RELIEF: Combining expressiveness and rapidity into a single system

Iadh Ounis
CLIPS-IMAG
Université de Grenoble, France
www—clips.imag.fr/mrim/iadh.ounis/

Abstract This paper constitutes a proposal for an efficient
and effective logical information retrieval system. Following
a relational indexing approach, which is in our opinion a ne-
cessity to cope with the emerging applications such as those
based on multimedia, we use the conceptual graphs formal-
ism as our indexing language. This choice allows for rela-
tional indexing support and captures all the useful properties of
the logical information retrieval model, in a workable system.
First order logic and standard information retrieval techniques
are combined together, to the same effect: obtaining an ex-
pressive system, able to accurately handle complex documents,
improve retrieval effectiveness, and achieve good time perfor-
mance. Experimentations on an image test collection, within a
system available on the Web, provide an illustration of the role
that logic may have in the future development of information
retrieval systems.

1 Introduction

The emergence of new applications, such as those based on
multimedia, brings into discussion the problem of the accu-
racy of document representation in information retrieval (IR).
Highly structured documents require more complex indexing
languages [5, 13, 9]. Following the work of Farradane [7], we
think that relational indexing is a necessity if faithful represen-
tations of documents are to be obtained. The complexity of
a multimedia document, such as the temporal aspects related
to video or the geographical position of objects in an image,
suggests that keywords are not sufficiently expressive and the
relation becomes highly important, and cannot be overlooked
in the indexing process. Recent work showed that, when rela-
tions are taken into account, retrieval effectiveness can be im-
proved [19, 20, 18].

Representing relations between keywords is a more difficult
task, as we deal in this case with a more refined level of in-
formation. Moreover, once relational indexing is supported by
the system, a powerful matching function is needed in order to
fully exploit the knowledge captured by or associated to these
relations. We think that the logical IR model [27] is the only
model suitable for this task. The system must be able to man-
age complex indexes and take benefit from large quantities of
knowledge, in order to improve the quality of the retrieval pro-
cess. In our opinion, retrieval should be a deductive process, as
only logic provides sound, rule-based knowledge matching.

An expressive indexing language, which complies with the

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copiecs are not made or dis-
tributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or fee. SIGIR'98, Melbourne, Aus-
tralia © 1998 ACM 1-58113-015-5 8/98 $5.00.

266

Marius Pagca
CLIPS-IMAG
Université de Grenoble, France
www—clips.imag.fr/mrim/marius.pasca/

need of relational indexing, introduces more complex treat-
ments as part of the matching function. Indeed, in [10, 11]
it was shown that the use of expressive formalisms typically
implies more expensive treatments. As in IR the acceptance of
a system by its users greatly depends on its ability to provide
a fast matching function [2], there were some doubts related
to the practicability of a logical IR system based on complex
relational formalisms. More elaborate implementations seemed
to confirm that in this case it is difficult to achieve good time
performance [16, 17].

This paper is a challenge, in that we argue that the logical IR
model is practicable and it is a self-contained model, with the
advantages given by flexibility and power of deduction mech-
anisms. To achieve a practicable implementation while using
a relational indexing, we use conceptual graphs [26]. We be-
lieve that this knowledge representation formalism has net ad-
vantages in information retrieval, such as the ability to model
all the components of an IR system, the existence of a powerful
logical matching function, and easy extensions without changes
of the semantics of the formalism. The latter make it possible to
render the matching function even more powerful, by refining
the retrieval decision [8] on the basis of knowledge such as that
captured by relation properties [22].

We use first order logic and standard information retrieval
techniques to achieve important improvements in retrieval time
performance. The approach is applied on an image retrieval sys-
tem based on conceptual graphs. For an image collection of 650
images, experimental evidence confirms the soundness of the
theoretical basis and opens a new path towards a fast precision-
oriented retrieval system.

The main contributions of the paper are the following:

e we illustrate the role of relations in image indexing and
show how the image content can be captured by concep-
tual graphs.

o we show that the matching function between queries and
image indexes can be performed in polynomial time, if
graphs are considered from a logical point of view, as
first order logic expressions.

o we show how to retrieve items from an image collection.
We use an inverted file approach to store and retrieve doc-
ument information, while preserving the deductive power
of first order logic. Deduction is thus seen as a process
of retrieval, in which we can simultaneously deduce all
relevant information from the document collection.

e we give experimental evidence. We show that conceptual
graphs are expressive enough to model multimedia infor-
mation. Retrieval effectiveness is improved, while time
performance is very promising.

2 Representing Images by Conceptual Graphs

We consider the two images in figure 1 to review some of the
types of information specific to this media and important for in-



dexing. Both images contain objects, that may be identified and
represented at first view by the keywords MAN and TABLE.
Each man has a BEARD. For simplicity, we ignore the other ob-
jects that appear in the images. In this case, if we use keywords,
both images will be indexed by the same set of objects: {MAN,
TABLE, BEARDY}. Therefore, whatever the user’s query, both
will be either retrieved or not.

Nevertheless, the two images contain further information
that permits to refine their description. For example, our objects
have different relative positions. In the first image, the MAN is
on the right of the TABLE. The same relation also holds for the
second image. Moreover, the BEARD does not appear inde-
pendently in each image, but it is the MAN which has it. The
position of the MAN also makes the difference: he is seated in
the first image, but is standing in the second image. We would
also like to introduce the name of the photographers who took
the two images, as well as the identification of the photographed
persons. In the database community, such information is usu-
ally referred to as attributes.

Keywords do not provide a solution to our needs. If we
tried to use a brute-force method and organized some of the
above information in the form of keywords, we counld get the
sets {MAN, TABLE, BEARD, ON THE RIGHT, SEATED
and {MAN, TABLE, BEARD, ON THE RIGHT, STANDING
respectively. Still, what we obtain does not make much sense,
and one could only make guesses at whether it is the man which
is on the right of the table, or maybe the table is on the right of
the man etc. This stems from the fact that relations between
keywords cannot be modeled by keywords themselves.

Figure 1: Two images with their associated indexes. The query
x(g) can be projected in both indexes.

We need a formalism that supports relations, which of-
fers a precise relational indexing process. Among other pos-
sible choices, we choose Sowa’s conceptual graphs (C'Gs) [26]
as our expressive indexing language. The reason is that this
formalism allows to represent uniformly all the components
of an IR system, i.e. indexing, interrogation and matching
function [8]. Furthermore, as introduced by Sowa, conceptual
graphs can be easily extended to accommodate specific knowl-

267

edge and needs, without a revision of its semantics. '

A conceptual graph is an oriented graph that consists of con-
cept nodes, conceptual relation nodes or simply relation nodes,
and edges between concept and relation nodes [26]. Concept
nodes represent entities, attributes, states and events, and rela-
tion nodes show how the concepts are interconnected. A con-
cept has a type (which corresponds to a semantic class) and pos-
sibly a marker (which corresponds to an instantiation to an in-
dividual of the class). For instance, [MAN : %] stands for the
concept of all possible men. This concept is called a generic
concept also noted [MAN]. On the other hand, [MAN : Victor
Hugo] obviously stands for the concept of a man named Victor
Hugo.

We note that x and Victor Hugo are examples of the notion
of marker. More formally, there is a set M = { U W U {x} of
markers for individuals belonging to the concept type domains.
The extra sets { and W are used to denote individuals in a con-
cept type domain. { = {John, Mary, ...} is called the set of
individual markers. { and W are disjoint sets. The use of the set
W, called the set of wimesses, will be explained in Section 4.

We use a conformity relation between concept types of T
and markers of M. In particular, for every elementd € { or
w € W and for every concept type C € 7. the conformity
relation tells whether C'(d) and C{w) can be interpreted true.

A relation has only a rype. Concept types and relation
types are organized in different lattices, 7¢ and 7 respectively.
These lattices are built according to a partial ordering relation
< between types. The number of concepts linked by a rela-
tion must be equal to the arity of its relation type. Each re-
lation type r is semantically defined by a relation signature,
B, = (r,n,C\,...,Ch), where n is the arity of the relation
type r and Ci,... ,Cp are the greatest concept types in the
lattice 7. which can be linked by the relation type r in this or-
der. Relation signatures impose a boundary upon the argument
concepts. Only specializations of these concepts can appear as
arguments of relations in documents and queries. For example,
if we have Eon e righe=(On the right, 2, PERSON, TABLE),
it is not possible that we have the subgraph [PERSON]—(On
the right)—[FURNITURE] in any of the documents, nor in the
queries because TABLE < FURNITURE.

Given a document collection, we have a conceptual graph
that indexes each document. For a document ds, i € [1,docu-
ment collection size], we denote its index by x(d;). The query
q is also modeled by a conceptual graph x(g), and we choose
as the matching function a particular operator provided by the
formalism, which is called the projection operator. The oper-
ator permits to compare two conceptual graphs. Informally, in
the case of information retrieval it involves searching for a copy
of the query graph x(g) in the document graph x(d:), up to
some concept restrictions. These restrictions are made either
on the concept type, by replacing it with one of its subtypes
(for instance, replacing [FURNITURE] by [TABLE]), or on the
marker, by instantiating the generic marker * to a certain indi-
vidual marker (for instance, replacing [MAN] by [MAN: Victor
Hugo]), or on both (see Document d; in figure 1).

An illustration of the use of projection as the matching func-
tion is given in figure 1. In this case, we have a projection of the
query x{(g) in the indexes x(d1 ) and x(dz). For instance, in the
case of x{d1), the result of the projection is the darkened sub-
graph of x(d1), and it is obtained by restricting respectively the
concept [MAN] in [MAN: Victor Hugo] and the concept [FUR-
NITURE] in [TABLE].

One of the drawbacks of the projection operator is that it
does not take into account general domain knowledge in the
graph matching. Such domain knowledge can be very useful,

1This is opposed to, for example, the case of the terminological log-
ics [23], where extensions generally induce the introduction of new i
interpretations.




and in relational indexing it may inciude relation properties,
such as symmetry, transitivity, inversion etc. The relation prop-
erties are all captured in a set KC,, that we take into considera-
tion to refine the indexes and thus improve retrieval effective-
ness [22]. An illustration of the use of K, is given in section 7.

Conceptual graphs can be used in the context of van Rijs-
bergen’s logical IR model introduced in [27]. In that model, the
decision on the relevance of a document for a query is based on
the truth of the logical implication of the query from the docu-
ment. This means that we retrieve a document for a query if we
have a logical implication from the document to the query.

InC Ga, the lmphcatlon is obtained on the basis of the trans-
lation to first-order logic, by the ¢ operator given by Sowa with
his formalism [26]. For each graph g, it associates a logical for-
mula ¢(g). Now, there is a relation between the existence of
a projection between two graphs and their associated formulas.
Indeed, it was proven that there exists a projection of a graph
g in a graph h if and only if the formula ¢(h) associated to h
implies the formula ¢(g) associated to g, ¢(h) D ¢(g) [26, 14].

The existence of a projection of x{q) in x(d;) is the retrieval
decision for d; in the case of conceptual graphs [8]. A document
d; of the document collection is retrieved for the query ¢, if and
only if there is a projection of x(g) in x(d;). For instance,
as a projection exists in figure 1 from x(q) in x(d1), we also
have an implication in terms of logical formulas, in the opposite
direction, ¢{x(d1)) D #(x(q)). In the following, we shall focus
on the projection operator.

3 DMotivations

In [4, 15], it is argued that the projection of a conceptual graph
in another is an operation that cannot be performed in polyno-
mial time. Brute force implementations of the projection in a
CG-based IR system would result in unacceptable execution
times. Therefore our goal is to resolve this problem in the con-
text of IR, such as the semantics of the formalism be preserved
and rapidity be achieved as well.

An IR system has two main functionalities: indexing and
retrieval. When globally evaluating the time performance of
the system, the retrieval procedure is the essential parameter to
be taken into account. This suggested our primary solution to
reduce execution time. For our projection operator, it would
be advantageous to move as much of the complex treatments
as possible from retrieval to indexing. We organize conceptual
graphs adequately, and here we were inspired by classical tech-
niques in information retrieval, such as the use of the inverted
files [28, 25], which are common practice in commercial IR sys-
tems. When keyword-based formalisms are used for indexing,
the inverted file consists of entries that associate each indexed
keyword to the set of documents whose index contain it. This
technique improves speed, as it provides directly the documents
corresponding to each indexing term. Hence our idea to apply
it to a rich formalism such as conceptual graphs. We obtain a
global structure, which is built during indexing. Treatments that
are otherwise part of the projection operator are performed dur-
ing indexing and their results are stored in the global structure.
We prove in the following section that our particular organiza-
tion of CG's does not change the semantics of the formalism. In
particular, the result of the application of our matching function
is equivalent to that of the projection operator. The difference
is that we obtain it faster, as less operations remain to be per-
formed during retrieval.

x(d1)
x(da) % \ 1"'

o
& xtds) ]

Document Indexes

[N\
Lo

Global structures

Projections Retrieval procedure

Figure 2: Comparative views of the classical projection as a
matching function (on the left) and of our approach (on the
right)

The main idea is illustrated in figure 2. The left side of
the figure corresponds to the brute force use of the projection
operator. During retrieval, the algorithm corresponding to the
projection operator has to be sequentially applied between the
query and each of the document indexes. On the right side,
our approach is presented. Using a transformation T, the in-
dexes are organized in a global structure. This structure con-
tains an inverted file and a set of acceleration tables that store
pre-computed data that are needed to perform the projection
algorithm, in particular all possible specializations of a query
subgraph (we shall come back to their role later). It should be
pointed out that the transformation process is bijective. There-
fore it is a lossless process, and each index can be built back
from the structure. This is explained by the underlying logical
interpretation.

In the following, we firstly present the theoretical logical
support that allows to organize conceptual graphs in inverted
files. Then we show the transformation of the initial problem,
of the projection of one graph in another. This allows to orga-
nize the indexes of the whole document collection in a single
structure. It gives the particular advantage that the matching is
not performed locally, between the query and each conceptual
graph, but globally, as a single operation on our structures.

4 The Witness Technique

Before we introduce the notion of witness, let us recall the
definition of the formula operator ¢ introduced by Sowa [26].
For the sake of simplicity only dyadic relations are used to
illustrate how this operator works, but it is easy to general-
ize it to an arbitrary n-ary relation. Let us take an elemen-
tary piece of a conceptual graph that we call an arch; that is,
[C1 : x](Rel)=[C2 : ] where C and C are concept types
and Rel is a dyadic relation which holds between them. From
the relation signature T re; we know which concept of the two
has to be considered in the first place in the relation Rel. The ¢
operator gives an existential interpretation to the marker *:

S([C1: %] = (Rel) =5 [Ca : %)) = )
Jz13z2(Ci(z1) A Ca(z2) A Rel(zy,x2))

268



The logical interpretation ¢(g) of a conceptual graph g is
the existential closure of the conjunction of the formulae asso-
ciated with its arches. Hence, if a concept node relates two or
more arches in a graph, like the concept {Ci2] of x(g) in fig-
ure 4, then the translation of the associated subgraph in x(g)
is

3z13z2323(Ci(x1) A Cra(z2) A Ra(z1,22) A
Ci(z3) A Crz(z2) A Ri(zs, z3))

Now, the method of the constants {3] says that we can in-
troduce for each existential quantifier a new constant w € W
which witnesses the truth of the existential formula. For exam-
ple the above translation can be considered as equivalent to

Ci{w1) A Cr2{w2) A Ra (w1, wa) A
Ci(ws) A Cr2(w2) ARy (w3, w2)

The equivalence holds only if we add the extra axiom 3z
a(z) = a(w) to the standard translation of the ¢ operator, pro-
vided that w is a new constant and it has been substituted for
all free occurrences of z in the formula a (notice that also the
converse implication holds). If a formula without witnesses can
be derived from the extended translation, then it can be also ob-
tained from the standard translation (notice that also the inverse
direction trivially holds). In particular

Theorem 1 If the logical counterpart of a query not contain-
ing wiesses can be derived by the extended graph translation,
then it can be obtained from Sowa’s graph translation and vice-
versa.

The proof can be found in [18]. This theorem represents
the theoretical basis of our approach. It insures that, whenever
a graph can be projected in another graph according to Sowa’s
projection operator, it is also projected according to our witness-
based interpretation. The latter is indeed sound and complete
according to Sowa's interpretation.

We note that the witness technique is applied not only to
existential concepts but also to individual concepts. In both
cases, a unique witness is associated to each concept node of
the graph.

5 Transforming the Projection Operator into Two
Sub-problems

After introducing in section 4 the logical foundation, we shall
concentrate on the organization of the indexes (the conceptual
graphs) for faster retrieval. Our structure consists of an inverted
file and several acceleration tables. The inverted file permits
to treat the indexes globally. The acceleration tables permit to
focus the retrieval from the beginning, reducing the search space
and thus improving efficiency. The construction of the inverted
file and the acceleration table is done off-line, as part of the
indexing procedure.

An uniform treatment of the arches in all the indexes is
achieved by the assignation of a unique witness to each con-
cept, as mentioned in the previous section. Provided that the
witnesses can be distinguished from one another , we can treat
the arches separately, and we end up with a set of arches for
all the collection. Witnesses will allow for the reconstruction of
any of the original indexes. For witnesses, we shall use the no-
tation w!, where 1 is the unique identifier of the document and
j is a unique identifier within i. Thus the witnesses obtained
remain distinct for all the indexes.

It is from this set of arches that the construction of our struc-
tures is done. During retrieval, the inverted file will be used
to find directly where each arch of the query appears in the
indexes. We group in the same entry of the inverted file all
the arches in the collection which are syntactically equal. This
means that, given an arch, we can immediately locate the docu-
ments whose indexes contain that arch. This is the basis for the
construction of the inverted file.

The acceleration tables pre-compute all the specializations
of possible query arches before interrogation. For each arch of
the query graph, all the entries of the inverted file containing
a specialization of this arch will be quickly determined. Then
the documents that contain specializations of each of the query
arches are found by consulting the inverted file entries.

At this point, we divided the projection operator into two
sub-problems. One of them is dealt with during indexing, hence
it does not have any influence on the retrieval rapidity. It re-
sults in modifications on the inverted file and the acceleration
tables. The other sub-problem remains to be solved during re-
trieval and, together with the first problem, it accomplishes the
task of the projection operator. The retrieval procedure takes
benefit from the pre-computed data, therefore is faster. This is
represented by the following formula:

Projection = Transformation + Pre-computation
(specializations) + Retrieval procedure

An important part of the complexity of the projection opera-
tor is moved at indexing time (the transformation of graphs into
arches and the pre-computation of the specializations of query
arches). What it remains is an operation that can be performed
much faster, as we shall show in the following.

6 Retrieval

By making use of the pre-computations that are comprised in
the global structures (specifically, the acceleration tables), the
retrieval function performs in one operation the rest of the cal-
culus to arrive at a result equivalent to that of Sowa’s projection
(see theorem 1).

We define a joining witness as a witness assigned to a joined
concept, which is a concept that appears in more than one arch.
The retrieval strategy is designed according to the structure of
the query. For each joining witness Wit, we find, using the ac-
celeration tables, the specializations of each arch of the query
in which Wity appears. For each of these arches, we extract
from the inverted file the lists of witnesses comesponding to the
position of Wit}, in the query arch 2. We do the intersection of
these lists. Thus for each joining witness of the query we have
a list of witnesses that gives the documents which are candidate
for a possible projection. Hence, for each Wit; we obtain the
subgraphs in the document indexes corresponding to the pro-
jection of a part of the query (this part consists of the arches of
the query in which Wit, appears).

The procedure is illustrated in figure 3. For clarity, we only
represent C'G s by witnesses. The joining witnesses in the query
are Wit} and Witd. Wit} appears in arches A and B. Thus we
intersect Ag and B4 and we obtain the candidate set of witnesses
for Wit;. Analogously, for Wit: we get By N Cy.

The candidate witnesses allow to detect partial projections.
They have to be filtered in order to find the result of the projec-
tion. The operations done up to now gave us projections for all
subgraphs of arches connected on the same concept (that is, on
the same joining witness). Each witness in Ag N By and each
witness in Cg N Dy are checked, to verify that they belong to
the same relation that joins Wit} and WitZ. The pairs that verify

2The position is determined by the relation signature.

269



this condition are retained and then assembled as the result of
the projecl:ion (see algorithm be]ow) The coxresponding pro-
_]ULI.IUII& can UC lOul'l(.l lI'UIll u1c lllVCl'LUU luc, Uy means 01 LIIC
inverse transformation T~

AgNBy

1

Figure 3: The retrieval procedure

Algorithm 1 (Retrieval)

1) FOR each joined W:t of the query
JoinedArches, = anjomEDARcuas(Wxt’)
PamalelA,.c;.q = all witnesses
2) FOR each Arr-h of. 'IgmriA_rr_‘_hg_e_

SpeemhzedRowArcb, = FlNDSPEClALlZATlONS(ArL‘bq )

AllSpecialized Wit = @

3) FOR each RowArch, in SpecializedRowArch,
Spcmbzedenw A,..,;. = GHWlmasses(RowAmh, )
AliSpecializedWit = "‘"w“RoWArehq U

AllSpecialized Wit

ENDFOR
MﬂlplbjA rchg
ENDFOR
ENDFOR
PartialProj, = FINDALLPARTIALPROJECTIONS(PartialProj o nch, q)
ExactProjectiong = FINDALLPATHSBETWEENWIT, (PartialProjg )

= PartialProj a ch, N AllSpecialized Wit

The use of the inverted file and the acceleration tables are

explicit in the algorithm, as opposed to the illustration in fig-
ure 3. Its main operations were illustrated above. A few details
about the symbols used in the algorithm above are given here:

FINDJOINEDA RCHES(Wit}): function to find all the arches of the
query in which Wit} appears.
FINDSPECIALIZATIONS(Archg): function to find, in the acceleration

table of the relation of Arch,
Of U rEiaton O A,

arches are specializations of Arch,.

GETWITNESSES(RowArch,): function that gets the witnesses asso-
ciated to a concept of the arch given in the RowArchg.

FINDALLPARTIALPROJE CTIONS(ParualProJ Archg)s function that
extracis the document identifiers of the witnesses corresponding
to the set PartialProj Arch, It finds from the precedent results
all the possible partial projections in the document indexes of

the whole query.
FINDALLPATHSBETWEENWIT (PartialProj;): function that veri-

fies that the ohtained witnesses are linked tnm-thpr in the docu-

ments, according to the query structure. It is used to find the final
relevant documents, and thus the exact projection of the query as

2ihnda ~An tha daaemants Tio avh_atane waws dacnemihad ahava
4 WiiOIC Ofi UiC GOTUMICHS. 118 SUs-SICPS WIS GESCIIoSa avove.

the inverted fila entries whoss
ne mverteg e entrics winese

In the retrieval algorithm, the partial projections are ob-
tained in polynomial time, as the first part of the algorithm
consists in unjons and intersections. The overall complexity
is therefore given by the complexity of the last function. In
the conceptual graphs community the cost of this function is

N

over-estimated, as it is often linked to graph theory and con-
siders graphs of indefinite structure. However, we consider a
conceptual graph to be a logic formula, hence the graphs are ai-
ways normalized, to eliminate expressions like C(a)AC(a) and
replace them by C(a). Considering CG's as a logic allows to
have a polynomial complexity because, for normalized graphs,
a subgraph of the query can be projected in at most one sub-

aranh Af a daenmant indavy Hanna annarding to tha anarg atenn_
grapsi O a GOCuMmSn: InGeX. falhnde, aCloriing o ui quiry suad

ture, there is only one way to verify that the document index
complies with this structure, i.e. to verify that its subgraphs are
linked together similarly to the query subgraphs. This shows
why the function FINDALLPATHSBETWEENWIT, is polyno-
mial. Hence, the overall complexity of our algorithm is nolyno—
mial. More details about the complextty analys:s of the projec-
tion are given in [1]. We emphasize that graph normalization is
a consequence of a logic view of CG's, and it does not impose
further constraints; in particular, graphs can be cyclic without
any change in the algorithm, nor in its complexity.

7 An Illustration of How the Algorithm Works

Let us consider the example of ﬁgure 4. The continuous lines
correspond to strict indexes, as provided by the indexing pro-
cess. The dotted lines are extensions added according to rela-
tion properties in X,. Their addition to the strict indexes will be
reflected by modifications in the inverted file and will be taken
into account by the retrieval procedure. Let the relation signa-
tures X g, , LR, and X g, be: (Ry,2, C1,C1), (Rg,2,C1,C1),
(Rs, 2, Cy, C1). For simplification, we suppose that in the fol-
lowing Cij < C;, where i and j are natural numbers (i.e., Cy;
is a sub-type of C; in the lattice 7). The reader may note that
in our example, we do not apply any graph normalization; the
reason is that we want to illustrate the futility of such a graph
of indefinite structure, as well as the application of our retrieval
algorithm for all kinds of graphs.

As we mentioned in section 5, the CGs can be treated as a
set of arches, where each concept is associated with a distinct
witness (see figure 4). For practical reasons, we deal with wit-
nesses according to the documents in which they appear and
use in the following the notation d;[j] for the general w]. For
example, the set of witnesses of x(d1), [w, ,wl,wl ,wlj is rep-
resented by d; : [1,2,3, 4]

Building global structures

In the inverted file, the arches are grouped together in the same
entry, whenever they are syntactically equal. For each arch,
concepts and their corresponding witnesses are represented ver-
tically, according to their position in the arch. This position is
determined by the relation type signature (see section 2).

To improve clarity, we shall use in the foilowing figures the
notation C for the concept [C:x] and C : a for [C:a)}, where a
is an individual marker.

The inverted file corresponding to the strict indexes is shown
in ﬁgum 5. In each enuy the concept represents a pair [concept
lypc, llkl.lk‘?l] l lllb lb uluauawu Uy I.IIU lllbl cuuy Ul unc lllVEl I.W
file, where the concept type C is followed by the individual
marker g. The entry thus corresponds to all the occurrences of
the arch [Cy : a] =& (R1) = [Ci1] in the indexes. In the

same way, the second entry describes all the occurrences of the
arch 7.1 .\ (R, \ Y ff".-l amanact tha cat of archec of 511

aavil il 7 O\svi) =7 \Jl‘] aiNVIgSL uiv uul. O ailnics O aus

indexes. Thus, dy : [2] (w?) and d; : (3] (w}) are the witnesses
that are attached to the arch in x(d1), while in x(d2) the arch
appears for witnesses d3 : [5] (wd) and dy : (4] (w3), in this
order (see figure 4).

The inverted file in figure

m nguie

strict indexes. It can be extended by using additional knowledge

5 only takes into consideration the

(o]}



£

x(d1)

x(da)

Figure 4: Sample document base and a query that can be projected in the extended index of dy

about the domain, in our case by using the relational properties
of K,. For every relational property in K,, there is a corre-
sponding treatment on the inverted file, which reduces to the
application of a certain algorithm [22). For instance, if X, con-
tains the facts: R; is transitive and R; is symmetric, then we
obtain the inverted file in figure 6, which will be used to build
the acceleration tables and then in the retrieval algorithm.

Row number | Relation | Concepts _ Witnesses
1 Ry Ci:a dy : |1
Cn dy : [2
2 Ry Ci1 dy :12],da: |6
Cha dy ¢ [3],da: |4
3 Ry Cha dy: [3
Cha d: |4
4 Ry C11 da:]1
Cha dg : {2
S R, Ch da : (3
Cha dg ¢ [2
6 Hs C1 da : (3
Cia dg : |4
7 Rq Ch1 da: b
C11 da : |6

Figure 5: Inverted file for our example

Row number | Relation | Concepts  Witnesses
] R’ Ci:a dy : |1
C11 dr : [2
2 I 2N Cn dy : |2}, da: [5)
C12 dy :[3],da: |4
3 Ha Cha dy 113,4]
12 dy : [4,3]
4 Ra Ci da : [1
Cia dg : [2
5 Ry C1 da: |3
Cha2 da : [2
6 Hs Cy da : [3
Cia da :
7 .2 Cu da : (6
C1 da :
8 Ra Cha da : |2
Ch1 da: (1
9 R, Ci:a di: 1
Cia dr:[3

Figure 6: Extended inverted file for our example

Relational properties are not restricted to only symmetry
and transitivity. Other properties can be defined and the in-
verted file would be modified accordingly [22]. However, we
shall only consider the inverted file in figure 6.

271

To build the acceleration tables, the rows of the final in-
verted file are analyzed in tarn. For each relation type, there is
one acceleration table. Their content serves to give the special-
izations for each possible arch that could appear in the query.
These possible arches are deduced from the relation signatures.
For example, from the relational signatures £r, =(R1, 2, C1,C1)
we know that the well-formed arches that can appear in the
query and are generalizations of [C11] = (Ri) — [Ci] are
[Ci1] = (R1) — [C1] (the arch itself) and [C1] = (R1) —
[C1]. The acceleration table for relation R1 will have to allow
for quick access to the specializations of each of these arches.

The acceleration tables for our example are those of figure 7.
We use the notation a;(R) for the i** concept of the relation R,
according to the signature X g. Note that individual markers are
also dealt with; the individual marker a that appears in entries 1
and 9 of the inverted file (see figure 6) has an impact on the form
of the first two entries of the column a1 (R, ) of figure 7A). This
is due to the fact that [C} : a} < [C1]. The individual markers
are also organized in a lattice, so that any individual marker is
a specialization of the generic marker x. Therefore the lattice
of concept types and the lattice of individual markers are used
uniformly to build the acceleration tables.

To illustrate the role of the acceleration tables, suppose that
the query contains the arch [C1] — (R)) — [Ci2]. Then
from the acceleration table for R; (see figure 7A)) we can ob-
tain its specializations; we extract the inverted file entries corre-
sponding to concept C; from ay (R:) and to concept Ci2 from
a2(R;) and we intersect them. Thus we have [1,2,5,7,9] N
[2,5,9] = [2,5,9], so the specializations for our arch, that ap-
pear in the indexes, can be obtained by consulting entries 2, 5
and 9 of the inverted file (see figure 6).

a1(R1) | Inv_file rows | az(R1) | Inv. jile rows
A) Ci 1,2,5,7,9] Cy 1,2,5,7,9]
C 1:0 1.9 C-n 1,7]
Tu Xj Caz 2591 |
a1(Ra) | inv file rows | aa(Ra) | Inv. file ows
B) Ch 3,4.8] Ch 3,4,8)
11 4] Ch1 8]
Ch2 3,8] Ch2 3,4]
a1{Rs) [ Inv. file rows | aa(R3) | Inv. file ows
o G 6] C1 (6]
Cia [6]

Figure 7: Acceleration tables for relations Ri, Rz, Rs



Document Retrieval

To see how the acceleration tables and the inverted file are used
for retrieval, suppose that a user enters the query presented in
figure 4. There are two joining witnesses in the query. The first
one is g : [1], that appears both in [C1] = (R2) — [C12] and
in [C1] = (R1) — [Ch12]. The second one is g : [2], that joins
[C1] = (R1) = [Ci2] and [C1]} = (R:1) = [Cni].

For each of the joining witnesses of the query, we have to
find its specialized joined witnesses in the document indexes, if
such witnesses exist. Thus we project parts of the query in the
indexes, using therefore a partial projection; each of these parts
is composed of the arches joined by the joining witnesses. Then,
to find the projection, the partial results have to be assembled
together, to perform the last operation of the retrieval algorithm
presented before.

We start with the first joining witness. In the firstarch A =
[C1] = (R2) — [Ch2], ¢ : [1] is associated to [C12]. From the
two columns of the acceleration table for Rz, we find that the
arches in which A can be projected are those of the rows [3,4,8]
N[3.4}=[3.4].

The second arch of the query that is joined by g : [1] is:
B = [C1] = (R1) = [C)12]. In the acceleration table for Ry,
we look for [C)] in the first column and [C)2] in the second
one. We have [1,2,5,7,9] N [2,5,9] = [2,5,9] so there are three
entries of the inverted file that contain arches in which [C1] —
(R1) = [C12] can be projected.

In order to get all the specializations of A, we do the union
of the witnesses lists associated to the second concept in rows 3
and 4 that we have found for arch A of the query: [d; : [4,3]]
Uldz : [2]] = [dr : [3,4],d2 : [2]]. For the second arch B
of the query, our result were rows 2, 5 and 9 of the inverted
file; the union of the witnesses list associated to the related
concept of those rows is [dy : [3],d2 : [4J U {d2 : [2]] U
[d1 : {3]] =[d1 : [3],d2 : [2,4]]. Now, only the set of the docu-
ments for which there is a join on the concept [C12} associated
to wit,} will be a correct answer to the subgraph of the query
formed by arches A and B. To find the possible relevant doc-
uments, which means the partial projections corresponding to
this joining witness, we only have to do the intersection of the
last two lists: [dy : [3,4],d2 : [2]] N [dy : [3),d2 : [2,4]] =
[dy : [3],d2 : [2]]. These are the specialized witnesses for the
joining witness g : [1}, from which the partial projections men-
tioned above can be found by using the content of the inverted
file.

We now turn our attention to the second joining witness of
the query, ¢ : [2]. It joins arches B, introduced above, and
C = [C1] = (R1) = [C11]. The same procedure is applied as
for g : [1]. Therefore the specialized witnesses for g : [2], from
which the projections of the subgraph of the query formed by
B and C can be derived, are [d1 : [1],da2 : [5]].

There is one more operation to perform, in order to find
the exact projection of the query in the document indexes and
thus find the relevant documents. It corresponds to the function
FINDALLPATHSBETWEENWIT,(PartialProj,) of the retrieval
algorithm. The two joining witnesses ¢ : [2] and ¢ : [1] of
the query (see figure 4) are associated to the concepts of the
same arch B, which contains the relation R;. The specialized
witnesses that we found, [di : [1],d2 : [5]] (for ¢ : [3]) and
[d1 : {3],d2 : [2]] (for g : {2]), must fulfill the same condi-
tion. It turns out that only [dy : [1]] and [d) : [3]] do so, while
[d2 : [5]] and [d2 : [2]] do not belong to a common relation Ry
as required. Therefore, an exact projection from the query exists
only in the first document index, and this is the only document
that is retrieved by the algorithm.

The interpretation of the result shows that our witness-based
retrieval algorithm generates the same results as the classical
projection. Moreover, relational reasoning allows to retrieve

272

document d;, whose non-extended index does not contain an
exact projection of the query. We obtain not only the documents
that are relevant to the query but also the projection of the query
in those documents. To exemplify, in the final result, [d; : [1]]
and [d; : [3]] have the following interpretation: the projection of
the query in the index of d; exists and it is the graph formed by
arches that contain concepts that have these witnesses attached.
The complete projection of the query in the first index can then
be obtained from the inverted file. It is shown by the darkened
part of the index of dy in figure 4.

8 RELIEF: An Image Retrieval System

Our image retrieval system is called RELIEF (a Relational Log-
ical Approach based on Inverted Files) [21]. The system is im-
plemented on top of the Oz system *. The main component of
the system is a conceptual graph platform allowing to perform
all the graph operators. Qur experimentations were done on an
image test collection called PARYSIS [6], that was also used for
test purposes with the systems developed in the framework of
the European FERMI project *. The collection contains about
650 photographs taken on the beginning of the century and it
is accompanied by 30 queries. The collection was originally
indexed by specialists of the French Ministry of Culture, in the
form of keywords attached with descriptive comments about the
images. From these original indexes, manual indexing provided
the corresponding indexes in the form of conceptual graphs, ac-
cording to the image model introduced in [12]. The indexing
process [6] used a concept lattice of about 7000 concepts and
a relation lattice of 350 relations. The average indexing graph
consists of 35 arches.

The users introduce their queries through the Web structured
query interface presented in figure 8. This figure corresponds to
the query: “find the images that are street scenes and show an
human in the front of a building”. The query is introduced using
the three areas of the query formulation screen (see figure 8):

i) the query structural area (the upper region of the inter-
face). In our example, the query searches for an image
that is composed of two objects: “human (humain)’ and
“facade”. As shown in figure 8, the user can consult 7.

ii) the query specification area (the middle region of the in-
terface). It refines the query, in our case by specifying
that the image type is “street scene”. The corresponding
arch is [IMAGE] — (Genre de I'image) — [SCENE-DE-
RUE].

iii) the query relational area (the lower region of the inter-
face). The symbolic and spatial (2D and 3D) relations are
introduced here to provide more accuracy for image re-
trieval. Together with the second area, it allows for the ex-
tension of the query entered in the structural area. In our
case, it contains the spatial relation “before (devant)” and
the arch is [HUMAIN] — (devant-2D) — [FACADE].

When retrieval is started, the data introduced by the user
are collected and an internal representation of the query is pro-
duced. The results are classified in relevance classes that corre-
spond to the exact and partial projections respectively [21].

To evaluate our system, we considered another system,
EMIR? [12), which also uses CG's as the underlying formalism
and the classical projection operator as the matching function.
The 30 FERMI queries were run on both RELIEF and EMIR?,
An overview of the results is shown in the figure 9. They prove
the significant speed-up that we obtained.

For the analysis of the quality of answers, we also consider
as reference the well-known SMART system [24, 25]. The input

3Gee the demonstration session of this conference.
4 Esprit BRA 8134



data for SMART are the original keywords and textual descrip-
tions of the images given by specialists 5. The results of the
comparison of our system to SMART and EMIR?, in terms of
precision/ recall, are shown in figure 10. They show that a sim-
ple formalism such as that used by SMART is not adequate to
represent complex documents such as images. As compared to
EMIR?, our system is slightly superior, thanks to the treatment
of the relations, as we mentioned in [21]. To evaluate the im-
pact of relational treatment, we compared the results obtained
with and without derivations on relations. Figure 11 shows its
importance, and confirms that our extension to the C'Gs formal-
ism improves significantly the quality of answers (about 10%).

Figure 8: The French query formulation screen

Time (sec) | EMIR* | RELIEF
™ Min [ i

Max 53 3

Average 188 18

Figure 9: Comparative execution times
The size of the disk space required by the objects model-
ing our structures is less than that of the objects modeling the
BWe admit that the comparison with SMART is somewhat inappropriate, as

the precision of the input index data is quite different. However, we nse it in order
to illustrate the limitations of keywords in terms of precision/ recall.

»:SMART (average 0.16)
09 +:EMIR? (average 0.34)
o RELIEF (average 0.36)

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
| Recall

Figure 10: Comparative system precision/recall measures

10 »:RELIEF with derivations on relations
* RELIEF without dertvations on relations

0.0 e Sy
0001020304050607 0804910

Recall

Figure 11: Importance of derivations on relations for the preci-
sion/recall measures

indexes. This is due to the implicit compression obtained us-
ing the inverted file, as only the first occurrence of the identical
arches is represented, while the others determine the addition of
witnesses only. Our inverted file takes about 3600 KB of disk
space and the acceleration tables 4000 KB, while the objects
modeling the conceptual graphs indexes occupy 10000 KB (see
figure 12b)). We would like to mention that the indexes are no
longer required once the structures are built, as the conceptual
graphs can be re-generated from the inverted file. We obtain
a reduction of the required space, which is indeed significant
for a domain that deals with large amounts of data. However,
for a larger test collection the space occupied would increase
accordingly, and a solution has to be found to this issue.

Indexing has also shown another aspect, concerning the
time required to build our structures. Though the impact on
time is not as important for indexing as it is for retrieval, the
results of figure 12a) suggest that an improvement is required.
From the 500th index, the loading time increases exponentially.
This is an implementation problem due to the fact that we did
not use all possible optimizations in our first implementation.
However, we are addressing this problem.

9 Conclusion

In this paper we proposed a solution to the challenge of using
expressive and therefore expensive formalisms and keeping a
reasonable retrieval time performance. Not only did we obtain
fast retrieval, but we also improved the quality of answers, by
extending the conceptual graphs formalism on a sound basis.
Even though our solution is given for the conceptual graphs for-
malism, we believe that it is only an instance of a more gen-
eral approach that can be applied to other expressive formalisms
such as terminological logics [13], provided that adequate log-
ical techniques are used. Our experiments were performed on
a medium-sized image test collection. However, we consider
the results to be suggestive, as the size of the indexes is im-

273



2) Data Loading Time

»: Acceleration Tables
! Extended Invered File ',"'
o: Splitting Process g

e B
I e .
50 100 130 2 28 0 33 400 430 U 380 600 &30 00
Documents
b) Size of Structures
Size
(MB) .
.
a: Extended Inverted File R
¢ #: Accelerstion Tables o’
5t [H Origimllndelﬂ_-.
.-

1 A n ! I L P ST 1

0
50 100 130 X0 25 300 350 400 430 50U 550 000 450 MO
D

—d L

Figure 12: Time and disk space required to build our structures

portant. According to our estimations, a collection of 10000
images could be handled by the system with execution times
no more than 20 seconds. This is very encouraging for a first
implementation. Tests on larger collections is one of our imme-
diate objectives. Presently, the construction of a large database
of conceptual graphs in the CGs community is one of the pur-

poses of the PEIRCE Workbench ¢,

References

[1] G. Amati and L. Ounis. Interpreting conceptual graphs in first
order logic: Projections, graph derivation systems and their com-
plexity. Research report RAP98-001 (submitted), FUB (Rome),
CLIPS-IMAG (Grenoble), 1998.

[2] E.W. Brown. Fast evaluation of structured queries for informa-
tion retrieval. In Proceedings the 18th Annual International ACM
SIGIR Conference on Research and Development inInformation
Retrieval, Seatle, USA, pages 30-38, july 1995.

{3] C.C.Chang and H.J. Keisler. Model Theory. North-Holland, 1973.

{41 M. Chein and M.L. Mugnier. Conceptual graphs: fundamental
notions. Revue d'Intelligence Artificielle, 6(4):365-406, 1992.

[5] Y. Chiaramella and J.P. Chevallet. About retrieval models and
logic. The Computer Journal, 35(3), 1992.

[6] Y. Chiaramella and M. Mechkour. Indexing an image test collec-
tion. Technical report, FERMI BRA 8134, April 1997.

[7] J. Farradane. Relational indexing Part 1. Journul of Information
Science, 1(5):267-276, 1980.

[8] T.W.C. Huibers, L. Ounis, and J.P. Chevallet. Conceptual graphs
aboutness. In P.W. Eklund, G. Ellis, and G. Mann, editors, Pro-
ceedings of the 4th International Conference on Conceptual Struc-
tres, ICCS'96, volume 1115 of Lecture Notes in Artificial Intel-

SThe activities of the CGs community world-wide arc presented in
http://ksi.cpsc.ucalgary.ca/ lukose/cseic/

ligence, pages 130-144, Sydney, August 1996, Springer-Verlag,
Berlin.

[9] M. Lalmas. Theories of Information and Uncertainty for the mod-
elling of Information Retrieval: an application of Situation The-
ory and Dempster-Shafer’s Theory of Evidence. PhD thesis, De-
partment of Computing Science, University of Glasgow, Scotland,
April 1996.

[10] H.J. Levesque and R.J. Brachman. A fundumental tradeoff in
knowledge representution and reusoning, pages 42-70. Morgan
Kaufmann Publishers, Los Atlos, California, 1985.

{111 H.I Levesque and R.J. Brachman. Expressiveness and tractability
in knowledge representation and reasoning. Computational Intel-
ligence, 3(2):78-93, May 1987.

[12] M. Mechkour. EMIR2. Un Modéle étendu de représentation et de
correspondance d’images pour lu recherche d’informations. Ap-
plication & un corpus d’image historiques, PhD thesis, Université
Joseph Fourier, Grenoble, 1995.

[13] C. Meghini, F. Sebastiani, U. Straccia, and C. Thanos. A model
of information retrieval based on a terminological logic. In R. Ko-
rfhage, E. Rassmussen, and P. Willit, editors, Proceedings of the
16th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Pittsburgh, PA, pages
298-307. ACM, ACM Press, June 1993.

[14] M.L. Mugnier. Contributions Algorithmiques pour les Graphes
d'Hérituge et les Gruphes Conceptuels. PhD thesis, Université
Montpellier II, October 1993.

[15] M.L. Mugnier and M. Chein. Représenter des connaissances
et raisonner avec des graphes. Rewue d'Intelligence Artificielle,
10(1), 1996.

{16] J. Nie. An information retrieval model based on modal logic. In-
Jormation Processing & Munagement, 25(5):477-491, 1989.

[17] J.Nie. Un Modéle Logique général pour les systémes de recherche
d'informations. Application au prototype RIME. Phd thesis, Uni-
versité Joseph Fourier, Grenoble, 1990.

[18] 1. Ounis. Un modéle d’indexation relationnel pour les gruphes
conceptuels fondé sur une interprétution logique. PhD thesis, Uni-
versité Joseph Fourier, Grenoble, February 1998.

{19} L Ounis and T.W.C. Huibers. A logical relational approach for
information retrieval indexing. In 19th Annual BCS-IRSG Col-
loquium on IR Reseurch, Aberdeen, Scotlund. EWIC, Springer-
Verlag, 8-9 April 1997.

[20] 1. Ounis and M. Pasca. An extended inverted file approach for in-
formation retrieval. In Internationul Dutabuse Engineering and
Application Symposium (IDEAS'97), Montreal, Canadua, pages
397-402. IEEE Computer Society Press, August 1997.

[21] I. Ounis and M. Pasca. The RELIEF retrieval system. In
The IEEE Knowledge and Datu Engineering Exchange Workshop
(KDEX'97), Newport Beuch, California, U.S.A. IEEE Computer
Society Press, November 1997.

[22] L Ounis and M. Pasca. Effective and efficient relational query
processing using conceptual graphs. In 20th Annual BCS-IRSG
Colloquium on IR Research, Autrans, France. EWIC, Springer-
Verlag, 25-27 March 1998.

[23] PF. Patel-Schneider, B. Owsnicki-Klewe, A. Kobsa, N. Guar-
ino, R. McGregor, W.S. Mark, D.L. McGuiness, B. Nebel,
A. Schmiedel, and J. Yen. Term subsumption languages in knowl-
edge representation. Al Magazine, 11:16-23, 1990. .

[24] G. Salton. The SMART project. Prentice Hall, 1971.

[25] G. Salton and ML.J. McGill. Introduction to Modern Information
Retrieval. Mcgraw Hill Book Company, New York, 1983,

[26]) 1.F. Sowa. Conceptual Structures : Information Processing in
Mind und Machine. Addison-Wesley Publishing Company, 1984.

[27] C.J.van Rijsbergen. A new theoretical framework for information
retrieval. In ACM Conference on R ch and development in
Information Retrieval, Pisa, pages 194-200, 1986.

[28) C.J. van Rijsbergen. Informution Retrieval. Butterworths, Lon-
don, 1979.

274



