
Improving Active Learning Recall  
via Disjunctive Boolean Constraints 

Emre Velipasaoglu  
Yahoo! Inc.  

Sunnyvale, CA 94089  
USA  

emrev@yahoo-inc.com 

Hinrich Schütze 
Institute for NLP  

University of Stuttgart  
Germany  

hs999@ifnlp.org  

Jan O. Pedersen  
Yahoo! Inc.  

Sunnyvale, CA 94089  
USA  

jpederse@yahoo-inc.com 
 

ABSTRACT 
Active learning efficiently hones in on the decision boundary 
between relevant and irrelevant documents, but in the process can 
miss entire clusters of relevant documents, yielding classifiers 
with low recall. In this paper, we propose a method to increase 
active learning recall by constraining sampling to a document 
subset rich in relevant examples. 

Categories and Subject Descriptors: I.2.6 [Artificial 
Intelligence]: Learning; H.3.1 [Information Storage and 
Retrieval]: Content Analysis and Indexing. 

General Terms: Algorithms, Performance. 

Keywords: Practical text classification, active learning, missed 
cluster effect. 

1. INTRODUCTION 
Machine learned text classifiers are commonly created by 
estimating the parameters of a statistical classification model on a 
labeled training set [7]. Active learning (AL) is an efficient 
training set creation method. AL starts with a seed set, iteratively 
samples unlabeled examples from the subspace that contains 
“informative” or “uncertain” documents, labels and adds them to 
the training set, and retrains the classifier thus redefining the 
region of uncertainty in each step [1]. It has been shown that AL 
is effective in creating high performance classifiers with a 
relatively small number of labeling decisions [2].  

Unfortunately, AL can produce classifiers low in recall because 
the sampling scheme hones in very rapidly on the decision 
boundary of a classifier produced in an early iteration. If there is 
only one cluster of relevant documents, this procedure is likely to 
rapidly discriminate between relevant and non-relevant 
documents. However, if there are several discrete clusters of 
relevant documents it is possible that whole clusters will be 
missed, ruining recall if not precision. We refer to this 
phenomenon as the missed cluster effect. We have found that 
about a third of relevant documents in the Reuters corpus are in 
missed clusters after 100 iterations of AL [6]. 
This paper addresses the missed clusters using a bootstrap set of 
documents that can be obtained by AL. We propose a method to 
constrain the document space AL samples from in order to 
increase the population of relevant examples. This modification 
improves the likelihood that AL will sample from otherwise 
missed clusters, resulting in significant improvement to recall. 

2. METHOD 
The basic idea of our method is to automatically find a set of 
characteristic terms for recall enhancement by analyzing the 
labeled set after a number of iterations of AL. Terms that occur 
more frequently in the labeled set than in the pool are particularly 
interesting. These terms represent concepts that may co-occur 
with other terms to yield concepts relevant to missed clusters. We 
propose to use a disjunctive query of such terms to obtain a 
sample of unlabeled documents from the pool. This subset is 
empirically found to be richer in missed cluster documents than 
the unlabeled pool. We modify AL simply by constraining the 
candidate documents to this subset. A new set of characteristic 
terms is estimated for each subsequent iteration, and a disjunctive 
query is issued to define a new subset of unlabeled documents. 

We use a 2-stage method to estimate the set of characteristic 
terms based on the counts for each term in Table 1 and algorithm 
below.  

1. Order terms ti by descending χ ti

2 = χ ti

2 Ati
,Bti

,Cti
,Dti( )  

2. Select first m terms: Tstage−1 = ti i ≤ m{ }  

3. Order terms ti in Tstage-1 by ascending rti
= 1− Ati

Cti( )  

4. Select first n terms: Tstage−2 = ti i ≤ n{ } 
In words, we select top m terms by descending chi-square statistic 
in stage-1, and top n terms within that set using the criterion that 
ratio of counts A and C is as close to 1 as possible in stage-2. 

 

Table 1. Counts used to estimate characteristic terms:  
Ati

# docs in labeled portion of pool containing term ti. 
Bti

# docs in unlabeled portion of pool containing term ti. 
Cti

# docs in labeled portion of pool not containing term ti. 
Dti

# docs in unlabeled portion of pool not containing term ti. 
 

 

Analysis of a case illustrates how the method works. For example, 
the GVIO category trained on all labeled examples has recall of 
77%, whereas ordinary AL (i.e. uncertainty sampling as in [4]) 
only reached 54% in 200 iterations. Recall deficiency signals the 
possibility of missed clusters. At the 50th iteration, the rate of 
relevant examples in the subset of unlabeled documents selected 
by the disjunctive query of the characteristic terms is about 15 
times that of the unlabeled pool. Further analysis shows that most 
of these relevant documents are false negatives. As a result AL 
has higher likelihood to sample the missed clusters when 
constrained to this subset of documents.  Copyright is held by the author/owner(s). 
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3. EXPERIMENTS 
The first half of the RCV1 corpus (400,001 documents) was 
randomly split into POOL and EVAL. Seed and query documents 
were drawn from POOL, and EVAL was used for evaluation. 43 
categories with frequencies ranging from 0.004% to 47% were 
selected, representing a mix of “small” and “large” categories. 
Standard tf-idf vector space representation was used. Details of 
this experimental setup can be found in [6]. Linear SVMs were 
used as they are viewed as having close to optimal performance in 
text categorization [8]. We used uncertainty sampling as in [4].  

For each category, we ran 200 iterations of AL starting with a 
seed set of 5 positive and 5 negative documents selected 
randomly from POOL. The first 50 iterations were ordinary AL 
(uncertainty sampling). After that, we constrained AL as 
explained above. In estimating the characteristic terms, we 
selected top m=100 terms in stage-1 and n=10 terms in the stage-
2. 

 

Table 2. Performances of ordinary and constrained AL. 
 Ordinary AL Constrained AL (% Relative Gain) 
Category + F P R + F P R 
SEASIA 5 0 0 0 20 0 0 0 
I22470 6 0 0 0 0 0 0 0 
I64600 7 0 0 0 0 0 0 0 
ISLAM 7 0 0 0 0 0 0 0 
SPSAH 10 93 100 88 0 0 0 0 
I6540030 12 43 86 29 0 0 0 0 
I25520 13 38 100 23 0 0 0 0 
SURM 13 70 100 54 0 0 0 0 
I22300 15 26 100 15 0 0 0 0 
I32550 15 20 100 11 0 0 0 0 
I36102 15 12 100 6 0 0 0 0 
I45000 17 31 63 21 0 0 0 0 
GABON 20 73 100 57 0 0 0 0 
I97412 22 24 94 13 0 0 0 0 
ERTRA 28 68 93 53 0 0 0 0 
I45300 30 9 87 5 7 -4 -1 -4 
NEPAL 30 94 99 90 0 0 0 0 
SENEG 34 67 89 53 3 2 0 3 
I8500031 37 26 69 16 14 35 14 41 
PARA 41 77 92 66 0 -1 0 -2 
BOL 43 70 84 60 -7 -3 3 -7 
I83940 48 20 84 11 4 1 0 1 
I82002 49 22 93 12 6 11 -4 14 
E411 56 63 72 55 5 2 2 2 
SLVNIA 56 89 98 81 -5 -4 1 -7 
I81402 57 4 67 2 21 9 11 9 
I42700 63 55 85 41 5 3 -3 7 
I13000 64 37 86 24 30 27 -5 40 
I42900 64 60 82 47 5 -5 4 -10 
I65600 64 32 85 20 11 11 -10 18 
M131 64 76 93 65 9 4 -6 11 
M132 65 77 87 70 11 1 2 0 
EEC 66 76 92 65 24 6 -2 13 
GVIO 66 65 83 54 38 11 -8 28 
DEN 67 88 97 81 9 1 0 1 
E51 67 36 84 23 25 26 -12 43 
ROM 68 93 99 87 21 0 0 1 
E212 69 77 92 66 9 1 -2 3 
CANA 81 78 95 67 4 5 -3 11 
AUSTR 83 88 97 81 13 2 -2 6 
GCAT 101 88 90 85 -1 0 2 -3 
CCAT 105 84 83 86 -1 -1 -1 -1 
USA 106 84 93 77 -2 -2 -7 3 

4. RESULTS 
The number of relevant examples (+) at the end of 200 iterations, 
precision (P), recall (R) and F measured on EVAL are compared 
for ordinary and constrained AL. In Table 2, absolute 
performance is listed for ordinary AL and relative gain, calculated 
as (Y-X)/X, listed for constrained AL. For instance, the E51 
category had 67 relevant examples at the end of 200 iterations of 

ordinary AL (including 5 relevant examples in the seed set). The 
performance numbers were 36%, 84% and 23% for F, P and R, 
respectively. Constrained AL produced 25% more relevant 
examples, increased F and R by 26% and 43%, respectively, and 
caused a 12% drop in P. Figure 1 shows the relative gain in F vs. 
the final number of relevant examples in ordinary AL.  

Average relative gain in recall is 5.1% (p-value = 0.008 in one-
sided paired t-test). F is up 3.2% (p-value = 0.008) and precision 
is down 0.6% but not significant (p-value = 0.1). There was no 
difference in performance between ordinary and constrained AL 
for small categories. Constrained AL caused a slight loss of 
accuracy for the largest 3 categories, GCAT, CCAT and USA, 
which have population rates 30%, 47% and 33%, respectively. It 
appears constraining by a disjunctive query of only 10 terms is 
too aggressive and unnecessary for these categories. A strong gain 
is observed for “medium” size categories, where the population 
rate ranged from 0.04% to 4.3%. In general, improvement in 
recall came at the expense of a small loss in precision. This is 
acceptable and even preferred in many practical text classification 
scenarios, since ordinary AL is heavily biased for high precision 
[6]. 
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Figure 1. Number of relevant examples in ordinary AL vs. 

percent relative gain in F by constrained AL. 

5. RELATED WORK 
In [3], a prior distribution over terms is utilized to increase recall. 
In [5], AL is extended by requesting explicit feedback about terms 
in interleaved steps. Unlike ours, these solutions require explicit 
information over term space. Our method would be useful where 
term space knowledge is not clear and can be complementary to 
methods that leverage domain knowledge explicitly. 
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