedback starts from the

original query, possibly includes some information from past
feedback cycles, includes some new set of relevance judg-

ments, and generates a new query by adding up to 100 new
terms. Note that the original query is used in every cycle.
This anchors the results at the user’s initial query, an ap-
proach that works well in general but will turn out to be
inappropriate for drifting queries.

Any term that occurs in a relevant document is a candi-
date for appearing in the top 100. The candidate terms are
first ordered by rt~, the number of times the term occurs in

the relevant documents. The top 500 terms in that ranking
are re-ranked according to a Rocchio formula

1
Rocchio, = WqWY + 2wE1 – ~ WnOn_ ~1

Where UIX is the weight of the term in the query, relevant
documents, or non-relevant documents. The weight of term
t in the relevant set is calculated as follows:

‘wr./.=t (t) =

beli,d =

tfbelt,d =

idf ~ =

0.4 + 0.6. tfbelt,d idft

‘ft,d

tft,d + 0.5 + 1.5*

log( *)/log(Ar + 1)

(1)

where tf ~,d is the number of times term toccurs in document
d, lend is the length of document d, avgdoclen is the average
length of documents in the collection,l N is the number
of documents in the collection, and docf ~ is the number of
documents that contain term t. This formula is the belief
function currently used by Inquery.[Thr90, ABC+95]

The weights in the non-relevant documents and in the

query are calculated similarly. The first 100 terms ranked
by the Rocchio weight are added to the query; the original

1In an information filtering setting, the notion of “collection” is
awkward. For these experiments we use the training database as the
collection. In practice, collection data would have to be built up over

time. [Ca196]
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Figure 1: Base cases for incremental feedback, showing that

feedback helps substantially over the original queries. It also

shows that the 10~0 subset of judgments (“subset”) works

quite well compared to the “full” set.

query terms are always included in the new query. Because
the user-supplied query terms are generally more reliable
than the automatically-generated ones, the new terms are
down-weighted slightly by multiplying them by 0.3.

Note that this feedback scheme is not the best known
approach. In particular, all query structure is ignored (the
queries are a weighted sum of words), no dynamic feedback
optimization[BS95, ABC+ 95] is done, and only terms are
added. However, this simpler approach is fast, reasonably

effective, and easy to understand, so it provides an excellent
approximation for these experiments.

When average precision is reported in this study, it is the
average, non-interpolated precision for the top 1000 docu-
ments retrieved, aasuming all other relevant documents were
retrieved at rank infinity. (This measure is that calculated
by the “TREC evaluation” programs.) Note that the query
is being evaluated against the entire test set (TREC disk 3)

at once rather than as an information filter. This choice may
seem odd since we are evaluating information filters, but it
nonetheless gives a good measure of the query’s quality: a

query that ranks a collection well can also be used to filter it
with high accuracy, provided an appropriate threshold can

be found.

2.3 Baseline measures

Figure 1 shows the effect of applying relevance feed-

back to the original queries, both using the full set of judg-

ments and the random subset. The “subset” run is non-
incremental feedback on the sampled set of 8,497 judgments.

The “full” run is the result of including all 89,179 judgments

and shows that the sampling provides a reasonable approx-

imation of the total set. The “subset” run is used as the

baseline in most experiments of this study, since it is the

best we could expect in an incremental approach (using that
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Figure 2: Rapid rise in effectiveness. Not all runs were made
at every possible data point; however, the trend is clear. The
horizontal lines show the baseline and 90% of the baseline.
Note that the y-axis starts at 25% average precision.

set of judgments).

Note that the random subset achieves almost the same

precision and recall as the full set, even though it includes

only 10~0 as many judgments. This result indicates that we
have lost very little important information by sampling and
also suggests that when documents are fed back incremen-
tally, “ideal” effectiveness will be achieved by the time only

10% of the documents have been considered—and perhaps
even earlier.z

3 Does incremental feedback work?

The first question raised in the introduction was whether

standard feedback techniques can be successful when judg-

ments are applied increment ally. The only modest degrada-

tion caused by using a random sample already suggests that

applying judgments increment ally will be successful. How-

ever, that 10% sample is scattered throughout the full set

of judgments. What happens to effectiveness as the 10%

sample is applied incrementally?

Figure 2 shows how average precision rises as a greater

proportion of the subset’s judgments are applied. A set of

runs were made that applied ~ of the judgments, then ~,

and so on. The graph shows the effectiveness reaching the

baseline (“subset” feedback from Figure 1) when roughly
half of the training documents have been presented, no mat-

ter how small the number of judgments fed back at a time.3

With roughly 10% of the judgments applied, average preci-

sion is within 10% of the baseline. Note that if no feedback
is done, the effectiveness is lsyo lower than the baseline (not

‘Similar results were also obtained when the sampled subset was

varied for a small number of the tests in this study. However, no

systematic study was undertaken to verify that there is no subtler
bias in the sample used throughout. This omission means that the

conclusions may not generalize when small numbers of judgments have

been fed back.

3The apparently large improvement suggested by the graph around

the halfway point is an artifact of the scales; the y-axis is not based

at zero. It is only a few percent improvement.
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shown in the figure; but see Figure 1), so relatively few doc-
uments results in substantial improvement. In fact, 10%
of the relevance judgments is actually l% of the full judg-
ment set, meaning that very high effect iveness was obtained
with a miniscule sampling of the full set! Admittedly, 1YO
is still 10–30 judgments per query (see Table 1) which is a
lot for interactive settings. But for long-standing queries, it
is comforting to know that reasonable performance can be

achieved quickly. The answer to the first question is clearly

that incremental application of feedback works, and that it
achieves “high quality” very quickly.

The slight improvement over the baseline-which should
be the best achievable effectiveness-at the right of the graph
is the result of a few queries’ being improved by the loss of
statistical information from earlier cycles of ~ judgments.
Candidate terms are selected only from relevant documents,
so statistics about relevant terms that do not occur until
later cycles will be missing information about earlier non-
relevant documents. Omitting that information helps a few

queries which brings the average up slightly. If statistics
are kept on terms that occur in all judged documents, the
results are identical to full feedback.

4 Archiving judgments

The second introductory question raised was whether the

same retrieval effectiveness could be achieved if less infor-
mation were archived. The previous section showed that
as the number of judgments grows, the quality of retrieval
improves—but in those cases, all past judgments were also
available. What about situations where it is not practical to
archive all past judgments because the storage space is not

available?
To examine that question in more depth, we first show

that it is important to archive some information and then

consider two types of archiving: by judged document, and by
important concept. The results will show that surprisingly

little data from eadier runs needs to be archived.

4.1 Saving nothing

A first approach to incremental feedback is to ignore all pre-
vious feedback cycles and start afresh each time new judg-
ments arrive. (This is an extreme method since it would
be likely that information from previous cycles would be
implicit in the new query. ) The effect this has on average
precision varies substantially but is uniformly bad. If the

judgments are provided & at a time (roughly 10 per query

per cycle), this approach results in a 9–22% drop in effective-
ness (depending on which 16th oft he judgments are used; on

average the drop is about 15Yo) compared to feeding back
all documents in one cycle. Figure 3 shows the result of
feeding back one nth of the judgments for several values of
n; the particular nth used is chosen randomly and is rep-
resentative. Not surprisingly, smaller values of n result in

better effectiveness: full feedback of the subset’s judgments

is equivalent to n = 1.

A 20-40~0 drop in effectiveness will be unacceptable in
most settings, so it is clear that some amount of archiving
is necessary.

4.2 Save top documents

The set of documents used for feedback includes 8,497 doc-
uments, occupying just over 110Mb of space (the 4,916 rel-

0 02 04 06 08 1
Recall

32nd 0.2235 -29.4%

64th 0.1955 -38.3%
128th 0.1885 -40.4%

256th 0.2124 -32.8%

Figure 3: Saving no information, feeding back a sample ~

of the training set, versus feeding it all back.

evant documents account for only about 35Mb). Extrapo-

lating to the full training set, there is over a gigabyte worth
of training documents for 50 queries. We have just shown

that we need to remember past relevance judgments to do

well, but in a large-scale filtering environment, it may not be

feasible to allocate 20Mb (and growing) per existing query.

What happens, then, if we remember a smaller set of docu-
ments?

For this experiment, at the end of each cycle, all but n
relevant and n non-relevant documents (a total of 2n) are
“forgotten.” The n were chosen in two ways:

1.

2.

using a FIFO schedule, so the most recently seen n rel-

evant (plus n non-relevant) documents—accumulated
over multiple cycles, perhaps—were retained.

by keeping then most “dissimilar” relevant documents

(and ano&er n “dissimilar” non-relevant documents).
All documents were pairwise compared and as long

as there were more than n documents remaining, the
oldest document from the most-similar pair was dis-
carded. Comparison was made by collapsing docu-
ments into vectors of term weights—by Equation (l)—-
and using an inner product as the similarity.

The judgments were presented & at a time.
Figure 4 shows that both approaches are superior to sav-

ing no information (z. e., the & run from Section 4.1). FIFO

accomplishes the improvement by increasing the number of
documents that are being fed back. Indeed, as n increases,
FIFO improves—when n is 50, over half of the relevant doc-

uments are being remembered and precision drops less than
2% off the baseline.

Keeping dissimilar documents outperforms FIFO with
the same value of n. This result is not surprising since a set
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Figure 4: Keeping 20 documents (10 relevant, 10 non-
relevant )

of dissimilar documents is more likely to cover the important

topics that are relevant to the query. This recall-oriented

explanation is supported by the “dissim” run of Figure 4,
that retrieved 6,607 relevant documents over 50 queries; the
FIFO run retrieved only 6,040 (the baseline got 6,728 and
wit h nothing saved, only 5,797 were found). Interestingly,
the “dissim” run actually out-performed the baseline run
slightly in the first 15 documents retrieved.

A loss of 2-3% in effectiveness may be an acceptable price
for archiving only 10% of the relevance judgments. However,
if our goal is to save space, storing entire documents may

be a mistake: documents tme sometimes quite large and can
vary dramatically in size.

4.3 Save top concepts

A different approach to saving context from past cycles is to
remember statistics about the most “significant” concepts
found so far. To calculate the weights as described in Sec-

tion 2.2, the context needs to include the following: the
term, whether it was an original query term, and also the

document frequency, term frequency, and cumulative belief
value of the term in both relevant and non-relevant docu-
ments.

If we archive that information, the statistics for the saved

terms can be “pre-set” from the context at the start of a
feedback cycle. Because only a subset of terms is stored
in the context, the statistics for all other terms will be
inaccurate—they will be based upon fewer relevance judg-
ments. The question is how many terms must be kept in the
context to achieve acceptable effectiveness.

It is certainly possible to keep statistics on all candidate
terms seen to date, though doing so is probably nearly as
space-consuming as-and less flexible than—keeping the full
documents. That approach results in almost exactly the

Keep top

n terms AvgPrec %Change

full 0.3166 —
---- ---- --—— ---- .

50 0.3150 –0.5

100 0.3132 –1.1

250 0.3223 +1.8

500 0.3254 +2.8
750 0.3254 +2.8
900 0.3249 +2.6

1000 0.3254 +2.8
1250 0.3266 +3.2
1500 0.3251 +2.7
2000 0.3233 +2.1
3000 0.3238 +2.3
4000 0.3243 +2.5

5000 0.3206 +1.3
10000 0.3193 +0.9

Table 2: Top n terms saved in context

Ranking top 500 top 1000

of top n AvgPrec %Change AvgPrec %Change

full 0.3166 0.3166

~r~p~d~ ‘0;3252 --- ~f8- -- ~.32~4_ -- ‘+_!2.~ --
rdf 0.3144 -0.7 0.3171 +0.2

rtf 0.3121 -1.4 0.3166 –0.0

Table 3: Varying selection of “top” terms

same effectiveness as feeding back all judgments at once.
Feeding back ~ of the judgments4 at a time and varying

the number of terms kept in context, we found that keeping
a small number of terms can actually improve performance

over full feedback (the slight inaccuracy of statistics noted
at the end of Section 3 increases when only some terms are
remembered from cycle to cycle). Table 2 shows that almost

any number of terms works well; the differences are minor.

Unless otherwise noted, we are letting n be 1000 terms for
all runs that save context.

An important question is how to determine which of the
candidate terms is in the “top n.” We tried three different
approaches:

1.

2.

Rank by the proportion of relevant documents con-
taining the term minus the proportion of non-relevant

documents containing the term (prop-df). A term that
occurs in only relevant documents will be ranked at
1.0, a term that occurs in every training document will

be ranked with a 0.0 weight, and terms occurring pri-
marily in non-relevant documents will have negative
weights. (This is the ranking method used above to
show the effect of archiving varying numbers of terms.)

Rank by the total number of relevant documents con-
taining ‘the term (rdf).

4An eighth wss used for these experiments rather than the six-
teenth used for others. This is a historical accident and has no other
significance. Where runs using both fractions were made, the effects
are consistent.
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Rel in 70 of rel for
org+new Common org new

53+ 55 91 1

55+ 87 10 1 3

57+ 97 31 3 5

61+ 99 142 52 24

62+ 67 17 2 2

63+ 66 84 29 29

64+ 71 91 1

72 -+ 73 25 12 5

74+ 85 13 1 1

85+ 94 10 1 2

88+ 89 74 4

89 -+ 90 63 2

94+ 95 78 12 12
97* 98 265 39 19

98+ 100 12 1 2

Table 4: Overlap in relevant documents for queries

3. Rank by the total number of occurrences of the term
in the relevant documents (rtf ).

Table 3 shows that the differences in effectiveness are not
large, but that it is preferable to select terms based upon
both positive and negative information.

It is clear that “high quality” effectiveness is achievable
when an extremely small amount of information—as few as

250 words—is kept from past judgments. Archiving term
information is less flexible than storing entire judged doc-

uments (e.g., term adjacency information is lost), but the

storage space is small and very predictable.

5 Query drift

Question (3) in the introduction raised the issue of query
drift. If a request is long-lived enough, the intent of the

query may change: a particular subtopic of the query might
turn out to be more interesting in the long run, or a vaguely
related topic might arouse some curiosity and shift “rele-

vance” to a tangential heading.
Techniques such as those presented in the previous sec-

tion seem ideal for handling query drift. Since incomplete in-

formation is being saved, “antiquated” (no longer appropri-

ate) feedback data should drop away, leaving a query more

suit ed to the new interest.
This section discusses an experimental setting that simu-

lates such a situation and then presents the results of several
experiments.

5.1 Simulating query drift

A query that has drifted is essentially two queries—the orig-

inal, and the ne~presumably with documents that are
relevant to both for some transitional period. Some of the
TREC queries used in earlier experiments are quite similar

in both their statement and in their relevant document set.
That suggests a method for approximating drift.

We consider two queries overlapping if they have sev-
eral relevant documents in common (the number of judged
non-relevant documents in common is not considered). The

overlap among judged documents ranges from about 4070

of the judged documents down to none. Table 4 shows 15
pairs of overlapping queries selected such that no query ap-
peared twice in either the original or new set (we wanted a

one-to-one mapping). For example, consider queries 97 and

98:

Q97: fiber optics technology actually in use

Q98: individuals or organizations which produce
fiber optics equipment

Those queries have 265 relevant documents in common. That

accounts for 39% of query 97’s relevant documents and 1970

of query 98’s. Other pairs are not as highly overlapping, but

we wanted enough queries that the results would be mean-
ingful. We also selected an additional fifteen pairs where
exactly one document was in common so that we could eval-
uate how well these approaches handled a more abrupt query
drift. Those queries are discussed in Section 5.3.

The judgments for both relevant and non-relevant doc-
uments were combined by breaking them into three groups:
(1) documents judged only for the original query, (2) doc-

uments judged for both queries, and (3) documents judged
only for the new query. The judgments were applied in

that order, though incrementally.

5.2 Basic drifting

The following types of runs were made and evaluated for the
queries in Table 4. As was done in Section 3, feedback was
on TREC disks 1 and 2; evaluation was using disk 3. The
difference here is the mixing of relevance judgments that

are applied.

1.

2.

3.

4.

5.

new: The new queries modified with only their own
relevance judgments. This should be the best perfor-

mance possible, but turns out not to be: the statistical

effect noted at the end of Section 3 is more pronounced
here because only the top 1000 terms are being saved
when the the incremental judgments are used (in new-
incremental).

new-incremental: Same as new but with the rele-
vance juclgements fed back incrementally, & at a time,

keeping 1000 words of context. This is the baseline for
most runs, the best any drifted query could expect to

do incrementally.

drift: The original queries modified with the mixed
relevance judgments fed back & at a time, keep-
ing 1000 terms of context. The final cycle of feed-

back should result in queries that approximate the new
queries.

new-drift: The new queries modified with the mixed
relevance judgments fed back & at a time, keeping
1000 words of context. This run is very similar to the

drift run, but is made to compensate for the “stick-
iness” of the original query that is part of the in-
cremental feedback approach used—recall that every
cycle of feedback includes the starting query in its re-
sult. We expect this query will not do as well as new-
z.ncremental since it will be modified by judgments for
the original query.

original: The original queries modified with only their
own relevance judgments (not incrementally), but then
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Figure 5: Query drift with good overlap between the original

and new queries.

I Org~New I Org-+New

51+ 54 I 68+ 83
54+ 79 69+ 71
58-i 72 70~ 76
60-+ 80 72+ 75

65-+ 97 I 76-+ 93

=

178+ 85

79+ 100
84+ 90

87-+ 89

Table 5: Query pairs, abrupt shift in topic

evaluated as if they were the new queries. The pur-
pose of this run is to demonstrate that the drifting has
an impact on the queries, making them more like the
new queries. That is, this run is expected to perform

poorly.

Figure 5 shows that the original query is a bad surrogate
for the new query and that the drifting helps substantially.
The difference between the drift and new- drzft runs makes
it clear that any approach that hopes to handle query drift

cannot anchor the feedback to the original query too firmly.

.5.3 Basic drifting, abrupt shift

When the new query is substantially different from the old,
holding fast to the original query is more likely to be a prob-
lem. To examine that hypothesis, we chose 15 query pairs
that had exactly one overlapping relevant document. An

example of the shift in query is:

from Q78: activity by Greenpeace to carry out
their environmental protection goals

to Q85: allegations, or measures being taken

against, corrupt public officials of any govern-
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(The relevant document is WSJ9105O1-OO2O; it mentions
how Greenpeace has published a list of the “alleged mis-
deeds” of Waste Management, Inc.) The 15 query pairs
selected are listed in Table 5.

Figure 6 makes it very clear that in this setting the orig-

inal query with its relevance judgments is a miserable sub-

stitute for the new query. Further, the increased necessity of

making the original query fade from importance is evident

by the differences between drift and new-drift.

5.4 Drift and slip

The previous two sections show that making the original
query “sticky” hurts effectiveness substantially when a query

drifts. The statistics maintained and archived about the top
1000 terms are also “sticky” in that the only way information

about a term disappears is if the term eventually drops out
of the list. We experimented with increasing the speed at
which antiquated terms drop off the top 1000 by introducing
a “slip” (aging) factor.

Whenever context is restored from an earlier cycle, all
statistics are reduced by some fraction. If a term continues
to occur in judged documents, its statistics will stay high.
If, however, a term becomes useless (or counter-productive)
we expect that it will lose weight more quickly than it would
otherwise and will eventually drop from the top 1000 that
are saved.

Figure 7 shows the result of running parallels of the drift

and new-drift runs with slip factors of 10% and 50% on the
slow-drift (not the abrupt shift ) queries. The slip factor
clearly helps in all cases. For these queries, a fairly aggres-
sive reduction in past context is called for. In practice, the
rate of fading will probably have to be determined by notic-
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ing a shift in the type of documents judged relevant, perhaps
based around some form of document clustering.

6 Conclusion

Relevance feedback is an excellent technique for improving
the effectiveness of queries against a database. We have
demonstrated that feedback can be applied incrementally to

achieve similar effectiveness-provided that some context is

maintained between feedback cycles.

In an environment where it is not feasible to archive large
numbers of documents or large amounts of statistical infor-

mation, incremental feedback works extremely well if a small

number of past judgments is maintained. Its performance
is improved further if statistical information about some of

the important terms is kept instead.
If a user’s notion of “relevance” is likely to drift over

time, keeping around limited context prevents the query
from locking in on the original notion of relevance. We im-
plemented a novel simulation of this setting to demonstrate
that claim, as well as to show that query drift is handled

even more readily by phasing out old context.

There are still many questions that we are addressing in

our on-going work:

● HOW much does the order of presented judgments af-

fect the final results? Randomly ordering the judgm-
ents might be a good approach to addressing this

question. Our intuition is that except for unusual
cases, the order is unimportant.

● In particular, what happens if the relevance judgm-

ents are actually those made on top-ranked docu-

●

●

ments by the most recent query—that is, if we incor-
porate more of the retrieve, evaluate, feedback cycle?
(Recall that for this work the judgments were pre-
sented in the TREC collection order which has no
relation to the order that an actual filtering system

would select them. ) This requires substantially more
processing since the training collection will need to be

re-ranked after every cycle of feedback, but needs to

be addressed.

How well does this work extend to more complex query
structures? We do not believe there will be any dif-
ficulty including phrases or other groupings of words,
but the impact of more complex query structure (e.g.,
nested fuzzy boolean operators) on feedback is not
known. This problem has not been well-studied in

even the more traditional IR setting.

Since very few iud~ements are needed to achieve hi~h““
effectiveness, and ~ince remembering dissimilar docu-
ments was more useful than just remembering the most

recent n, we believe that careful use of the stream of

judgments may be extremely valuable. Can we select
the judgments appropriately both to increase effec-
tiveness and decrease computational expense beyond
the levels mentioned in this work?
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