
Efficient Query Construction for Large Scale Data

Elena Demidova
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

demidova@L3S.de

Xuan Zhou
∗

DEKE Lab, MOE
Renmin University of China

Beijing, China

zhou.xuan@outlook.com

Wolfgang Nejdl
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

nejdl@L3S.de

ABSTRACT

In recent years, a number of open databases have emerged on the
Web, providing Web users with platforms to collaboratively create
structured information. As these databases are intended to accom-
modate heterogeneous information and knowledge, they usually
comprise a very large schema and billions of instances. Browsing
and searching data on such a scale is not an easy task for aWeb user.
In this context, interactive query construction offers an intuitive in-
terface for novice users to retrieve information from databases nei-
ther requiring any knowledge of structured query languages, nor
any prior knowledge of the database schema. However, the existing
mechanisms do not scale well on large scale datasets. This paper
presents a set of techniques to boost the scalability of interactive
query construction, from the perspective of both, user interaction
cost and performance. We connect an abstract ontology layer to
the database schema to shorten the process of user-computer inter-
action. We also introduce a search mechanism to enable efficient
exploration of query interpretation spaces over large scale data. Ex-
tensive experiments show that our approach scales well on Freebase
- an open database containing more than 7,000 relational tables in
more than 100 domains.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Query formulation

Keywords

Query construction, Freebase, Ontology

1. INTRODUCTION
With the prevalence of Web 2.0, a number of open databases

have emerged on the Web, attempting to provide a platform for
users to collaboratively create and maintain structured information.
A typical example is Freebase1, which currently contains more
than 22 million entities and 350 million facts from more than 100

∗Corresponding author: zhou.xuan@outlook.com
1www.freebase.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’13, July 28–August 1, 2013, Dublin, Ireland.
Copyright is held by the authors. Publication rights licensed to ACM.
ACM 978-1-4503-2034-4/13/07 ... $15.00.

domains, organized in 7,500 tables. Other examples include DB-
pedia2, WikiTaxonomy3 , and Probase4, whose sizes have already
reached the magnitude of several GBs. Databases of this kind are
intended to accommodate heterogeneous information and knowl-
edge. It is natural that each of these datasets contains a very large
schema and a large volume of data. For a typical Web user, in-
formation seeking over such large and heterogeneous database is a
challenge.
The technology of interactive query construction [7] enables novice

users to interactively create structured queries and retrieve desired
information from a database without knowing any structured query
language or studying the database schema a-priori. The existing
approaches of interactive query construction work well for small or
medium sized databases of a particular domain, such as IMDB5 and
Lyrics [16], which contain around 20 tables [7]. However, we found
that existing approaches fail to scale on a heterogeneous Freebase
database composed of several thousand tables. To this extent, the
FreeQ system presented in this paper enables us to scale interactive
query construction over a very large database.
The interface of interactive query construction combines the us-

ability of keyword queries with the expressiveness of structured
queries. It enables a user to start with a keyword query and refine
it into a structured query by interacting with the system. Through
interaction, the user can provide additional information to disam-
biguate the semantics of the keyword query, and finally determine
the structured expression reflecting her informational need. The
resulting structured queries offer enhanced expressiveness to re-
trieve results with complex semantics, including collective results,
e.g. “All films starring Tom Hanks”, or results involving more than
one entity, e.g. “The role of Tom Hanks in the film The Terminal”.
In this way, interactive query construction opens the world of struc-
tured queries to unskilled users, who are not familiar with struc-
tured query languages, without actually requiring them to learn
such query language. This interface is also a useful tool for ex-
pert users, who want to explore data organized in an unfamiliar and
complex database schema.
Interactive query construction is especially useful for seeking in-

formation on large scale, where keyword queries become increas-
ingly ambiguous. For instance, in Freebase, the phrase “Jack Lon-
don” occurs in more than sixty attributes and can be matched with
the entities of types author, film, olympic athlete, tourist attraction,
astronomical discovery, and others. As a result, there can be a large
number of plausible answers to the keyword query “Jack London”,
such as author Jack London, asteroid “2625 Jack London”, a British

2www.dbpedia.org
3http://www.h-its.org/english/research/nlp/index.php
4http://research.microsoft.com/en-us/projects/probase
5www.imdb.com

573

athlete John Edward “Jack” London, and the Jack London District
in Oakland, California. To find the desired information through a
keyword search interface, a user may have to scan through a long
list of search results. In contrast, an interactive query construction
interface suggests interaction options, such as “Jack London is a
book author” for the user to clarify her intent. By clicking the cor-
rect options, the user helps the system to form structured queries to
precisely retrieve the desired information.
There are two main reasons why existing approaches fail to scale

on heterogeneous databases composed of several thousand tables.
First, when the database schema is very big, the interaction op-
tions generated by the existing schemes are usually not informative
enough. As a result, a user may have to go through a laborious
interaction procedure to construct the desired query. For example,
as the phrase “Jack London” appears in more than sixty Freebase
attributes, this phrase can be interpreted into more than sixty mean-
ings. Using the existing interaction schemes, in the worst case,
the user may have to respond to each of the sixty interpretations
to finally clarify her intent. For a more complex keyword query,
the procedure of interaction can become unacceptably long. Sec-
ond, the interpretation space of a keyword query on a very large
database is usually too big to be materialized completely. The ex-
isting approaches to database keyword search usually rely on an en-
tirely materialized interpretation space to retrieve top-k structured
queries and interaction options. These approaches become infeasi-
ble in face of large scale databases. Thus we need new methods to
explore the interpretation spaces of keyword queries.
The FreeQ system presented in this paper enables scalable in-

teractive query construction over a very large database. First, we
propose to connect a hierarchical ontology to the database schema.
Using the general concepts in the ontology, we can form more in-
formative interaction options that enable more efficient query con-
struction. The hierarchical ontology can be a manually constructed
one, such as the domain set of Freebase. It can also be a generic ex-
ternal ontology, such as YAGO [21]. We conducted both theoretical
and experimental studies to evaluate how a hierarchical ontology
can speedup interactive query construction. Second, to explore the
interpretation space of keyword queries, we design a scheme that is
able to efficiently generate top-k structured queries and the optimal
interaction options without the complete knowledge of the search
space. Finally, we conducted extensive experiments on Freebase
demonstrating the effectiveness and the efficiency of our approach.
In summary, we have made the following contributions: (i) A

new type of interaction options based on ontologies to enable scal-
able interactive query construction, and a theoretical justification
about the effectiveness of these options; (ii) A scheme to enable
efficient generation of top-k structured queries and interaction op-
tions, without the complete knowledge of the query interpretation
space; (iii) An experimental study on Freebase to verify the ef-
fectiveness and efficiency of the proposed approach; (iv) To the
best of our knowledge, this is the first attempt to enable effective
keyword-based query construction on such a large scale database
as Freebase, considering that most existing work on database key-
word search uses only test sets of small schemas, such as DBLP,
IMDB, etc.

2. PROBLEM DEFINITION
A user interface for interactive query construction is presented

in Figure 1. This interface is composed of four parts: (1) an in-
put field for keyword queries, (2) a query construction panel for
presenting interaction options, (3) a query window for presenting
structured queries, and (4) a result window for query results. Sup-
pose a user, whose name is Alice, issues a keyword query to the

Figure 1: FreeQ GUI. Its components include: (1) an input field for
keyword queries, (2) a query construction panel, (3) top-k struc-
tured queries, and (4) query results.

system. The system first tries to guess Alice’s intent and generates
the top-k most likely structured queries in the query window (3). If
one of the top-k structured queries matches Alice’s intent, she can
click the query to obtain the results (4). If no query in the top-k list
makes sense to Alice, she can interact with the query construction
panel (2) to construct the desired structured query. Whenever Al-
ice clicks on an interaction option in the query construction panel,
the structured queries in the query window (3) are refined, such that
only the queries complying with Alice’s selection are preserved. Si-
multaneously, a new set of query construction options is presented
in the query construction panel (2). The interaction continues until
Alice obtains the desired structured query and results.
In this section, we introduce the basic model for enabling such

interface for interactive query construction. We also elaborate on
the challenges posed by large scale databases.

2.1 User Interaction Scheme
We start the discussion of the process of interactive query con-

struction with the definition of the key concepts of this process.
First of all, we model the schema of a database as a graph.

DEFINITION 2.1. A schema graph is a graph G=(V,E), where
each vertex v∈V represents a relational table and each edge e∈ E
represents a foreign key relationship. In the graph, each node v is

associated with a set of attributes, denoted by A(v), where the ith

attribute is represented by v.ai ∈ A(v). 2

We use the number of vertices to represent the size of a schema
graph. Using the structures in a schema graph, we can create struc-
tured queries.

DEFINITION 2.2. Given a schema graph G = (V,E), a struc-
tured query is an edge preserving map G′ = (V ′,E ′), such that
there is a function L :V ′ →V which satisfies: for each vertex v′ ∈V ′

in the structured query, there is a vertex L(v′) ∈ V in the schema
graph such that v′ and L(v′) represent the same relational table,
and for each edge {v′1,v

′
2} ∈ E

′ in the structured query, there is an

edge {L(v′1),L(v
′
2)} ∈ E in the schema graph.

In addition, each vertex v′ in the structured query can be asso-

ciated with a number of predicates. Each predicate is in the form

v′.ai op ci, where v
′.ai is an attribute of v

′, op is a comparison

operator, and ci is a constant. 2

574

For instance, given a film database, a query looking for all the ac-
tors who have collaborated with Tom Hanks can be expressed as:

Q1= {structure:actor1 ⊲⊳ acts ⊲⊳ f ilm1 ⊲⊳ acts ⊲⊳ actor2,
predicates:actor1.name = “Tom Hanks”}.

It is worth mentioning that each table in the database occurs only
once in the schema graph. In contrast, a table can occur multiple
times in a structured query.
In the process of interactive query construction, users express

their informational needs as keyword queries.

DEFINITION 2.3. A keyword query is a bag of terms K = {k1,
k2, ...,kn}, where duplicates are allowed. 2

In Definition 2.3, a term is a normalized class of tokens that is in-
cluded in the system’s dictionary. For token normalization, state-
of-the-art Information Retrieval techniques such as case folding
and word segmentation can be applied [18].
Themain function of FreeQ is to translate a user’s keyword query

into the intended structured query. We call the structured query
resulting from such translation a query interpretation. We say
that a query interpretation is complete if this query interpretation
contains all keywords from the initial user query. Otherwise we
talk about partial query interpretation. We call the set of all com-
plete query interpretations of a keyword query K an interpretation
space of K.
For instance, the keyword query “Tom Hanks Film” seeking the

movies starring Tom Hanks can be interpreted to:

Q2={structure:actor ⊲⊳ acts ⊲⊳ f ilm,
predicates:actor.name = “Tom Hanks”}.

In this interpretation, keywords “Tom Hanks” are mapped to the
constant of a predicate, and “Film” is mapped to a table name. The
following query is a partial interpretation of “Tom Hanks Film”,
where only “Tom Hanks” is interpreted:

O1 ={structure: actor,

predicates: actor.name = “Tom Hanks”}.

In the process of query construction we interpret user’s key-
words and generate query construction options (QCOs) to assess
the meaning of the keywords intended by the user. We can do that
in two ways: First, we can interpret keywords very specifically as
a part of a structured query (as performed in [7]). We refer to these
QCOs as query-based QCOs. For instance, O1 can be used as a
QCO, which indicates that “Tom Hanks” should be interpreted as
an actor’s name. Second, we can also assess the general meaning of
the keywords and interpret them as a generic concept representing
a class of structured queries. For example, we can interpret “Tom
Hanks” as a more generic class person, which is a superclass of
actor:

O2 ={structure: person,

predicates: person.name = “Tom Hanks”}.

To enable efficient user interaction over large database schema,
in this paper we introduce ontology-based QCOs. In a generic
object-relational database, a table can be regarded as an entity type,
and an attribute of the table can be regarded as a property. Us-
ing a hierarchical ontology, a set of entity types can be abstracted
into a superclass, and a set of properties can be abstracted into a
super-property. For instance, entity types painter and musician can

be abstracted into artist, and their properties painting and music
can be abstracted into work. Using these superclasses and super-
properties, we can create general QCOs that subsume larger pro-
portions of a query interpretation space than query-based QCOs.

DEFINITION 2.4. Given a schema graph G = (V,E), we use
sv ⊢ v to denote that sv is a superclass of v ∈ V and se ⊢ e to de-
note that se is a super-property of e ∈ E. Superclass and super-
properties are partial order relationships. 2

With the concepts of superclass and super-property, we define
ontology-based query interpretations and ontology-based QCOs.

DEFINITION 2.5. Let K = {k1,k2, ...,kn} be a keyword query.
Let Q=(V,E) be a query interpretation of K. Let Qo be isomorphic
to Q, where the isomorphism function is f (.) (that applies to the
predicates too). Qo is an ontology-based interpretation of K, iff

f (.) satisfies: (1) for all v ∈V, f (v) ⊢ v; (2) for all e∈ E, f (e) ⊢ e;
(3) for all attributes v.ai ∈ A(v) in the predicates, f (v.ai) ⊢ v.ai. We
say that Qo is a super-interpretation of Q. 2

When we use ontology-based interpretations as QCOs, we call
them ontology-based QCOs. In summary, QCOs generated by our
system can be either query-based or ontology-based QCOs.

DEFINITION 2.6. A Query Construction Option (QCO) is a
mapping from a subset of keyword query K ′ ⊆ K to either:

• a structured query Q (a query-based QCO), or

• an ontology-based interpretation of K ′ (an ontology-based
QCO). 2

In the interaction process the user is supposed to select the op-
tions that subsume her intended query interpretation.

DEFINITION 2.7. Given a QCO O and a QCO O′, we say that
O subsumes O′, if either:

• O is a subgraph of O′, or

• O is a super-interpretation of O′.

Subsumption relationship is transitive, i.e. if O subsumes O′ and

O′ subsumes O′′, then O subsumes O′′. 2

Certainly, as O1 is a subgraph of the interpretation Q2, O1 sub-
sumes Q2. O2 is an ontological interpretation of “Tom Hanks”,
and it is a super-interpretation of O1. As subsumption relationship
is transitive, both O2 and O1 subsume Q2, which is a complete in-
terpretation of the query “Tom Hanks Film”.
With the above concepts, the conceptual process of interactive

query construction can be modeled as follows:

0. Given a database whose schema is G = (V,E), a user issues
a keyword query K = {k1,k2, ...,kn}.

1. Initialization: Let ζ be an interpretation space of K based on
G.

2. Top-k Generation: The system retrieves the top-k interpre-
tations from ζ, and presents them to the user. If the user finds
the intended interpretation in the top-k, the query construc-
tion process terminates. Otherwise, the process continues
with Step 3.

3. QCO Generation: The system generates a QCO O and lets
the user decide whether O subsumes the intended query in-
terpretation of K.

575

4. Post Interaction: If the user indicates that O subsumes the
intended interpretation of K, then the system removes all the
interpretations that cannot be subsumed by O from ζ. Oth-
erwise, the system removes all the interpretations subsumed
by O from ζ. Go back to Step 2.

Each iteration of the process requires one round of interaction
with the user. As the interaction goes on, the interpretation space
ζ keep shrinking. Because ζ is finite, the process guarantees to ter-
minate at a certain point. Nevertheless, we would like the process
to be short, so that users can obtain desired information as early
as possible. The efficiency of query construction can be measured
naturally by the number of iterations of the process. We call this
measure interaction cost.

DEFINITION 2.8. Given a process of interactive query construc-
tion, its interaction cost is the number of iterations it has been exe-

cuted, which is equivalent to the number of QCOs evaluated by the

user. 2

2.2 Challenges
When a database, and especially its schema graph, becomes big,

it is difficult for the existing approaches to realize an efficient query
construction process. This is due to the following two limitations:

PROBLEM 1. Inefficient query-based QCOs:

To minimize the interaction cost, the query construction process
needs to shrink the query interpretation space quickly. In other
words, the evaluation of each QCO should be able to remove a sig-
nificant proportion of the interpretation space. Therefore, we desire
the proportion of query interpretations subsumed by each QCO to
fall in a certain range. This proportion should not be too small, as
in this case the denial of a QCO could not reduce the interpretation
space effectively. It should not be too big either, as in this case
the acceptance of a QCO could not reduce the interpretation space
effectively.
When the schema graph is big, a keyword can have a large num-

ber of occurrences spread across the database, resulting in a vast
number of partial interpretations (query-based QCOs). The pro-
portion of the interpretation space subsumed by each query-based
QCO will be very small. As a result, query construction processes
using only query-based QCOs, such as [7], cannot be efficient.
Apart from query-based QCOs, we need more general QCOs to
enable efficient query construction.

PROBLEM 2. Very large query interpretation space:

When the schema graph becomes big, it is no longer feasible to
materialize the interpretation space of a complex keyword query
entirely. On the one hand, with an increasing size of a schema
graph, the number of its subgraphs grows very sharply. On the other
hand, the occurrences of keywords are more numerous in a larger
database. As a result, the number of the possible interpretations
of a keyword query grows quickly with an increasing size of the
schema.
The existing approaches to interactive query construction [7],

[8], as well as the state-of-the-art approaches to schema-based database
keyword search [2], [12], [16], [17] rely on an entirely material-
ized query interpretation space. These approaches can hardly work
with a big schema, as it is infeasible to generate all the query in-
terpretations at the query time. Therefore, we need a new mecha-
nism which can enable efficient identification of the most efficient
QCOs and the top-k most probable query interpretations, without
the knowledge of the complete interpretation space.

Compared with the most recent approach to interactive query
construction [7], in this paper we addressed the problems listed
above and made the following contributions:

• We propose novel ontology-based QCOs that enable efficient
query construction process over large scale data. Using these
QCOswe can enable efficient query construction for ambigu-
ous queries that have many different interpretations in a large
database.

• We develop procedures and algorithms for incremental ma-
terialization of query interpretation spaces over large scale
data that enables us to perform efficient query construction
without materialization of the complete query interpretation
space.

We present our solutions to each of these problems in Sections 3
and 4, respectively.

3. NOVEL ONTOLOGY-BASED QCOS
As pointed out by Problem 1 in Section 2.2, to minimize the

interaction cost, the QCOs presented to the user need to shrink
the query interpretation space quickly. In a large scale database,
each single keyword can have numerous occurrences. As a result,
the query-based QCOs utilized by the existing approaches [7] be-
come inefficient in reducing interpretation spaces. In this section,
we introduce a novel type of QCOs, called ontology-based QCOs.
An ontology-based QCO can subsume a wider proportion of an
interpretation space, such that it is usually more efficient than a
query-based QCO. Intuitively, if the user provides feedback on an
ontology-based QCO, we get an implicit user’s feedback on mul-
tiple partial interpretations (i.e. query-based QCOs) subsumed by
this ontology-based QCO within a single user interaction. Thus
a query construction process using ontology-based QCOs requires
less steps. In this section, we justify the efficiency of ontology-
based QCOs from the perspective of information theory.

3.1 Creation of Ontology-based QCOs
Ontology-based QCOs can be created based on a hierarchical on-

tology or taxonomy. In order to create ontology-based QCOs, we
need an ontology on top of the database schema, which defines su-
perclasses and super-properties. This ontology can be a manually
defined one, such as the domain hierarchy of Freebase. Alterna-
tively, we can utilize external ontologies, such as e.g. WordNet [9],
and YAGO [21], by mapping the elements of the database schema
to the concepts in these ontologies. In this case state-of-the-art
schema matching techniques can be used (see [6] for details).
With ontology-based QCOs, we can enable more efficient query

construction, especially when confronted with a big database schema.
To illustrate a query construction process using ontology-based QCOs,
we consider the query “Emperor Album”, which intends to retrieve
the albums of the artist Emperor from Freebase. To create the
ontology-based QCOs, we make use of the domain hierarchy of
Freebase. This hierarchy groups together Freebase tables such as
artist, album, and monarch in the domains e.g. music and royalty,
and further organizes these domains into the categories such as Arts
& Entertainment and Society.
For this particular query, if we use only query-based QCOs (as

performed by [7]), our system requires a user to interact with 74
QCOs to identify the intended interpretation. Using ontology-based
QCOs, the user only needs to interact with the 10 QCOs listed in
Table 1. The keyword “album” is not very ambiguous, as it oc-
curs mostly in the domain of music. To disambiguate this keyword,
FreeQ does not utilize any ontology-based QCOs. In contrast, the

576

QCOs (bold ones are ontology-based QCOs) User’s

feed-

back

Table artist (domain music): “album” ×
Table release (domain music): “album” ×
Table recording contribution (domain music): “album” ×
Table album (domain music): “album” X

Domain royalty (Category Society): “emperor” ×
Category Arts & Entertainment: “emperor” X

Domain fictional universe (Arts & Ent.): “emperor” ×
Domain opera (Arts & Ent.): “emperor” ×
Domain media common (Arts & Ent.): “emperor” ×
Query: album ⊲⊳ artist “emperor”⊂artist.name X

Table 1: A Query Construction Example for the Query “Emperor
Album” using Ontology-based QCOs

keyword “emperor” is very ambiguous. “Emperor” occurs in 221
attributes of Freebase, which are spread across multiple categories
and domains. To disambiguate “emperor”, it is much faster if we
use ontology-based QCOs. With ontology-based QCOs, we man-
age to first restrict the meaning of “emperor” to the category of
Arts & Entertainment. Within this category, the exact meaning of
“emperor” can be identified easily.
In what follows, we analyze how ontology-based QCOs achieve

such efficiency.

3.2 A Measure of QCO Efficiency
As depicted in Section 2.2, in each round of interactive query

construction, FreeQ needs to select one QCO to present to the user.
For a keyword query, there is usually a large number of available
QCOs. In principle, FreeQ should always select the most efficient
QCO that can minimize the final interaction cost. The efficiency of
a QCO can be quantified using information theory.
Let ζ denote the interpretation space of a keyword query K.

Then, the uncertainty of K’s interpretation can be measured by the
entropy H(ζ), which can be computed as:

H(ζ) =−∑
I∈ζ

P(I)× log2P(I), (1)

where P(I) denotes the probability that the interpretation I is the
interpretation intended by the user.
The process of query construction is the process of reducing the

uncertainty of K’s interpretation. After one round of interaction
with the user, FreeQ obtains the knowledge of one QCO, say O.
Then, the uncertainty is reduced to H(ζ|O), i.e., the conditional
entropy of ζ given O. The difference between H(ζ) and H(ζ|O)
is known as the expected information gain provided by O, denoted
by:

IG(O) =H(ζ)−H(ζ|O). (2)

To minimize the interaction cost, we need maximize the informa-
tion gain of each QCO presented to the user.
Obviously, the knowledge about ζ contains the knowledge of any

O. In other words, the information gain provided by O is exactly
the entropy of O. Therefore, we have:

IG(O) =H(ζ)−H(ζ|O) = H(O). (3)

In turn, the entropy of O can be calculated as:

H(O) =−P(O)log2P(O)−P(¬O)log2P(¬O), (4)

where P(O) is the probability that O is accepted by the user. Let
ζ(O) denote the complete set of query interpretations subsumed by
O. Then, P(O) can be computed as:

P(O) = ∑
I∈ζ(O)

P(I). (5)

e
n

tr
o

p
y
 o

f
Q

C
O

size of schema

w/o ontology
0.7-efficiency

(a) Entropy of QCO

in
te

ra
c
ti
o

n
 c

o
s
t

size of schema

w/o ontology
0.7-efficiency

(b) Interaction Cost

Figure 2: Efficiency of QCO and Interaction Cost vs. Schema Size

To summarize, the efficiency of a QCO can be measured by its
entropy. Therefore, FreeQ is supposed to select the QCO with the
highest entropy in each round of user interaction.

3.3 Effects of Ontology-based QCOs
As discussed in Section 3.2, to achieve fast query construction,

in each round of interaction, FreeQ is supposed to present the user
with an efficient QCO, i.e., a QCO whose entropy is sufficiently
high. The question is whether such QCOs would be available at all.
To answer this question, we first propose the following measure to
quantify the efficiency of an entire query construction process.

DEFINITION 3.1. During an interactive query construction pro-
cess, if we can ensure with a high probability that the entropy of

each QCO presented to the user is larger than ε (0 < ε ≤ 1), we
say that the query construction process is ε-efficient.

According to Definition 3.1, to minimize the interaction cost, we
should maximize the lower bound (ε) of the efficiency of the QCOs
presented to the user. We can show that query-based QCOs, i.e.
the QCOs used in the existing approaches [7], cannot guarantee a
lower bound. In contrast, if we have an ontology with a sufficient
number of concepts of diverse generality, by using ontology-based
QCOs, we can achieve ε-efficient query construction with a good
lower bound ε.
To simplify our analysis, we assume: (1) the number of possi-

ble interpretations of a keyword grows linearly with the size of the
schema graph; (2) the number of the possible interpretations of an
entire keyword query increases polynomially; (3) all the complete
query interpretations are equally probable.
Let the size of the schema be x. According to (1), the number

of the query-based QCOs for a keyword can be expressed as α×x,
where α is a constant. Then the entropy of a query-based QCO for
each keyword will be H(1α×x), which can be plotted as the solid
curve in Figure 2a. We can see that when the database schema
grows, the efficiency of each query-based QCO will decrease. This
efficiency can drop to a very small value when the database schema
is big.
According to (2), the size of an interpretation space can be mod-

eled as β× xγ, where β and γ are constants. Based on (3), the most
efficient query-based QCO will be an interpretation for a single
keyword, whose entropy can be modeled as: H(1α×x). Therefore,
the average interaction cost can be calculated as the entropy of the
whole interpretation space divided by the maximum entropy of an
QCO, i.e. log2(β× xγ)/H(1α×x), which can be plotted as the solid
curve in Figure 2b. As we can see, if we use only query-based
QCOs, the interaction cost can increase quickly with the size of the
database schema.
In contrast, if we can achieve a 0.7-efficient query construction

process, that is, the entropy of each QCO be no less than 0.7 (as

577

illustrated by the dashed line in Figure 2a), the growth of the inter-
action cost can be significantly reduced (as illustrated by the dashed
line in Figure 2b). This is achievable, if we utilize ontology-based
QCOs.
The concepts in an ontology normally have a variety of general-

ity. There are very specific concepts that can subsume small sets of
entity types, such as artist and book. There are also very general
concepts that can subsume larger proportions of entity types, such
as person and artifact. As a result, no matter how big the query in-
terpretation space is, it is always possible to find suitable concepts
to form QCOs that can subsume a certain proportion of the inter-
pretation space that would yield big entropies. As a simple anal-
ysis, we assume that the probability of a random ontology-based
QCO is a random value between 0 and 1. Then, within the set of
N ontology-based QCOs, the probability that we can find a QCO
whose entropy is larger than ε is:

P∃o:H(o)>ε = 1−
(H−1(ε)

0.5

)N
, (6)

where H−1() is the inverse function of the binary entropy. In this
function, no matter how big ε is, we can always find a big enough
N, such that the resulting probability is close to 1. (As N is an ex-
ponent in the formula, it normally does not need to be very big.)
In other words, as long as there is a rich ontology with a suffi-
cient number of concepts of diverse generality, we can achieve ε-
efficiency for interactive query construction.

4. INCREMENTALMATERIALIZATIONOF

QUERY INTERPRETATION SPACES
To perform query construction, FreeQ is required to quickly gen-

erate the most efficient QCOs and the most probable complete query
interpretations. As mentioned in Problem 2, Section 2.2, the exist-
ing approaches to interactive query construction and schema-based
database keyword search in general require a complete materializa-
tion of the query interpretation space [2], [12], [16], [17], [7]. For
a large scale dataset, the interpretation space of a keyword query
is usually very big, such that it is no longer feasible to materialize
this space entirely. To this end, we develop new algorithms that
can generate top-k most probable query interpretations and QCOs
without the knowledge of the entire interpretation space.

4.1 Query Hierarchy for the QCOGeneration
To enable efficient generation of QCOs and query interpreta-

tions, we organize the QCOs of a keyword query in a query hi-
erarchy based on their subsumption relationships. Using the query
hierarchy, we can materialize the interpretation space of a keyword
query step-by-step by following the subsumption relationships of
the QCOs. During the progress of the materialization, a lot of
QCOs and interpretations can be eliminated based on the informa-
tion provided by user interaction. Such progressive materialization
is much less costly than the generation of an entire interpretation
space.
Figure 3 illustrates a query hierarchy, in which the arrows repre-

sent the reversed subsumption relationships. The more general the
QCOs, the lower their positions in the query hierarchy. The most
general QCOs are the single-node QCOs, i.e. the QCOs involv-
ing only one entity type such as O2, O1, and O3. These QCOs are
located at the bottom of the hierarchy. The top level of the query
hierarchy consists of the complete query interpretations (e.g. Q3,
and Q4), which constitute the interpretation space of a keyword
query. The entire query hierarchy looks like an upside-down trape-

zoid, as there are much more complete query interpretations than
single-node QCOs.

Figure 3: An Example of a Query Hierarchy for the Query “Tom
Hanks Terminal” (the arrows represent reversed subsumption rela-
tionships, e.g. O2 subsumes O1).

As mentioned previously, it is infeasible to instantiate the com-
plete query hierarchy at the query time. Given a big schema, the top
levels of the query hierarchy can even be too big to be accommo-
dated in the main memory. Therefore, FreeQ chooses to instantiate
the query hierarchy incrementally throughout the process of query
construction. The query construction process of FreeQ conforms
to the generic process defined in Section 2.1, except that it does
not materialize the entire query interpretation space. This process
works as follows:

• 1. Initialization: Upon receiving a keyword query, FreeQ
identifies database attributes and schema elements contain-
ing keyword occurrences using an inverted index. Based on
the keyword occurrences and an ontology, it generates the
most general QCOs. As a result, the bottom of the query hi-
erarchy is instantiated. As the bottom of the query hierarchy
is small, its instantiation does not incur much cost.

• 2. Top-k Generation: To generate the top-k complete query
interpretations, FreeQ performs a top-k depth first traver-
sal (DF-k) of the query hierarchy from the bottom up. All
the QCOs and interpretations encountered during the DF-
k are instantiated. DF-k enables FreeQ to reach the top of
the query hierarchy by instantiating the minimal number of
QCOs. The first k complete interpretations encountered by
the DF-k are presented to the user as the top-k interpretations.

• 3. QCO Generation: FreeQ evaluates the QCOs in the in-
stantiated part of the query hierarchy and selects the QCO
with the highest entropy. This QCO is presented to the user.

• 4. Post Interaction: After the user provides feedback on
the QCO, FreeQ truncates the query hierarchy according to
the user’s selection. If the user has denied the QCO, all the
QCOs or query interpretations subsumed by the denied QCO
are removed from the query hierarchy. If the user has ac-
cepted a QCO, only the QCOs and interpretations subsumed
by the accepted QCO are preserved. After the truncation, the
query hierarchy becomes smaller. If the size of the instan-
tiated part of the hierarchy falls below a threshold, FreeQ
perform a top-k breadth first traversal (BF-k) of the query
hierarchy (from the bottom up), during which more QCOs
are instantiated. The BF-k stops as the size of the instanti-
ated part reaches a predefined upper bound.

578

As we can see, as the process of the interactive query construc-
tion goes on, the instantiated part of the query hierarchy remains
stable in size. On the one hand, this part is truncated as the user
reveals more information in the interaction process. On the other
hand, the instantiated part is continuously expanded by the BF-k
and DF-k to ensure that its size is sufficient to generate efficient
QCOs and high quality top-k interpretations.

4.2 Algorithms for Efficient Top-k Generation
FreeQ obtains top-k query interpretations and query construc-

tion options by traversing the query hierarchy. To make interactive
query construction smooth to the user, it is important to ensure the
efficiency of the hierarchy traversal. Although in the related work
the basic Breadth First (BF) and Depth First path search (DF) al-
gorithms are typically used to materialize interpretation spaces of
keyword queries [2], [12], [11], [16], these algorithms not scale on
large database schemas.
The basic BF and DF path search applied in the state-of-the-

art database keyword search seek to connect occurrences of the
user’s keywords in the database schema to materialize query in-
terpretation spaces. For example, to materialize query interpre-
tation space, Discover [12] explores the schema graph in a BF-
manner starting from all tables containing occurrences of a key-
word ki ∈ K. The time complexity of this approach can be com-
puted as Tki ∗ avg(Et)

r∗(K−1), where Tki is the number of tables
containing keyword ki, avg(Et) is an average fan-out of a table in
the schema graph, K is the number of terms in the keyword query,
and r is the maximum length of the path within the schema graph
explored to connect occurrences of two keywords. The time com-
plexity of this approach increases exponentially with the number
of user’s keywords and the length of the explored path. This makes
materialization of the entire query interpretation space infeasible
for longer user queries.
To address these limitations, we propose several important adap-

tations of the basic BF and DF path search algorithms, to enable ef-
ficient generation of the top-k query interpretations and QCOs over
the large database schemas. We refer to these algorithms as BF-k
and DF-k, respectively. Both BF-k and DF-k traverse the query hi-
erarchy by following the subsumption relationships. Each traversal
step expands a QCO to one of the QCOs it subsumes, e.g. expand-
ing O2 to O1, or O1 to Q3 in Figure 3. Therefore, it is crucial to
make the QCO expansion efficient.
In principle, a QCO can be expanded in two different ways. The

first type of QCO expansion is to replace an entity type or a prop-
erty of the QCO with its subclass or sub-property. Such expansion
does not add any additional keywords to the QCO. For example,
the expansion of O2 to O1 in Figure 3 belongs to the first type.
This type of expansion requires only the knowledge of the ontol-
ogy structure. Once we have indexed the ontology, such that its
subclasses or sub-properties can be retrieved quickly, this type of
expansion will be very efficient. The second type of QCO expan-
sion is to find the paths in the schema graph to connect a QCO and
an additional keyword occurrence. For instance, to expand O1 to
Q3 in Figure 3, we need to identify the path “actor ⊲⊳ acts ⊲⊳ f ilm”
to connect O1 and the keyword occurrence f ilm.title : terminal.
To identify the paths for connecting a QCO with a keyword oc-

currence efficiently, FreeQ pre-indexes all the paths leading to key-
word occurrences in the schema graph starting from every table in
the schema graph. The index is constructed at the beginning of the
query construction, as the user issues a keyword query. To ensure
scalability of the indexing, we restrict the maximal size of the path
connecting two keyword nodes in the structured queries that can be
constructed by FreeQ and perform bi-directional search. The time

complexity of the indexing procedure of FreeQ can be computed as
T ∗ avg(Et)

r/2, where T is the number of tables in the database
schema, avg(Et) is an average fan-out of a table in the schema
graph, and r/2 is the half of the maximum length of the explored
path. As we can observe, the time complexity of this approach is
significantly reduced compared to Discover [12] (discussed above)
and does not depend on the size of the keyword query.
To maximize the quality of the top-k query interpretations and

QCOs generated by FreeQ, we always start the expansion with the
QCOs that are most likely to be intended by the user. This applies to
both DF-k and BF-k. As a result, the top-k interpretations generated
by DF-k will be more likely to meet the user’s requirements, and
the QCOs instantiated by BF-k will be more likely to have high
entropy. To ensure a short response time of FreeQ, we also enforce
a time limit on both BF-k and DF-k. That is, we stop BF-k and
DF-k once the time limit has been reached, even though the top-
k interpretations may have not been completely generated, or the
number of the instantiated QCOs has not yet reached a predefined
upper bound. We demonstrate through the experiments that the
resulting hierarchy traversal procedure is effective and efficient.

4.3 Probability Estimation for QCOs
The QCOs in the query hierarchy are all the candidates to be pre-

sented to the user. According to Section 3.2, the most efficient QCO
is the QCO with the maximum entropy. To identify this QCO, we
need to estimate the probabilities of the QCOs. These probabilities
cannot be computed by Equation 5, as we do not have the entire
query interpretation space materialized. Instead, we consider the
frontier of the instantiated part of the query hierarchy. This frontier
contains the most specific query-based QCOs (i.e. partial interpre-
tations) that have been materialized so far. We treat all the QCOs
in the frontier as samples, such that each QCO in the frontier rep-
resents the complete queries that can be derived from this QCO by
further expansion of the hierarchy. For each sample represented by
s, we compare this sample against each candidate QCO, say o. The
comparison can end up with one of the following conclusions: (1)
o subsumes s; (2) s conflicts with o (e.g. one keyword is being in-
terpreted into two different meanings); (3) none of the above. If the
conclusion is (3), s does not provide any helpful information. With
(1) or (2), we can know that either ζ(s)⊂ ζ(o), or ζ(s)∩ζ(o) =∅,
respectively. By applying the maximum likelihood principle, we
can estimate the probability P(o) using P(s), that is,

P(o) =
∑ζ(s)⊂ζ(o)P(s)

∑ζ(s)⊂ζ(o)P(s)+∑ζ(s)∩ζ(o)=∅
P(s)

, (7)

where P(o) and P(s) are the probabilities that o and s are accepted
by the user, respectively. With P(o), we can obtain the entropy
of o based on Equation 5. Therefore, the problem of finding the
QCO with the maximum entropy is reduced to the estimation of the
probabilities of (partial) query interpretations P(s). FreeQ applies
the probabilistic model in [7] to estimate these probabilities.

5. EXPERIMENTAL EVALUATION
We have implemented FreeQ, an interactive query construction

system based on the mechanisms proposed in this paper. To evalu-
ate the performance of FreeQ, we conducted extensive experiments.
Our experiments include two parts. First, we evaluated the impact
of ontology-based QCOs on the efficiency of query construction
processes. Then, we evaluated the time efficiency of the proposed
algorithms in handling large scale databases.

579

#Key- Avg. Examples of keyword queries
words #nodes

1 1.00 location, book, event, disease, election

2 1.43 emperor album, hockey team, alpine skier

3 1.92 artist lived vancouver, founding figure kagyu

4 2.40 olympic athletes table tennis

5 2.11 canada hockey 2010 winter olympics

6 1.48 2011 san francisco international film festival

7 1.29 fictional character created by edgar allan poe

8 1.13 school type university of puerto rico at ponce

Table 2: Complexity of Keyword Queries

5.1 Dataset and Queries
Our experiments were performed on a Freebase dataset down-

loaded in June 2011 [10]. This dataset contains approximately
7,500 tables with more than 20 million entities in about 100 do-
mains. We imported the dataset into a MySQL database and in-
dexed the data and the schema using Apache Solr6. FreeQ was
implemented as a client-server Java application. For our experi-
ments, we used two cores and 10GB of memory on a server, which
was equipped with 8x Quad-Core AMD Opteron 2.7GHz proces-
sors and 256GB of memory.
Our query set was based on the user-defined views of Freebase.

Freebase allows users to create views using a dedicated query lan-
guage called MQL. Each of the views is given a descriptive title in
a natural language. Some examples of the view titles are: “Lionel
Richie discography”, “Directing Award: U.S. Dramatic - Winning
Films”, and “TV Celebrities on Twitter”. For evaluation, we can
regard the title of each view as a keyword query and the MQL def-
inition of the view as the structural interpretation. Then we can
study how FreeQ can assist users to construct the structural inter-
pretation from the keyword query. The ground truth is a plausible
mapping between the keyword query and the structural interpre-
tation and can be automatically established through a projection
program. For our experiments, we randomly selected a set of 615
keyword queries (views). The number of keywords in each query
ranges from 1 to 8 keywords. The structural interpretations of the
keyword queries are of different complexity. We measure the com-
plexity of an interpretation by the number of keyword nodes it con-
tains. (A keyword node is a table containing at least one keyword
occurrence.) The complexity of the queries in our query log ranges
from 1 to 3. Table 2 presents the average complexity of queries
with different number of keywords. As we can observe, the rela-
tively complex queries mostly contain 3-5 keywords.

5.2 Effectiveness of Ontology-based QCOs
Our first set of experiments was intended to evaluate the effec-

tiveness of the ontology-based QCOs. To this extent, we perform
two sets of experiments: First, we compare our approach to that
in [7], while using different ontologies to generate QCOs. Second,
we compare our approach against that of ranking using different
ranking functions.
For each query in our query set, its correct interpretation is al-

ready known. Thus, the correctness of each QCO generated by
FreeQ can be determined without any user intervention. In [7] we
evaluated accessibility of the user interface of incremental query
construction in a user study, and demonstrated that the users could
make the right choice of QCOs using this interface. In this paper
we evaluate how big the interaction cost of query construction is,
given that the user makes the right choices. In our experiments, we
let the computer interact with FreeQ automatically. In this inter-
action, the computer will always accept the QCO presented by the

6https://lucene.apache.org/solr

Notation Description Size

NoOntology no ontology is used, representing
the baseline approach [7]

zero

Freebase the ontology of Freebase, consist-
ing of domains and categories

medium

YAGO an external ontology YAGO big

Table 3: Ontologies of Different Size

system if this QCO subsumes the correct query interpretation and
reject the QCO otherwise.
To evaluate the effectiveness of the ontology-based QCOs, we

ran the experiments in a number of scenarios, in which different
ontologies were used. The ontologies are of different size and
complexity, as summarized in Table 3. NoOntology represents the
baseline approach [7], where no ontology is used. Freebase repre-
sents the ontology based on the domains and categories given in the
Freebase website. YAGO represents an external ontology known as
YAGO. To associate each table of Freebase with a suitable YAGO
category we used YAGO+F mapping described in [6].
In the experiments, we measured the interaction cost of query

construction for the queries with different complexity in different
scenarios. According to Definition 2.8, interaction cost is the num-
ber of the QCOs a user needs to evaluate to construct a structured
query. The results for the 615 test queries are presented in Fig-
ure 4a.
Figure 4a presents the mean and the standard deviation of the

interaction cost, with respect to query complexity (the number of
keyword nodes) and number of query terms. As we can see, com-
pared to the baseline NoOntology approach, the interaction cost
can be significantly reduced by using the ontology-based QCOs.
With a larger ontology, such as YAGO, the interaction cost tends to
be smaller. For example, a 2-node query “ami suzuki album” re-
quires 38 QCOs with NoOntology, 19 QCOs with Freebase, and 10
QCOs with YAGO. The benefits of the ontology-based QCOs be-
come stronger with an increasing number of keyword nodes in the
structural interpretation too. As we can observe, the majority of the
1-node queries, such as “university” and “football game”, can still
be efficiently answered in the baseline NoOntology scenario, where
an average cost amounts to 3. With the more complex 2-node, and
3-node queries, such as “don shirley album”, “film performance
tom everett”, and “location leonardo da vinci lived”, the interac-
tion cost of NoOntology goes up quickly to about 30 and can oc-
casionally exceed 70. By applying the ontology-based QCOs, this
cost can be limited to a much smaller range. For example, the av-
erage cost for 2-node queries in the YAGO scenario is around 10.
In addition, we can observe that the interaction cost tends to in-
crease with the number of keywords, while this trend may not hold
in all the cases. This is because a longer keyword query does not
necessarily imply the more complex structural interpretation (see
Table 2).
In the next set of experiments we compared the interaction cost

of query construction using Freebase ontology against that of query
ranking to evaluate the effectiveness of interactive query construc-
tion in general. To this end, we generated the top-500 interpreta-
tions using the DF-k algorithm of FreeQ. We ranked these interpre-
tations using two ranking functions proposed recently: the ranking
function of FreeQ described in [7], and SQAK [22]. The interac-
tion cost of ranking corresponds to the number of interpretations a
user needs to evaluate before the intended interpretation is identi-
fied, which is exactly the rank of the intended interpretation. If the
intended interpretation was not contained within the top-500, we
set its rank to 500. Figure 4b presents the results.

580

 0

 20

 40

 60

 80

 100

1 Node 2 Nodes 3 Nodes

In
te

ra
c
ti
o

n
 c

o
s
t:

 #
Q

C
O

s

#Keyword nodes

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8

In
te

ra
c
ti
o

n
 c

o
s
t:

 #
Q

C
O

s

#Keywords

No Ontology
Freebase

YAGO

(a) Interaction Cost of Query Construction

 0

 100

 200

 300

 400

 500

1 Node 2 Nodes 3 NodesIn
te

ra
c
ti
o

n
 c

o
s
t:

 #
Q

C
O

s
 o

r
ra

n
k

#Keyword nodes

 0

 100

 200

 300

 400

 500

1 2 3 4 5 6 7 8In
te

ra
c
ti
o

n
 c

o
s
t:

 #
Q

C
O

s
 o

r
ra

n
k

#Keywords

SQAK Rank
FreeQ Rank

Construction, Freebase

(b) Interaction Cost of Ranking vs. Query Construction

 0

 500

 1000

 1500

 2000

1 Node 2 Nodes 3 Nodes

M
e

a
n

 i
n

it
ia

l
re

s
p

o
n

s
e

 t
im

e
,

m
s

#Keyword nodes

No Ontology
Freebase

YAGO

 0

 500

 1000

 1500

 2000

1 2 3 4 5 6 7 8

M
e

a
n

 i
n

it
ia

l
re

s
p

o
n

s
e

 t
im

e
,

m
s

#Keywords

(c) Mean Initial Response Time, ms

 0

 100

 200

 300

 400

 500

 600

1 Node 2 Nodes 3 Nodes

M
e
a
n
 i
n
te

ra
c
ti
o
n
 r

e
s
p
o
n
s
e
 t
im

e
,
m

s

#Keyword nodes

No Ontology
Freebase

YAGO

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8

M
e
a
n
 i
n
te

ra
c
ti
o
n
 r

e
s
p
o
n
s
e
 t
im

e
,
m

s

#Keywords

(d) Mean Interaction Response Time, ms

Figure 4: Effectiveness and Efficiency of Query Construction for Queries with Different Complexity

As we can observe, the interaction cost of both ranking and con-
struction for the simplest queries (with 1-2 keywords or 1 keyword
node) is acceptable. For the keyword queries that are relatively
complex, ranking become ineffective. This is because the query in-
terpretation space on Freebase is too big, such that there can always
be a large number of non-intended interpretations that receive good
ranks.

5.3 Performance of the System
Existing schema-based approaches to keyword search and inter-

active query construction in databases typically rely on the com-
pletely materialized interpretation space of a keyword query [2, 12,
7]. We have tried to run a number of existing algorithms, includ-
ing [12], and [7] on Freebase. However, as the schema of Freebase
is much bigger than the schemas these algorithms were designed
for, they could not finish in a reasonable time. In contrast, the BF-k
and DF-k approach allows FreeQ to explore the query interpreta-
tion space smartly. Thus it can achieve reasonable response time
on a large scale dataset.
To assess the time efficiency of FreeQ, we measured its response

time in two phases: (1) The initial response time when a user sub-
mits a query, and (2) the interaction response time when a user
interacts with the query construction panel.
When a user issues a keyword query, FreeQ will perform a se-

ries of pre-processing, including the identification of the keyword
occurrences in an inverted index and the creation of a bi-directional
index for performing BF-k and DF-k expansions. The mean and
the standard deviation of the initial response time for our query set
are shown in Figure 4c. As we can see, the mean initialization
time stays around 1 second, and its maximum does not exceed 2
seconds. With an increasing number of keywords, the initial re-
sponse time increases slowly. This is because the time required for
the identification of keyword occurrences in an inverted index in-
creases with the number of query terms. This index access time

ranges from 70 to 700ms for our query set. We can also see that the
initialization time does not increase with the increasing query com-
plexity. As presented in Table 2, a more complex query does not
necessarily contain more query terms. The time required for the
creation of a bi-directional index for DF-k and BF-k ranges from
360 to 460ms for our query set. This time mainly depends on the
size and the complexity of the schema graph rather than the com-
plexity of queries. We can also observe that the use of different
ontologies has limited impact on the initial response time.
We also measured the interaction response time, i.e. the time

required by FreeQ to present a new set of QCOs and top-k struc-
tured queries after each user interaction. This time comprises the
time consumed by the BF-k and DF-k algorithms and the QCO se-
lection. Figure 4d presents the results. As we can observe, the
interaction response time of FreeQ varies from 1 to 130ms, mean-
ing that in most cases the user would feel that the system is reacting
instantaneously [20]. The interaction response time increases with
an increasing query complexity. This is expected. As more key-
words imply a larger query hierarchy and more QCOs to evaluate,
the BF-k and DF-k algorithms and the process of QCO selection
will all be more time consuming. Nevertheless, this increase does
not appear steep in the results. Moreover, a larger ontology seems
to incur higher interaction time too. This is because a larger ontol-
ogy enables FreeQ to generate more QCOs to evaluate.
In summary, the interaction response time of our system is al-

ways below one second. Its initialization time stays within one
second most of the time, except for some long queries, whose ini-
tialization time can take up to 2 seconds. While further optimiza-
tion can be conducted, such performance can already ensure that
the user’s flow of thought stays uninterrupted [20].

581

6. RELATED WORK
Recently the problem of structured query generation from user’s

keywords has attracted a lot of research attention, e.g. [7], [22],
[23]. The methods for interpreting keywords evolved from consid-
ering attribute values only, to including schema terms and operators
[16], [22]. In [15], [1], the author modeled the problem as question
guided search.
Demidova et al. proposed a probabilistic incremental query con-

struction model for an interactive user interface [7]. These methods
do not provide a sufficient solution to large scale datasets with flat
schemas, such as the schema of Freebase. This is because these
methods relied only on the database internal statistics to generate
query construction options. In large scale databases, such options
are not informative enough to efficiently reduce the search space.
FreeQ alleviates this problem by using ontologies, such as the do-
main hierarchy of Freebase, and the YAGO ontology [21], in the
option generation process. Furthermore, previous work on incre-
mental query construction relied on a set of query templates gen-
erated a-priori. In contrast, FreeQ presents algorithms to generate
structured queries and query construction options on the fly over a
large scale database.
Database usability is a long-term research issue [13]. One of the

early approaches to address this problem was the Query by Exam-
ple [25]. Recent approaches include NL query interfaces [3], [5],
query auto-completion, e.g. [19], and adaptive forms [14]. Some
commercial DB products such as Microsoft Access offer visual
query builder interfaces. Query graphs in a typical visual query
builder interface have to be created starting from scratch. The user
has to study the database schema and manually put together pieces
of the query graph. In contrast, FreeQ enables users to focus on in-
terpretations of keyword queries, and automatically suggests struc-
tured queries, without requiring any prior schema knowledge.
User-driven query disambiguation has been successfully applied

in Information Retrieval in the context of faceted search. Faceted
search engines, such as the product search engine of Google and
the Yippy7, organize search results into meaningful groups, called
facets, by applying some clustering or categorization algorithms.
Users can easily shrink the scope of the search by focusing on a
small number of facets. Several navigational techniques, e.g. [4,
24] were proposed to support users in finding information in a hi-
erarchy of faceted categories. The interface of FreeQ is similar to
a faceted interface, whereas each facet corresponds to a query con-
struction option.

7. CONCLUSION
In this paper, we considered the problem of scaling interactive

query construction on a very large dataset, such as Freebase. To
achieve this goal, we analyzed the efficiency of query construction
options and extended the database schema with an ontology layer
to reduce the interaction cost. Furthermore, we developed a set of
algorithms to explore the interpretation spaces of keyword queries
incrementally, such that top-k query interpretations and query con-
struction options can be generated efficiently. Our results confirm
the efficiency of the proposed algorithms and the effectiveness of
the ontology layer created using the native taxonomy of Freebase.
Furthermore, we have demonstrated that external ontologies, such
as YAGO ontology, can be used to further increase the effective-
ness of query construction. This is especially meaningful for the
portability of the FreeQ system, as it can be applied to databases
without any pre-defined ontologies.

7http://search.yippy.com/

8. ACKNOWLEDGMENTS
This work is partly funded by the NSFC, Project No. 61272138,

the European Commission, grant agreement 270239 (ARCOMEM),
BMBF ("Gute Arbeit", Re-SozIT) and KEYSTONECOST Action.

9. REFERENCES
[1] P. Adolphs, M. Theobald, U. Schäfer, H. Uszkoreit, and G. Weikum.
Yago-qa: Answering questions by structured knowledge queries. In
ICSC, 2011.

[2] S. Agrawal. Dbxplorer: A system for keyword-based search over
relational databases. In ICDE, 2002.

[3] L. Androutsopoulos. Natural language interfaces to databases - an
introduction. Journal of Natural Language Engineering, 1:29–81,
1995.

[4] S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania.
Minimum-effort driven dynamic faceted search in structured
databases. In Proceeding of the CIKM ’08.

[5] A. Blum. Microsoft english query 7.5: Automatic extraction of
semantics from relational databases and olap cubes. In VLDB ’99.

[6] E. Demidova, I. Oelze, and W. Nejdl. Yago meets freebase:
Combining a large-scale database with an ontology. Technical report,
L3S Research Center, Leibniz Universität Hannover, available at:
http://iqp.l3s.uni-hannover.de/yagof-TR.pdf, May 2013.

[7] E. Demidova, X. Zhou, and W. Nejdl. A probabilistic scheme for
keyword-based incremental query construction. IEEE Trans. Knowl.
Data Eng., 24(3):426–439, 2012.

[8] E. Demidova, X. Zhou, G. Zenz, and W. Nejdl. Suits: Faceted user
interface for constructing structured queries from keywords. In
DASFAA 2009, Berlin, Heidelberg, 2009. Springer-Verlag.

[9] e. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,
Cambridge, 1998.

[10] Google. Freebase data dumps.
http://download.freebase.com/datadumps/, 2011.

[11] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style
keyword search over relational databases. In VLDB ’2003, pages
850–861. VLDB Endowment, 2003.

[12] V. Hristidis and Y. Papakonstantinou. Discover: keyword search in
relational databases. In VLDB, 2002.

[13] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li,
A. Nandi, and C. Yu. Making database systems usable. In SIGMOD,
2007.

[14] M. Jayapandian and H. V. Jagadish. Expressive query specification
through form customization. In EDBT, 2008.

[15] A. Kotov and C. Zhai. Towards natural question guided search. In
WWW ’10.

[16] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword
search in relational databases. In SIGMOD, 2006.

[17] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query
in relational databases. In SIGMOD ’07.

[18] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

[19] A. Nandi and H. V. Jagadish. Assisted querying using
instant-response interfaces. In SIGMOD, 2007.

[20] J. Nielsen. Usability engineering. Morgan Kaufmann Publishers, San
Francisco, Calif., 1993.

[21] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of
Semantic Knowledge. In WWW 2007. ACM Press, 2007.

[22] E. Tata and G. M. Lohman. Sqak: doing more with keywords. In
SIGMOD, 2008.

[23] T. Tran, P. Cimiano, S. Rudolph, and R. Studer. Ontology-based
interpretation of keywords for semantic search. In ISWC, 2007.

[24] P. Wu, Y. Sismanis, and B. Reinwald. Towards keyword-driven
analytical processing. In SIGMOD ’07.

[25] M. M. Zloof. Query by example. In AFIPS ’75: May 19-22, 1975,
national computer conference and exposition. ACM, 1975.

582

