
M I C R O A R R A S :

A n A d v a n e e d F u l l - T e x t R e t r i e v a l a n d A n a l y s i s S y s t e m

John B. Smith
Stephen F. Weiss

Gordon J. Ferguson

Department of Computer Science
The University of North Carolina
Chapel Hill, North Carolina 27514

(919) 962-5021

A b s t r a c t

MICROARRAS is an advanced full-text retrieval and analysis system. It supports
fast, efficient browsing of a document's vocabulary as well as its text, recursive analytic
categories, Boolean search with flexible context specifications, evaluation of arithmetic ex-
pressions, and graphical display of various numeric distributions. The system is designed
to work with large textbases stored on remote mainframes or on a local store for a micro-
computer or workstation. The description covers system architecture, design principals,
as well as user functions.

Introduction

Full-text retrieval is a growing area of research and
development in Information Retrieval. The continuing de-
cline in costs for large, random-access storage media and in-
creased access to broadband communication networks fore-
cast sharp increases in the size and number of document
collections. Electronic publishing is also contributing to
this growth. As the volume of online material increases,
people will need more powerful and more flexible tools to
use these resources effectively. Recognition of this need can
already be seen in efforts to augment search facilities using
expert system techniques. However, current full-text sys-
tems are not well-suited for this kind of extension. They
provide a limited number of analytic functions, restricted
context information, but, most problematic, they do not
provide well-defined interfaces to support "dialogues" with
more powerful and/or intelligent functions.

This paper describes MICROARRAS, a system we are
building at the University of North Carolina, that attempts
to meet some of these needs. This work is supported by the
National Endowment for the Humanities, with additional
funding from Northern Telecom. The system is designed
to operate on large, hard disk microcomputers, such as
the IBM PC/AT, on professional workstations, such as the

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Associa-
tion for Computing Machinery. To copy otherwise, or to republish, requires
a fee and/or specific permission.

© 1987 ACM 089791-232-2/87/0006/0187--75¢

SUN, and on mainframes, such as the Vax. It siapports flex-
ible, efficient retrieval of text from arbitrarily large textual
databases in response to a wide variety of query types. It
can perform various statistical and other analysis functions
on text and is designed to permit easy addition of new ana-
lytic capabilities. The system also provides for distributed
textual databases and a variety of different user interfaces.

The goal of our development effort is to produce a
"next generation" system that extends the number and
kind of resources provided the knowledge worker whose
working materials include documents. Consequently, we
have based our system on two driving problems. The first
is the sophisticated, often esoteric, needs of academic pro-
fessionals, ranging from literary scholars and anthropolo-
gists to chemists and computer scientists. Analytic tools
that can determine subtle relationships among texts, such
as thematic or stylistic differences, can serve as the basis
for a much broader collection of functions for general use.

Our second goal, then, is to develop an expanded (proto-
type) system for these more general applications, particu-
larly office automation and document retrieval in research
and development environments.

Existing Systems

Systems designed specifically for retrieval and analysis
of large full-text databases are a relatively new develop-
ment, but are already having a significant impact on a va-
riety of fields. For example, the LEXIS [1] and WESTLAW
[2] systems have had a fundamental effect on legal research.
The BRS-American Chemical Society system [3] may soon
do the same for chemistry. The University of Chicago is

187

making available a collection of some 1,500 full-length texts
for French studies [4]. And the New York Times [5] offers
its database of current journalism in a full-text form.

These systems are for the most part derived from a sin-
gle early system, STAIRS [6]. The exception is the Univer-
sity of Chicago project which is using ARRAS [7], an earlier
version of our system. While the STAIRS-based systems
have made significant contributions, certain fundamental
features limit what they can do now and what they will be
able to do in the future. First, they offer no unifying con-
cept of text and database; all rely on ad hoe combinations
of file designs, access, and maintenance techniques. Second,
they logically separate the multi-text database from the in-
dividual texts contained within it. Consequently, once a
document or set of documents has been selected through
a database search, the user cannot do secondary searches
for other combinations of words in the selected documents.
Finally, current production systems cannot efficiently pro-
vide the underlying access support needed to develop more
powerful analytic functions. They do not have the neces-
sary "hooks" onto which new features can be added easily,
and they do not provide a formal interactive command lan-
guage in which intelligent functions can communicate easily
with the retrieval system. We believe the utility of full-text
database systems would be increased greatly if the user
could apply automatic indexing, content analysis, statisti-
cal, or AI-based models to the database and to the texts
contained within it. MICROARRAS is our at tempt to al-
leviate these and other restrictions.

In the remainder of this paper, we discuss MICROAR-
RAS. Section 2 shows MICROARRAS from the user's per-
spective. This includes the search, retrieval, and analysis
functions that are currently available. Section 3 presents
the underlying architecture of the system including file or-
ganization, search strategies, and the formal language used
for communication between the user interface and the un-
derlying retrieval engine. We also show the provisions in
MICROARRAS that allow easy expansion. Section 4 de-
scribes several future directions for MICROARRAS that
we intend to explore.

U s e r ' s V i e w

O v e r v i e w

In this section we describe the user's logical view of
the system. By "logical" view we mean the mental model
the user constructs in order to understand how the system
operates. It does not mean the literal visual appearance of
the user interface. (MICROARRAS is designed to support
multiple user interfaces that can be tailored for different
applications and different groups of users; this feature is de-
scribed in more detail in the A r c h i t e c t u r a l V i e w section
below). The overall environment is described first followed
by descriptions of six key concepts: passages, text display,
lexieal display, categories, searching, and arithmetic analy-
sis.

E n v i r o n m e n t

We envision the user working on a microcomputer or
professional workstation in a distributed computing envi-
ronment in which some form of network links the user to
other users and to remote mainframes or other compute-
and file-servers. MICROARRAS can be operated within
a single, isolated microcomputer, but for the remainder
of this description we will assume a distributed environ-
ment. In that environment, the user will have access to
one or more file systems (e.g., a local hard disk, a re-
mote file-server, and/or a remote mainframe file system)
and to conventional text editors, but he or she will also
have access to one or more textual databases maintained
by MICROARRAS. With MICROARRAS functions, the

user can insert a text into one of the databases, delete a
text, and move or copy a text from one database to an-
other. The user can also logon to a remote system. Since
MICROARRAS works on both mainframes and worksta-
tions/microcomputers, the user can work with texts stored
in a remote database with MICROARRAS operating on
that machine and the user's workstation functioning as an
intelligent terminal; or the user can work with texts stored
in a database on the user's own machine and operate ML
CROARRAS completely within that environment. Or he or
she can transfer texts back and forth from one environment
to the other. In the current version of the system, the user
must direct these operations; but in future versions, the
system will hide much of this from the user.

Working with a textual database is frequently an it-
erative process. While the user sometimes knows exactly
which text he or she wishes to access, more often identify-
ing relevant texts involves some form of search. MICROAR-
RAS will provide two database search modes: bibliographic
search and content search. The first uses conventional bib-
liographic methods to help the user locate documents by
author, title, descriptive keywords, etc.; however, in addi-
tion to retrieving bibliographic citations, the search also
builds internal pointers to the associated documents stored
in the textual database. In some cases, the search may lo-
cate a single document, but frequently it produces a list
of candidate documents (e.g., the documents with certain
words in their titles). In content search, MICROARRAS
will support full Boolean search for words or sets of words
to produce a similar candidate list. Thus, both approaches
converge to the same point.

Once a candidate list of documents has been iden-
tified, MICROARRAS provides extensive capabilities for
secondary searches of selected documents (or parts of docu-
ments) from this list. In the remainder of this paper we will
emphasize MICROARRAS's secondary search and analysis
capabilities since they represent some of the more unusual
aspects of the system. Thus, we will presume that the user
has identified a candidate list of texts and now wishes to
begin narrowing the focus to find or analyze the specific
passages relevant to his or her needs. A key concept in this
process is the notion of a textual passage.

188

Passages

Passages are named sets of texts or portions of texts.
They are used to direct MICROARRAS's attention for
subsequent searches and analyses. For example, follow-
ing a global search of the textual database, the user inter-
ested in structure-editors might select five technical reports,
two journal articles, a book, and two papers contained in
the proceedings of a conference and then name the group,
structure-editors. The reports, articles, and book are likely
to be complete ~documents" in the database, but the two
conference papers would be contained within a proceedings
"document". The user could now retrieve and analyze text
in this consolidated structure-editor passage. At any time
the user may shift the focus of the analysis to another set
of texts (or portions of texts}. Thus, during a session, the
user may create (and save for subsequent use) many differ-
ent passages and easily move from one to another.

One of MICROARRAS's strengths is its flexibility in
handling context specifications. The system generally views
a document as composed of two overlapping hierarchies of
text segments. The first denotes logical divisions, such as
volume, chapter, paragraph, sentence, and word within sen-
tence; the second, physical divisions such as page, line, and
word within line. Whenever a textual database is estab-
lished, the definition includes sets of canonical segments
for that collection. Ad hoc segmentations may be used for
individual documents, but the user must define any hierar-
chical relations that are to be recognized. These segmen-
tation schemes are used by MICROARRAS to format the
display. They are also used in a number of other operations,
such as searching, that involve context. Some of these are
discussed below.

Text D i s p l a y

Having established some set of passages (identifying
one or more documents or parts of documents), the user
can quickly and easily move around in them. This is done
by first specifying the desired passage and then indicating
the place in that passage to be displayed. At a system
level, indicating a place for display is done by specifying
the appropriate segment, as described above. At the user

interface level, the user might indicate that he or she would
like to see the first section, entitled Overview, in the sec-
ond journal article within the passage. We are currently
designing a graphics-based interface in which this informa-
tion may be selected directly from a tree diagram showing
the segmentation hierarchy for a given document or pas-
sage.

A second way of moving around in the text is by dis-
playing all occurrences of a given word along with some
designated context around each. Essentially, this is an in-
teractive concordance or keyword in context (kwic) listing.
MICROARRAS can produce such displays immediately, no
matter how large the document or how scattered the occur-
rences. The context around each occurrence can be varied

at will, from one or two words on each side to the full sec-
tion or even the entire document. If the user wishes to see a
wider context for any particular occurrence, he or she may
simply point to that occurrence on the display and ask for
additional context. Thus, a typical user might specify a
rather limited context - say, four or five words on each side
- and then ask for additional context for those passages
that seem most relevant.

Lexica l D i s p l a y

Just as MICROARRAS can immediately go to any
place in a document to display text, it can also go to any
place in an alphabetical lexicon of the words that appear
in a document or passage. Lexical information may be dis-
played in three primary ways: by alphabetic sequence, by
pattern of characters, and by frequency of occurrence in the
document or passage. In the first instance, the user may
display the lexicon or part of it by indicating an alphabeti-
cal range, such as all those words beginning with the letters
a through e. The display can be shown separately for each
document within the current passage or interleaved to form
a single alphabetic sequence. The second option searches
for sequences of characters or "wildcards". Thus, the user
can locate all words with a given stem or a given prefix or
suffix. The third option displays word-types sorted by their
frequencies within the passage. The user can then locate
the most frequent words, the least frequent, or those falling
within some portion of the frequency spectrum.

Ca t ego r i e s

In text analysis, it is often useful to define a group
of words and then refer to that group by a single name.
We call such groups categories. MICROARRAS supports
three types of categories: type lists, token lists, and recur-
sire lists. Type lists represent all occurrences of a specified
set of word types for a particular passage; for example,
each instance of the word-types processor and cpu. To-
ken lists are sets of text positions representing individual
occurrences of words; for example, the specific places in a
document where processor refers to a computer, not a hu-
man processor of information. Recursive categories are sets
of other categories; for example, a new category consisting
of the cpu-category and the memory-category.

A category definition includes the name by which it is
identified and the expression that defines it. The expres-
sion can be a list of word-types, tokens, or category names.
(It c a n also be a Boolean expression, as described in the
next section.) Actual internal definition of a category is
a two-step process: the expression is scanned and stored
internally; then it is evaluated with respect to a given pas-
sage. Thus, for example, a set of categories may be derived
from a thesaurus that has been tailored to the user's re-
search interests. When the categories in the thesaurus are
initially defined (or obtained) by the user, they are stored
as expressions (sets of word-types) independent of any doc-
ument or set of documents. But when they are applied to a

189

given text (or passage), the expressions are evaluated with
respect 1;o that document. Consequently, word-types that
are in the °category but don' t appear in the text (or pas-
sage) are eliminated from the internal working instance of
that category.

S e a r c h

MICROARRAS provides very flexible and very fast
search of a document. To conduct a search, the user must
specify three components: a Boolean contextual expres-
sion, a passage in which to evaluate the expression, and
a category in which to store the resulting set of positions
where the expression occurs (a token list). The expression
is any Boolean combination of words or category names.

If categories are used, they imply every occurrence of any
word-type included. Contexts in which search expreessious
are evaluated can be specified in terms of any text segment
units valid for the text database and can be specified in
any number. Thus, one can look for all occurrences of cpu-
category & memory-category within, say, three words of one
another, or within the same sentence, or within three sen-
tences, or in the same sub-section, etc. Different contexts
can also be specified for subexpressions (e.g., cpu-category
& memory category within three words of one another but
not in the same sentence with hardware-category). The re-
sult of a search is a list of text locations. They are stored
as a token-list category, as described above.

Like any other category, token-lists resulting from a
search can be used in any way that categories are nor-
really used, including within a subsequent search expres-
sion. Thus, the user may search for patterns of words,
patterns of patterns, patterns of patterns of patterns, etc.
Search expressions can also be saved from one session to an-
other and they can be applied to different passages. Con-
sequently the user can develop expressions that define a
specific set of interests and use them at will on different
documents or sets of documents.

A r i t h m e t i c F u n c t i o n s

MICROARRAS provides facilities to compute various
textual measures and then display the results, analyze them
with an internal arithmetic interpreter, or pass them to an
external statistical analysis package. Two basic kinds of
data can be computed. The first is frequencies of words or
sets of words (categories) within a specified passage. Thus,
the user can compute and display the frequency with which
a word or category appears in a document, a set of docu-
ments, or some part of a' document. For example, the user
can display the number times the words in the cpu-category
appear in the passage described above: e.g., in five technical
reports, the two articles, the book, and the two conference
papers. The second major class of statistical data are seg-
mental measures. These determine the number of times
one segmental measure occurs within another. For exam-
ple, the number of words in a sentence or the sentences in
a document.

These measures become more interesting when com-
bined in various ways to compute ratios, distributions, and
lists of various kinds such as the distribution of a word or
category over a text passage divided into a set of uniform
intervals. The resulting vector of values can be displayed
as a bar graph or passed out for statistical analysis. For
example, one can perform a Fourier analysis on the vector
to see if the word or category tends to appear at regular
intervals. Or one can accumulate a number of such vectors,
view them a~ the columns of a matrix, and perform a fac-
tor analysis to identify clusters of words or categories that
consistently appear together in the passage.

These measures can also be stored as numeric vari-
ables. Types recognized by MICROARRAS are sealers and
vectors of both integers and reals. These variables can be
used in arithmetic expressions to compute any statistic for
which the user can write the equation. For example, one
can evaluate in real t ime a number of different retrieval for-
mulae to compare the matches between search requests and
sets of documents identified.

A r c h i t e c t u r a l V i e w

O v e r v i e w

In this section, we provide a general overview of the
system's architecture and then describe, briefly, some of
its more unusual features. The discussion is divided into
two main parts: the preparation of a document for use by
MICROARRAS and the structure of the system itself.

D o c u m e n t F l o w

Preparing a document for use by MICROARRAS is a
four step process (see Figure 1). First, it must be tran-
scribed into a machine readable form with internRl marks
indicating segments (boundaries, such as chapters, sections,
and paragraphs). Second, it is converted into a canonical
form, identical to that reconstructed by MICROARRAS for
textual display. Third, it is scanned and inverted. Finally,
the inverted text is inserted into the textual database.

The machine readable form can come from several dif-
ferent sources. It can be text writ ten with a conventional

word processor or editor. It can be extracted off a net-
work. It could be text "read" by an optical scanner, such
as the Kurzweil Data Entry Machine. Since MICROAR-
RAS indexes major segment boundaries, it expects to see
marks in the text that indicate chapters, sections, para-
graphs, etc. Currently, MICROARRAS recognizes marks
that follow TeX conventions. While MICROARRAS does
not support full TeX, a text that includes macros denoting
these features can be recognized. We will extend the con-
ventions accepted by MICROARRAS in the future to in-
clude popular word processing software, such as Microsoft
Word, NROFF, and Script.

The machine readable text is processed by a prescan
program to produce a canonical form. This format is iden-

190

tical to that produced by the analytic engine during text
reconstruction and sent to the interface for display. It
provides a formal means for MICROARRAS to recognize
similarities in segmental structures for documents encoded
in different systems as well as true idiosyncrasies of doc-
uments. This version of the text is still readable but is
highly structured and is well-defined in terms of format
conventions. As such, it also serves as a portable form for
transferring documents from one environment to another.

Encoded Text

Canomical ~ Portable
Encoded Form
Text

I 1 Scan

Invert

Invertcd ~ Portable
Text Form

I D'taba'e 1 Insert

Database
Extract Text Database

(Another)
Text Datahase

Figure I :

M I C R O A R R A S l)ocumeni Fh)w

The canonical form of the document is then scanned.
During this stage, the text is inverted and a number of sep-
arate indices created. The details of these indices are dis-
cussed in relation to the Analytic Engine, below. The result
of this process is a single "file" that constitutes the inverted
text and all its associated indices. This form, again, is well
defined and can be transported from one environment to
another.

Finally, the inverted document is inserted into the tex-
tual database. This operation includes adding a citation
to the bibliographic database for subsequent search. We
are also developing facilities for consolidating the lexicons
for the individual documents into a composite lexicon for
the entire textual database. Once a document is in the
database, it may be analyzed directly or it may be ex-
tracted in inverted form and transmitted to another MI-
CROARRAS database or another system.

S y s t e m View

O v e r v i e w

From a development standpoint, our immediate goal
was to convert a text analysis system running on large IBM
mainframes (in PL/1) to a microcomputer version in C. We
took advantage of the opportunity to substantially rethink
and redesign the system. We have extended its function,
but we have also raised several basic questions concerning
formal models for text analysis and efficient representation
schemes and search algorithms for large textual databases.
The next several sections describe the MICROARRAS im-
plementation and briefly discuss these larger issues.

MICROARRAS has three main modules linked - but
also separated - by two well-defined interfaces (see Figure
2). Properly speaking MICROARRAS is a family of sys-
tems - each distinguished by a particular interface. The
module that controls the User Interface interacts with a
Command Processor module using a formal two-way lan-
guage. This language provides a virtual machine, or facade,
to the User Interface that we call FLANGE (Facade Lan-
guage). The Command Processor parses FLANGE, checks
it for errors, and then calls the Analytic Engine to compute
results. The Analytic Engine can be viewed as a collection
of abstract data types; we treat the C functions that pro-
vide access to these sub-modules as a language, which we
call Arrish. Thus, the typical cycle of operation is for the
User Interface to t ransmit FLANGE to the Command Pro-
cessor. The Command Processor interprets the FLANGE
command to produce a sequence of calls to the Analytic
Engine. The Analytic Engine does the work and returns
the data to the Command Processor which encodes it into
FLANGE and sends it back to the User Interface. The User
Interface unpacks the FLANGE-encoded data and displays
the results.

T h e U s e r I n t e r f a c e M o d u l e

Had we followed a conservative, top down approach to
designing MICROARRAS, we would have first specified a
User Interface and then incrementally elaborated the func-
tions necessary to support that specification. Rather, the

actual emphasis in our project was on designing a system to
be viable across a range of different user environments. The
relative portability of C code made this a reasonable goal
and the volatility of the computer market made it almost
a necessity. We wanted to run not only on microcomput-
ers but on professional workstations, minicomputers, and
mainframes, as well. MICROARRAS currently runs on the
P C / A T (with the EGA Card) under MS-DOS, on the SUN
workstation, and on the VAX 11/785 - the last two under
BSD 4.2 UNIX. The fruits of this approach include the two
different User Interfaces described below.

The first interface was done for the IBM PC/AT within
Microsoft's Windows. It is menu-based and was designed to
include a minimum set of control features. One particular

191

feature of the interface worth noting is its ability to trans-
fer parameters from one window to another. For example,
the user can display a concordance, select a particular oc-
currence, and then transfer the word token identifier to a
second window in which he or she is constructing an ana-
lytic category of text positions.

t-H I liltefface
Module

FLANGE

L

\ 7
I Command Processor i

l l i I I I I
t t t f t t t t

Arrish

Analytic Engine !<

Figure 2:

MI£ROARRAS Architectural Overview

We are currently designing a more sophisticated
graphics-based direct manipulation User Interface, It will
be highly iconic and support a visual command language.
Features include:

• Iconic representation of textual objects - words, cate-
gories, contexts, Boolean configurations, etc.

• Convenient visual tools for combining and manipulat-
ing textual objects.

• A tree drawing of the text - showing the chapter and
section organization - through which the user can nav-
igate using the mouse to select portions for viewing or
for further analysis.

• Separate windows for reviewing the current state of
the system - the categories that are active, the format
options available, etc. These can be opened or closed
at will.

• Graphs (bar or line) of frequency distributions and
other statistical data computed by the system.

• Formatted text showing bold face and special fonts for
titles, etc; this text can be scrolled through and also
stored for later display.

Because of the separation between the interface and
the analytic engine we can develop a succession of more
sophisticated interfaces as well as specialized interfaces tai-
lored to particular groups of users or particular applica-
tions.

F L A N G E

FLANGE serves two major functions: it provides a for-
real specification for the MICROARRAS System and it pro-
vides an internal two-way command language. Formal spec-
ification of MICROARRAS was desirable for several rea-
sons. MICROARRAS is part of an ongoing research project
in natural language and text analysis. Consequently, we
need to build tools that will outlive particular systems.
We also envision MICROARRAS as one component of a
larger system. MICROARRAS is intended to run on one
or more nodes in a distributed text analysis network. We
are also developing an expert system component to support
intelligent user functions - e.g., more powerful search facil-
ities. MICROARRAS will be used in that configuration as
a compute-server communicating with the expert system
through FLANGE.

FLANGE is based on the command language of main-
frame ARRAS. But we have made several substantial ex-
tensions. FLANGE has a formal syntax; its grammar is
specified using a BNF-like notation. Consequently, pro-.
grams can easily construct command expressions which, in
turn, can easily be parsed. The components of a FLANGE
sentence are strongly typed to simplify processing and to
ensure reliable transmission across a communication inter-
face.

FLANGE is used for all communications between a
User Interface and the processing modules. Thus, for exam-
ple, a request for a concordance is encoded into FLANGE
by the User Interface. Then, as the results are computed
they are encoded within the conventions of the ~ re tu rn"
part of FLANGE and sent to the User Interface for dis-
play. Opportunities for interruption and cancellation of
long outputs as well as error reporting are provided. Thus,

FLANGE makes it possible to run the processing modules
on one system and to drive a User Interface through a com-
munications link running on another. We are developing
logic to support multiple users sharing access to a single
processing module and to view these users and support
modules as nodes in a general network.

Command Processor

The second major component of MICROARRAS is the
Command Processor module. It examines the FLANGE
message for errors and then calls Arrish functions to actu-
ally perform the computations. In addition, the Command
Processor contains the code to actually receive and trans-
mit FLANGE to the User Interface. This section describes
some of the techniques used in the Command Processor and
identifies areas of continuing interest.

192

Although FLANGE is a formal language, no effort was
made to generate a parser automatically. Each command
has a small hand written parser; because the syntax is sim-
ple, these are easy to build without tables or external data
structures. The advantage of using custom parsers on this
constrained syntax is that detailed error diagnostics can be
generated. Typically an error can be located by command
line and syllable; it can also be identified as the wrong type
of syllable or as a syllable whose contents are incorrect. The
balance between detailed error handling and the elegance
of language constructs continues to be a major issue as we
consider new versions of FLANGE.

Since verification and execution are done in separate
sub-modules, the command processor reparses the com-
mand to execute it. During execution the command is
viewed as an expression to be evaluated. The evaluation
entails building a parameter list and then calling functions
provided by the Analytic Engine. Often this requires eval-
uating separate subexpressions and then combining their
individual results. For example, the command to create
a passage may designate several portions of a text - each
by volume, chapter, and section. The command processor
must first translate 'chapter', 'volume', and 'section' into
their internal codes, then find the beginning and end of the
first section, compute in a similar way the boundaries for
the others, then combine these to form the passage.

Some evaluations may require several steps. A con-
cordanee, say, might be requested for a list of words. The
command processor would first locate all the occurrences of
each word, then recreate the context requested, and finally
return the textual data to the User Interface via FLANGE.
Intelligent ordering of these operations can improve system
performance; such optimizations are of increasing concern
for large collections of documents.

The Command Processor maintains a symbol table,
providing a name space for FLANGE. Consequently, ob-
jects can not only be defined and reused during a session,
they can be reconstructed through FLANGE commands
stored in a file. This allows saving the complete state of a
session on secondary storage. It also allows communication
between two MICROARRAS programs.

In light of our interest in FLANGE as a formal de-
scription of text analysis, the routines used by the Com-
mand Processor take on considerable significance. These
functions get the job done, but they also constitute a sec-
ond formal description of text. The next section introduces
that perspective.

A r r i s h

Arrish is the symbolic interface between the Command
Processor and the Analytic Engine that does the actual
computing and data manipulation. That interface can be
viewed as a set of abstract data types, implemented in ac-
cord with good software engineering practices. However,
it is more interesting to think of them as 'objects' im-
plemented in C. While this says that text analysis pro-

grams can be written in an object-oriented style, it also
suggests that text analysis itself can be described in an
object-oriented way. An exciting perspective of the Arrish
language is that it molds the user's ideas about the formal
properties of texts. That is, it provides a set of textual
primitives that can be used not just in computing mea-
sures of a text but for thinking about what constitutes a
text. Thus, it is a step toward defining a text processing
language, rather than a string processing language. For ex-
ample, the user cart think formally about the distribution
of certain classes of words across various sections of a doc-
ument, the shifting of sentence and paragraph lengths as

art author matures, or about various patterns or rhythms
of concept co-occurrence across a text.

A n a l y t i c E n g i n e

The Analytic Engine (sometimes called the Arrish En-
gine) is embodied in some dozen,abstract data types: spans,
windows, mark-sets, segments-in-effect tables, type lists, to-
ken lists, text access and the like (Figure 3 shows the basic
system modules and their dependencies). These modules
contain text and data, with no (known) hidden iterations.
This provides security and reliability at the cost of inter-
fering occasionally with some kinds of optimizations. How-
ever, we believe these problems cart be overcome in future
refinements of the systems.

STATISTICS

WINDOWS

VIRTUAL
TEXT

FILE & BUFFER
MANAGER

Figure 3:

Analytic Engine Modules/Dependencies

193

The actual text is stored as an inverted file (Figure 4).
Since the: original text format is not kept, any text displayed
is reconstructed from this index structure. The index struc-
ture consists of three main components. The dictionary is
an alphabetic list of every word-type occurring in the text,
its frequency, and a pointer to an occurrence list. The oc-
currence list contains the position of each word token in the
sequence of words that constitute the text. A linear image
of the text contains an entry for each token position in the
original text. The integer in the i-th position of the linear
image is the index into the dictionary of the word in that po-
sition. In addition to these main components, there are sev-
eral secondary structures. Each position in the text has an
associated format code for upper/lower case information.
Additional structures index the segmental organization of
the document (e.g., chapters, paragraphs, sentences). For
each segment mark there is a list of all its occurrences.
Segment titles (e.g., chapter titles) are stored in a string
table. These structures for a single text are stored con-
tiguously within the database file. That file also includes
header blocks which locate these various components for
a particular text. MICROARRAS reads this header data
at the start of a session but accesses textual data as it is
needed. The buffering techniques are beyond the scope of
this description.

The abstract data types provide both a symbolic in-
terface to these data as well as the actual computational
functions to access or to use them. In the current version

Ol t¢¢ lo ,~ • A l p . a L i n

Figure 4

MICROARRAS Inverted Text File
Logical Structure

v,, _ ~ ~ ~

stroLL ~

of the system, data structures are determined at the time a
document is inserted into the database. Consequently, ex-
amining multiple documents for secondary searches is done
iteratively. We are developing algorithms for extracting and
consolidating collections of documents into integrated data
structures. This will permit the same immediate access to
larger collections that is now possible for small collections.

F u t u r e P l a n s

As we have mentioned throughout, MICROARRAS is
part of a continuing program of research in natural language
and text analysis. Below we describe four areas of future
development directly linked to MICROARRAS.

We are particularly interested in techniques for build-
ing large textual databases using emerging low-~ost, high-
volume media. Especially attractive are the new write-once
optical disks. We are exploring alternative strategies for in-
dexing large volumes of textual data appropriate for these
devices. We are also interested in efficient means for trans-
ferring documents from one environment to another, strate-
gies for determining relative efllciencies for local vs. remote
processing, and other issues that accrue from recent ad-
vances in storage and networking technologies.

In describing the MICROARRAS engine, we men-
tioned that we use the two-way communication language,
FLANGE, as a primitive programming language. That is,
the User Interface interprets the user's intentions and then
constructs commands in FLANGE which are sent to the
Analytic Engine for execution. Results are packaged in
FLANGE and send back to the Interface for display. We
plan to reconsider FLANGE with the intention of turn-
ing it into a true object-oriented programming language
for text processing and analysis. While several languages
(e.g., SNOBOL) have been viewed as especially appropri-
ate for text applications, they are string languages, not text
languages. A true text language would provide as primi-
tive objects such entities as words, sets of words, sentences,
paragraphes, documents, sets of documents, etc. Primitive
operations would include search, pattern-matching, count-
ing, associating, and other functions. Implemented as an
interpreter, the language would become a high-level general
purpose programming language for text applications anal-
ogous to APL for numeric applications. Implemented as a

compiler, it could be used as a development language for
building specialized text processing systems.

We are currently developing a graphics-based structure
editor for helping authors during the design and drafting

" stages of writing. The system is an extension of the out-
line processors such as Thinktank [8]. Instead of working
within the linguistic structure of the outline, users of our
system work within an abstract space of nodes and arcs,
where nodes represent concepts and arcs associations be-
tween them. The writer transforms a network of concepts
into a hierarchy and then writes the document by writing
blocks of text for each node in the tree. The result is bet-
ter management of the writing process and documents with
more coherent structures.

After we complete basic versions of MICROARRAS
and the structure editor, we will merge the two systems to
form a comprehensive environment for the textual knowl-
edge worker. That is, the user - particularly during the
exploratory and planning stages of writing - will be able
to search the MICROARRAS textual database. When rel-
evant passages are located, he or she will import them into
the writing environment, encapsulate them within a node,
and link that node into the overall structure of ideas be-
ing built. When the document being written is complete,
the user will transfer it from the structure editor to the MI-
CROARRAS textual database where it will become another
document that can be searched and used, by the original
user but also by other workers with access to the database.

194

Thus, we will complete the cycle of document creation, stor-
age, search, retrieval, and reuse.

Finally, we have begun developing intelligent functions
to be embedded in the integrated environment jus t de-
scribed. As we have stressed throughout, the FLANGE
two-way communication language gives us considerable
flexibility. Just as different interface programs can present
different visual appearances to the user but still t ranslate
the user's expressed intentions into FLANGE commands,
so we can write other programs that can communicate with
the MICROARRAS engine through FLANGE. One such
program is an intelligent search function using an expert
system as a compute server. The problem we are address-
ing is the laboriousness of searching a full text database in
which the user must compose long, often complex Boolean
contextual search expressions, examine the resulting doc-
uments, decide what is important and what is not, store
relevant passages for future use, and then repeat the pro-
cess to follow new ideas as they emerge. We believe that at
the exploratory stage of thinking, a network of associated
concepts may model the user's intentions more accurately
than precise Boolean expressions. In the system we are de-
veloping, the user will first sketch an associative network
of concepts using the structure editor. The expert system
will then expand those concepts into categories of words
and phrases using a thesaurus tailored to that individual 's
interests. It will then form search expressions in FLANGE,
submit them to MICROARRAS, and analyze the resulting
passages. The system will then rank the retrieved passages
according to relevance criteria, update the associative net-
work to indicate additional concepts found in them but not
in the original network, and otherwise mediate the user's
encounter with the system. We expect to have a prototype
system by Summer, 1987.

A c k n o w l e d g m e n t s

A number of individuals have contributed to the MI-
CROARRAS Project. We wish to thank the following grad-
uate students for their help in implementing the system:
Candee Ellis, Bobby Stain, Scott Southard, Richard Pot-
ter, and John Ganch. We also thank Myra Reaves for her
help in preparing the manuscript for this report.

References :

[1] Lexis Handbook (Interim Version), New York: Mead
Data Central, Inc., 1980.

[2] Westlaw Reference Manual: Revised Edition, St.
Paul: Westlaw Publishing Co., Inc., 1982.

[3] User's Guide: American Chemical Society Exper-
imental Full-text Primary Journal Database, Columbus:
American Chemical Society, 1981.

[4] Morrissey, R. and Del Vigna, C., A Large Natural
Language Database: American and French Research on the
Treasury of the French Language, EDUCOM Bulletin 18, 1
(Spring 1983).

[5] The Information Bank-11: BRS/SEARCH Protocol
User Guide, New York: The New York Times, 1981.

[6] STAIRS/VS: General Information, IBM publica-
tion 12-GH 12-5114-2, New York: The IBM Corp., Inc.,
1974.

[7] Smith, J.B., ARRAS, Perspectives in Computing,
4, 2/3 (Summer/Fall, 1984).

[8] Thinktank (1984). Palo Alto, CA: Living Video-
text , Inc.

195

