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Abstract This paper constitutes a proposal for an efficient 
and effective logical information retrieval system. Following 
a relational indexing approach, which is in our opinion a ne- 
cessity to cope with the emerging applications such as those 
based on multimedia, we use the conceptual graphs formal- 
ism as our indexing language. This choice allows for rela- 
tional indexing support and captures all the useful properties of 
the logical information retrieval model, in a workable system. 
First order logic and standard information retrieval techniques 
are combined together, to the same effect: obtaining an ex- 
pressive system, able to accurately handle complex documents, 
improve retrieval effectiveness, and achieve good time perfor- 
mance. Experimentations on an image test collection, within a 
system available on the Web, provide an illustration of the role 
that logic may have in the future development of information 
retrieval systems. 

1 Introduction 

The emergence of new applications, such as those based on 
multimedia, brings into discussion the problem of the accu- 
racy of document representation in information retrieval (IR). 
Highly structured documents require more complex indexing 
languages [5, 13, 91. Following the work of Farmdane [7], we 
think that relational indexing is a necessity if faithful represen- 
tations of documents are to be obtained. The complexity of 
a multimedia document, such as the temporal aspects related 
to video or the geographical position of objects in an image, 
suggests that keywords are not sufficiently expressive and the 
relation becomes highly important, and cannot be overlooked 
in the indexing process. Recent work showed that, when rela- 
tions am taken into account, retrieval effectiveness can be im- 
proved [ 19,20, 181. 

Representing relations between keywords is a more difficult 
task, as we deal in this case with a more refined level of in- 
formation. Moreover, once relational indexing is supported by 
the system, a powerful matching function is needed in order to 
fully exploit the knowledge captured by or associated to these 
relations. We think that the logical IR model [27] is the only 
model suitable for this task. The system must be able to mar- 
age complex indexes and take benefit from large quantities of 
knowledge, in order to improve the quality of the retrieval pro 
cess. In our opinion, retrieval should be a deductive process, as 
only logic provides sound, rule-based knowledge matching. 

An expressive indexing language, which complies with the 
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need of relational indexing, introduces more complex treat- 
ments as part of the matching function. Indeed, in [ 10, 1 l] 
it was shown that the use of expressive formalisms typically 
implies more expensive treatments. As in IR the acceptance of 
a system by its users greatly depends on its ability to provide 
a fast matching function [2], there were some doubts related 
to the practicability of a logical JR system based on complex 
relational formalisms. More elaborate implementations seemed 
to confirm that in this case it is difficult to achieve good time 
performance [ 16, 171. 

This paper is a challenge, in that we argue that the logical IR 
model is practicable and it is a self-contained model, with the 
advantages given by flexibility and power of deduction me& 
anisms. To achieve a practicable implementation while using 
a relational indexing, we use conceptual graphs [26]. We be- 
lieve that this knowledge representation formalism has net ad- 
vantages in information retrieval, such as the ability to model 
all the components of an IR system, the existence of a powerful 
logical matching function, and easy extensions without changes 
of the semantics of the formalism. The latter make it possible to 
render the matching function even more powerful, by refining 
the retrieval decision [8] on the basis of knowledge such as that 
captured by relation properties [22]. 

We use first order logic and standard information retrieval 
techniques to achieve important improvements in retrieval time 
performance. The approach is applied on an image retrieval sys- 
tem based on conceptual graphs. For an image collection of 650 
images, experimental evidence confirms the soundness of the 
theoretical basis and opens a new path towards a fast precision- 
oriented retrieval system. 

The main contributions of the paper are the following: 

we illustrate the role of relations in image indexing and 
show how the image content can be captured by concep- 
tual graphs. 

we show that the matching function between queries and 
image indexes can be performed in polynomial time, if 
graphs are considered from a logical point of view, as 
first order logic expressions. 

we show how to retrieve items from an image collection. 
We use an inverted file approach to store and retrieve doc- 
ument information, while preserving the deductive power 
of first order logic. Deduction is thus seen as a process 
of retrieval, in which we can simultaneously deduce all 
relevant information from the document collection. 

we give experimental evidence. We show that conceptual 
graphs are expressive enough to model multimedia infor- 
mation. Retrieval effectiveness is improved, while time 
performance is very promising. 

2 Representing Images by Conceptual Graphs 

We consider the two images in figure 1 to review some of the 
types of information specific to this media and important for in- 
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dexing. Both images contain objects, that may be identified and 
represented at first view by the keywords MAN and TABLE. 
Each man has a BEARD. For simplicity, we ignore the other ob- 
jects that appear in the images. In this case, if we use keywords, 
both images will be indexed by the same set of objects: {MAN, 
TABLE, BEARD}. Therefore, whatever the user’s query, both 
will be either retrieved or not. 

Nevertheless, the two images contain further information 
that permits to refine their description. For example, our objects 
have different relative positions. In the first image, the MAN is 
on the right of the TABLE. The same relation also holds for the 
second image. Moreover, the BEARD does not appear inde- 
pendently in each image, but it is the MAN which has it. The 
position of the MAN also makes the difference: he is seated in 
the first image, but is standing in the second image. We would 
also like to introduce the name of the photographers who took 
the two images, as well as the identification of the photographed 
persons. In the database community, such information is usu- 
ally referred to as attributes. 

Keywords do not provide a solution to our needs. If we 
tried to use a brute-force method and organized some of the 
above information in the form of keywords, we could get the 
sets {MAN, TABLE, BEARD, ON THE RIGHT, SEATED} 
and {MAN, TABLE, BEARD, ON THE RIGHT, STANDING} 
respectively. Still, what we obtain does not make much sense, 
and one could only make guesses at whether it is the man which 
is on the right of the table, or maybe the table is on the right of 
the man etc. This stems from the fact that relations between 
keywords cannot be modeled by keywords themselves. 

Figure 1: Two images with their associated indexes. The query 
x(q) can be projected in both indexes. 

We need a formalism that supports relations, which of- 
fers a precise relational indexing process. Among other pos- 
sible choices, we choose Sowa’s conceptual graphs (CGe) [26] 
as our expressive indexing language. The reason is that this 
formalism allows to represent uniformly all the components 
of an IR system, i.e. indexing, interrogation and matching 
function [8]. Furthermore, as introduced by Sowa, conceptual 
graphs can be easily extended to accommodate specific kuowl- 

edge and needs, without a revision of its semantics. ’ 
A conceptual graph is au oriented graph that consists of con- 

cept nodes, conceptual relation nodes or simply relation nodes, 
and edges between concept and relation nodes [26]. Concept 
nodes represent entities, attributes, states and events, and rela- 
tion nodes show how the concepts are interconnected. A con- 
cept has a type (which corresponds to a semantic class) and pos- 
sibly a marker (which corresponds to an instantiation to an in- 
dividual of the class). For instance, [MAN : *] stands for the 
concept of all possible men. This concept is called a generic 
concept also noted MAN]. On the other hand, [MAN : Victor 
Hugo] obviously stands for the concept of a man named Victor 
Hugo. 

We note that * and Victor Hugo are examples of the notion 
of marker. More formally, there is a set M = C U W U {*} of 
markers for individuals belonging to the concept type domains. 
The extra sets C and W are. used to denote individuals in a con- 
cept type domain. C = {John, Mary,. . . } is called the set of 
individual markers. < and W are disjoint sets. The use of the set 
W, called the set of wimesses, will be explained in Section 4. 

We use a conformity relation between concept types of 7, 
and markers of M. In particular, for every element d E c or 
w E W and for every concept type. C E 7, the conformity 
relation tells whether C(d) and C(w) can be interpreted true. 

A relation has only a type. Concept types and relation 
types are organized in different lattices, 7, and 7, respectively. 
These lattices are built according to a partial ordering relation 
< between types. The number of concepts linked by a rela- 
Ln must be equal to the arity of its relation type. Each re- 
lation type t is semantically defined by a relation signature, 
c, = (r,n,C1,... , C,), where n is the arity of the relation 
type r and Cl,... ,C, are the greatest concept types in the 
lattice 7, which can be linked by the relation type r in t!ris or- 
der. Relation signatures impose a boundary upon the argument 
concepts. Only specializations of these concepts can appear as 
arguments of relations in documents and queries. For example, 
if we have I=o, h nght=(On the right, 2, PERSON, TABLE), 
it is not possible that we have the subgraph [PERSON]+(On 
the right)+-] in any of the documents, nor in the 
queries because TABLE 5 m. 

Given a document collection, we have a conceptual graph 
that indexes each document. For a document di, i E [l,docu- 
ment collection size], we denote its index by x(di). The query 
Q is also modeled by a conceptual graph x(q), and we choose 
as the matching function a particular operator provided by the 
formalism, which is called the pmjechm operator. The oper- 
ator permits to compare two conceptual graphs. Informally, in 
the case of information retrieval it involves searching for a copy 
of the query graph x(q) in the document graph x(di), up to 
some concept restrictions. These restrictions are made either 
on the concept type, by replacing it with one of its subtypes 
(for instance, replacing ~NITURE] by FABLE]), or on the 
marker, by instantiating the generic marker * to a certain indi- 
vidual marker (for instance, replacing [MAN] by [MAN: Victor 
Hugo]), or on both (see Document dt in figure 1). 

An illustration of the use of projection as the matching func- 
tion is given in figure 1. In this case, we have a projection of the 
query x(q) in the indexes x(dl) and x(dz). For instance, in the 
case of x(dl), the result of the projection is the darkened sub- 
graph of x(dl), and it is obtained by restricting respectively the 
concept NAN] in MAN: Victor Hugo] and the concept IFUR 
NITURE] in [TABLE]. 

One of the drawbacks of the projection operator is that it 
does not take into account general domain knowledge in the 
graph matching. Such domain knowledge can be very useful, 

‘This is oppmed to, for example, the case of the tenninological log- 
its [U], where extensions generally induce the introduction of new semantic 
interpretations. 
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and in relational indexing it may include relation properties, 
such as symmetry, transitivity, inversion etc. The relation prop- 
erties are all captured in a set K,, that we take into considera- 
tion to refine the indexes and thus improve retrieval effective- 
ness [22]. An illustration of the use of J& is given in section 7. 

Conceptual graphs can be used in the context of van Rijs- 
bergen’s logical IR model introduced in [27]. In that model, the 
decision on the relevance of a document for a query is based on 
the truth of the logical implication of the query from the docu- 
ment. This means that we retrieve a document for a query if we 
have a logical implication from the document to the query. 

In CGs, the implication is obtained on the basis of the trans- 
lation to first-order logic, by the 4 operator given by Sowa with 
his formalism [26]. For each graph g. it associates a logical for- 
mula 4(g). Now, there is a relation between the existence of 
a projection between two graphs and their associated formulas. 
Indeed, it was proven that there exists a projection of a graph 
g in a graph h if and only if the formula 4(h) associated to h 
implies the formula $(g) associated to g. 4(h) > 4(g) [26,14]. 

The existence of a projection of x(q) in ~(4) is the retrieval 
decision for di in the case of conceptual graphs [8]. A document 
di of the document collection is retrieved for the query q, if and 
only if them is a projection of x(q) in x(di). For instance, 
as a projection exists in figure 1 from x(q) in x(dl), we also 
have an implication in terms of logical formulas, in the opposite 
direction, t$(x(dl)) > $(x(q)). In the following, we shall focus 
on the projection operator. 

3 Motivations 

In [4, IS], it is argued that the projection of a conceptual graph 
in another is an operation that cannot be performed in polyno- 
mial time. Brute force implementations of the projection in a 
CG-based IR system would result in unacceptable execution 
times. Therefore our goal is to resolve this problem in the con- 
text of IR, such as the semantics of the formalism be preserved 
and rapidity be achieved as well. 

An IR system has two main functionalities: indexing and 
retrieval. When globally evaluating the time performance of 
the system, the retrieval procedure is the essential parameter to 
be taken into account This suggested our primary solution to 
reduce execution time. For our projection operator, it would 
be advantageous to move as much of the complex treatments 
as possible from retrieval to indexing. We organize conceptual 
graphs adequately, and here we were inspired by classical tech- 
niques in information retrieval, such as the use of the inverted 
files [28,25], which are common practice in commercial IR sys- 
tems. When keyword-based formalisms are used for indexing, 
the inverted file consists of entries that associate each indexed 
keyword to the set of documents whose index contain it. This 
technique improves speed, as it provides directly the documents 
corresponding to each indexing term. Hence our idea to apply 
it to a rich formalism such as conceptual graphs. We obtain a 
global structure, which is built during indexing. Treatments that 
are otherwise part of the projection operator are performed dur 
ing indexing and their results are stored in the global structure. 
We prove in the following section that our particular organiza 
tion of CGs does not change the semantics of the formalism. In 
particular, the result of the application of our matching function 
is equivalent to that of the projection operator. The difference 
is that we obtain it faster, as less operations remain to be per- 
formed during retrieval. 

Figure 2: Comparative views of the classical projection as a 
matching function (on the left) and of our approach (on the 
right) 

The main idea is illustrated in figure 2. The left side of 
the figure corresponds to the brute force use of the projection 
operator. During retrieval, the algorithm corresponding to the 
projection operator has to be sequentially applied between the 
query and each of the document indexes. On the right side, 
our approach is presented. Using a transformation T, the in- 
dexes are organized in a global structure. This structure con- 
tains an inverted file and a set of acceleration tables that store 
pm.-computed data that are needed to perform the projection 
algorithm, in particular all possible specializations of a query 
subgraph (we shall come back to their role later). It should be 
pointed out that the transformation process is bijective. Them- 
fore it is a lossless process, and each index can be built back 
from the structure. This is explained by the underlying logical 
interpretation. 

In the following, we firstly present the theoretical logical 
support that allows to organize conceptual graphs in inverted 
files. Then we show the transformation of the initial problem, 
of the projection of one graph in another. This allows to orga- 
nize the indexes of the whole document collection in a single 
structure. It gives the particular advantage that the matching is 
not performed locally, between the query and each conceptual 
graph, but globally, as a single operation on our structures. 

4 The Witness Technique 

Before we introduce the notion of witness, let us recall the 
definition of the formula operator 4 introduced by Sowa [26]. 
For the sake of simplicity only dyadic relations are used to 
illustrate how this operator works, but it is easy to general- 
ize it to an arbitrary nary relation. Let us take an elemen- 
tary piece of a conceptual graph that we call an arch; that is, 
[Cl : *]+(Rel)+[Ca : *] where Ct and C’s are concept types 
and Rel is a dyadic relation which holds between them. From 
the relation signature E&r we know which concept of the two 
has to be considered in the first place in the relation Rel. The 4 
operator gives an existential interpretation to the marker *: 

qq[Cl : *] + (Red) + [Cz : *]) = (1) 
3clza(Cl(zl) A Ca(zz) A Rd(z1,za)) 
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The logical interpretation 4(g) of a conceptual graph g is 
the existential closure of the conjunction of the formulae asso- 
ciated with its atclres. Hence, if a concept node relates two or 
more arches in a graph, like the concept [&] of x(q) in fig- 
ure 4, then the translation of the associated subgraph in x(q) 
is 

Now, the method of the constants [3] says that we can in- 
troduce for each existential quantifier a new constant w E W 
which witnesses the truth of the existential formula. For exam- 
ple the above translation can be considered as equivalent to 

Cl(wl) A C12(w2) A Ra(w1, ~2) A 

Cl(m) A C12(w2) A RI(wQ,w~) 

The equivalence holds only if we add the extra axiom 3z 
cr(z) + a(w) to the standard translation of the 4 operator, pru- 
vided that w is a new constant and it has been substituted for 
all free occurnznces of 2 in the formula (Y (notice that also the 
converse implication holds). If a formula without witnesses can 
be derived from the extended translation, then it can be also ob- 
tained from the standard translation (notice that also the inverse 
direction trivially holds). In particular 

Theorem 1 lf the logical counterpart of a query not confain- 
ing wimesses can be derived by he extended graph translation, 
then it can be obtainedfivm Sowa’s graph translation and vice- 
versa. 

The proof can be found in [18]. This theorem represents 
the theoretical basis of our approach. It insures that, whenever 
a graph can be projected in another graph according to Sowa’s 
projection operator, it is also projected according to our witness- 
based interpretation. The latter is indeed sound and complete 
according to Sowa’s interpretation. 

We note that the witness technique is applied not only to 
existential concepts hut also to individual concepts. In both 
cases, a unique witness is associated to each concept node of 
the graph. 

5 Tkansforming the Projection Operator into Two 
Sub-problems 

After introducing in section 4 the logical foundation, we shall 
concentrate on the organization of the indexes (the conceptual 
gmphs) for faster retrieval. Our structure consists of an inverted 
file and several acceleration tables. The inverted file permits 
to treat the indexes globally. The acceleration tables permit to 
focus the retrieval from the beginning, reducing the search space 
and thus improving efficiency. The construction of the inverted 
file and the acceleration table is done off-line, as part of the 
indexing procedure. 

An uniform treatment of the arches in all the indexes is 
achieved by the assignation of a unique witness to each con- 
cept, as mentioned in the previous section. Provided that the 
witnesses can be distinguished from one another, we can treat 
the arches separately, and we end up with a set of arches for 
all the collection. Witnesses will allow for the reconstruction of 
any of the original indexes. For witnesses, we shall use the no- 
tation wi, where i is the unique identifier of the document and 
j is a unique identifier within i. Thus the witnesses obtained 
remain distinct for all the indexes. 

It is from this set of arches that the construction of our struc- 
tures is done. During retrieval. the inverted file will be used 
to find directly where each arch of the query appears in the 
indexes. We group in the same entry of the inverted file all 
the arches in the collection which are syntactically equal. This 
means that, given an arch, we can immediately locate the docu- 
ments whose indexes contain that arch. This is the basis for the 
construction of the inverted file. 

The acceleration tables pre-compute all the specializations 
of possible query arches before interrogation. For each arch of 
the query graph, all the entries of the inverted file containing 
a specialization of this arch will be quickly determined. Then 
the documents that contain specializations of each of the query 
arches are found by consulting the inverted file entries. 

At this point, we divided the projection operator into two 
sub-problems. One of them is dealt with during indexing, hence 
it does not have any influence on the retrieval rapidity. It re 
suits in modifications on the inverted file and the acceleration 
tables. The other sub-problem remains to be solved during re- 
trieval and, together with the first problem, it accomplishes the 
task of the projection operator. The retrieval procedure takes 
benefit from the pm-computed data, therefore is faster. This is 
represented by the following formula: 

Projection = Transformation + Pre-computation 
(specializations) + Retrieval procedure 

An important part of the complexity of the projection opera- 
tor is moved at indexing time (the transformation of graphs into 
arches and the pre-computation of the specializations of query 
arches). What it remains is an operation that can be performed 
much faster, as we shall show in the following. 

6 Retrieval 

By making use of the pre-computations that are comprised in 
the global structures (specifically, the acceleration tables), the 
retrieval function performs in one operation the rest of the cal- 
culus to arrive at a result equivalent to that of Sowa’s projection 
(see theorem 1). 

We define a joining witness as a witness assigned to a joined 
concept, which is a concept that appears in more than one arch. 
The retrieval strategy is designed according to the structure of 
the query. For each joining witness Wi$, we find, using the ac- 
celeration tab!es, the specializations of each arch of the query 
in which Wit: appears. For each of these arches, we extract 
from the inverted file the lists of witnesses corresponding to the 
position of Wit: in the query arch 2. We do the intersection of 
these lists. Thus for each joining witness of the query we have 
a list of witnesses that gives the documents which are candidate 
for a possible projection. Hence, for each Wi$ we obtain the 
subgraphs in the document indexes corresponding to the pro- 
jection of a part of the query (this part consists of the arches of 
the query in which mt: appears). 

The procedure is illustrated in figure 3. For clarity, we only 
represent CGs by witnesses. The joining witnesses in the query 
are Wit: and Wit. WiG appears in arches A and B. Thus we 
intersect Ad and Bd and we obtain the candidate set of witnesses 
for Wit:. Analogously, for Wit we get Bd n cd. 

The candidate witnesses allow to detect partial projections. 
They have to be filtered in order to find the result of the pmjec- 
tion. The operations done up to now gave us projections for all 
subgraphs of arches connected on the same concept (that is, on 
the same joining witness). Each witness in Ad fl Bd and each 
witness in cd fl Dd are checked, to verify that they belong to 
the same relation that joins Wit and Wit:. The pairs that verify 

?be position is d.ctemined by the relation signatm 
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this condition are retained and then assembled as the result of 
the projection (see algorithm below). The corresponding pro- 
jections can be found from the inverted file, by means of the 
inverse transformation T-’ . 

Figure 3: The retrieval procedure 

Algorithm 1 (Retrieval) 
1) RJR cacb joiacd Wit: dtbc query 

JoincdAmbes, 
PgrtidhjApchr 

FOR cacb Amb, of/oinedArcbcs, 
SpecializedRowti, = ~DSPeClAL~ATlONS(ArCbrl) 
AUSpeciaLizcdWit = 0 
3) FOR each RowAn& ia Specializ~owAtc4, 

SpccializedWitRow~rehq = C3erWmesses(RowAmbq) 
AUSpceializedWit = SpecinlimdWit~o,,,~rchq U 

AUSpccitiWit 
ENDFOR 
RutialPmj~,,h, = hti&bjA,chp n AllSBWit 

ENDFOR 
ENDFOR 
ParrialRoj, = FLNDALLPARTIALPROJE~ONS@?U~~~@~A~~~~) 
ExacfRujeclion, =RNDALLPATHsB~w~~NW~T~@~~~U~~~~) 

The use of the inverted file and the acceleration tables are 
explicit in the algorithm, as opposed to the illustration in fig- 
ure 3. Its main operations were illustrated above. A few details 
about the symbols used in the algorithm above are given here: 

FINDJOINEDARCHES(wit$: function to find all the arches of the 

query in which Wit: appears. 

FINDSPECIALIZATIONS(AIT.IQ): function to find, in the acceleration 
table of the relation of Arch, the inverted file entries whose 
arches are specializations of Arch,, . 

GETWITNESSES(ROWAIT.~,)I function that gets the witness= asso 
ciated to a concept of the arch given in the RowArch,. 

FINDALLPARTIALPROJECTIONS(Wrti&%oj~,,~~): function that 
extracts the document identifiers of the witnesses corresponding 
to the Set park@mj,J,&,,. It finds from the precedent result.3 
all the possible partial proyctions in the document indexes of 

the whole query. 

FINDALLPATHSBETWEENWITg@kti&%3jq): function that veti- 
fies that the obtained witnesses are linked together in the docu- 
ments, according to the query structure. It is used to find the final 

relevant documents, and thus the exact projection of the quay aa 
a whole on the documents. Ita sub-steps were described above. 

In the retrieval algorithm, the partial projections are ob- 
tained in polynomial time, as the first part of the algorithm 
consists in unions and intersections. The overall complexity 
is therefore given by the complexity of the last function. In 
the conceptual graphs community the cost of this function is 

over-estimated, as it is often linked to graph theory and con- 
siders graphs of indefinite structure. However, we consider a 
conceptual graph to be a logic formula, hence the graphs are al- 
ways normalized, to eliminate expressions like C(a)AC(a) and 
replace them by C(a). Considering CGs as a logic allows to 
have a polynomial complexity because, for normalized graphs, 
a subgraph of the query can be projected in at most one sub- 
graph of a document index. Hence, according to the query struc- 
ture, there is only one way to verify that the document index 
complies with this structure, i.e. to verify that its subgraphs are 
linked together similarly to the query subgraphs. This shows 
why the function FINDALLPATHSBETWEENWIT~ is polyno- 
mial. Hence, the overall complexity of our algorithm is polyno- 
mial. More details about the complexity analysis of the projec- 
tion are given in [l]. We emphasize that graph normalization is 
a consequence of a logic view of CGe, and it does not impose 
further constraints; in particular, graphs can be cyclic without 
any change in the algorithm, nor in its complexity. 

7 An Illustration of How the Algorithm Works 

Let us consider the example of figure 4. The continuous lines 
correspond to strict indexes, as provided by the indexing pro- 
cess. The dotted lines are extensions added according to rela- 
tion properties in P&. Their addition to the strict indexes will be 
reflected by modifications in the inverted file and will be taken 
into account by the retrieval procedure. Let the relation signa- 
tures &,&a and CRY be: (RI, 2, Ci,Ci), (Rz, 2, CI,CI), 
(R3,2, Ct , Cl). For simplification, we suppose that in the fol- 
lowing Cij 5 Ci, where i and j are natural numbers (i.e., Cij 
is a sub-type of Ci in the lattice 7,). The reader may note that 
in our example, we do not apply any graph normalization; the 
reason is that we want to illustrate the futility of such a graph 
of indefinite structure, as well as the application of our retrieval 
algorithm for all kinds of graphs. 

As we mentioned in section 5, the CGa can be treated as a 
set of arches, where each concept is associated with a distinct 
witness (see figure 4). For practical reasons, we deal with wit- 
nesses according to the documents in which they appear and 
use in the following the notation dib] for the general wi. For 
example, the set of witnesses of x(dr), [w:,w:,w:,w:], is rep- 
resented by dt : [1,2,3,4]. 

Building global structures 

In the inverted file, the arches are grouped together in the same 
entry, whenever they are syntactically equal. For each arch, 
concepts and their corresponding witnesses are represented ver- 
tically, according to their position in the arch. This position is 
determined by the relation type signature (see section 2). 

To improve clarity, we shall use in the following figures the 
notation C for the concept [C:*] and C : a for [C:a], where a 
is an individual marker. 

The inverted file corresponding to the strict indexes is shown 
in figure 5. In each entry the concept represents a pair [concept 
type, marker]. This is illustrated by the first entry of the inverted 
file, where the concept type Cl is followed by the individual 
marker u. The entry thus corresponds to all the occurrences of 
the arch [Cl : a] + (RI) + [Cll] in the indexes. In the 
same way, the second entry describes all the occurrences of the 
arch [Cl,] + (RI) + [C&J amongst the set of arches of all 
indexes. Thus, dr : (21 (wf) and dt : [3] (wf) are the witnesses 
that are attached to the arch in I, while in x(&l the arch 
appears for witnesses ds : [5] (wg) and d2 : [4] (w2), in this 
order (see figure 4). 

The inverted file in figure 5 only takes into consideration the 
strict indexes. It can be extended by using additional knowledge 
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I x(dl) x(da) X(Q) 

Figure 4: Sample document base and a query that can be projected in the extended index of dl 

about the domain, in our case by using the relational properties 
of Kc,. For every relational property in K., there is a corre- 
sponding treatment on the inverted file, which reduces to the 
application of a certain algorithm [22]. For instance, if K, con- 
tains the facts: R1 is transitive and Rs is symmetric, then we 
obtain the inverted file in figure 6, which will be used to build 
the acceleration tables and then in the retrieval algorithm. 

Figure 5: Inverted file for our example 

Figure 6: Extended inverted file for our example 

Relational properties are not restricted to only symmetry 
and transitivity. Other properties can be defined and the in- 
verted file would be modified accordingly [22]. However, we 
shall only consider the inverted file in figure 6. 

To build the acceleration tables, the rows of the final in- 
verted file are analyzed in turn. For each relation type, there is 
one acceleration table. Their content serves to give the special- 
izations for each possible arch that could appear in the query. 
These possible arches are deduced from the relation signatures. 
For example, from the relational signatures CuI =(RI ,2, Cl, Cl) 
we know that the well-formed arches that can appear in the 
query and are generalizations of [Crt] + (RI) + [Cl] are 
[CII] + (RI) + [Cl] (the arch itself) and [Cl] + (RI) + 
[Cl]. The acceleration table for relation RI will have to allow 
for quick access to the specializations of each of these arches. 

The acceleration tables for our example are those of figure 7. 
We use the notation ai(R) for the ifh concept of the relation R, 
according to the signature XR_ Note that individual markers are 
also dealt with; the individual marker a that appears in entries 1 
and 9 of the inverted file (see figure 6) has an impact on the form 
of the first two entries of the column a1 (RI) of figure 7A). This 
is due to the fact that [Cr : a] 2 [Cl]. The individual markers 
are also organized in a lattice, so that any individual marker is 
a specialization of the generic marker *. Therefore the lattice 
of concept types and the lattice of individual markers are used 
uniformly to build the acceleration tables. 

To illustrate the role of the acceleration tables, suppose that 
the query contains the arch [Cl] -+ (RI) + [Cta]. Then 
from the acceleration table for R1 (see figure 7A)) we can ob- 
tain its specializations; we extract the inverted file entries corn- 
sponding to concept Cl from aI and to concept Cl2 from 
aa and we intersect them. Thus we have [1,2,5,7,9] tl 
[2,5,9] = [2,5,9], so the specializations for our arch, that ap- 
pear in the indexes, can be obtained by consulting entries 2, 5 
and 9 of the inverted file (see figure 6). 

al (Ra) Inv. fle rows o,(Ra) Inv. file rows 
Cl Bl c 

PA.21 Cl [3,4.81 
11 [41 Gl 181 

Cl2 (3.81 Cl2 P.41 

a1 (R3) 1 hv.~Ve tows 1 aa(R.g) 1 Inv.file rows 

C) Cl I 161 Cl I 61 
I I Cm I I61 

Figure 7: Acceleration tables for relations RI, R2, & 
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Document Retrieval 

To see how the acceleration tables and the inverted file am used 
for retrieval, suppose that a user enters the query presented in 
figure 4. There are two joining witnesses in the query. The first 
one is q : [l], that appears both in [Cl] + (Rs) + [Cm] and 
in [Ct] -+ (Rt) + [Cm]. The second one is q : [2], that joins 
[Cl] + (RI) -+ [C&a] and [C,] + (RI) + (CII]. 

For each of the joining witnesses of the query, we have to 
find its specialized joined witnesses in the document indexes, if 
such witnesses exist. Thus we project parts of the query in the 
indexes, using therefore a partial projection; each of these parts 
is composed of the arches joined by the joining witnesses. Then, 
to find the projection, the partial results have to be assembled 
together, to perform the last operation of the retrieval algorithm 
presented before. 

We start with the first joining witness. In the first arch A = 
[Ct] -_) (Rs) + [Ciz], q-: [l] ii associated to [CIP]. From the 
two c~hmns of the acceleration table for Rn. we find that the 
arches in which A can be projected are those of the rows [3,4,8] 
n [3,4] = [3,4]. 

The second arch of the query that is joined by q : [l] is: 
B = [Cl] + (RI) + [Ch]. In the acceleration table for RI, 
we look for [Cl] in the first column and [Cm] in the second 
one. We have t&2,5,7,9] n [2,5,9] = [2,5,9] so there am three 
entries of the inverted file that contain arches in which [Cl] + 
(RI) + [CIS] can be projected. 

In order to get all the specializations of A, we do the union 
of the witnesses lists associated to the second concept in rows 3 
and 4 that we have found for arch A of the query: [dt : [4,3n 
IJ [& : [2]] = [di : [3,4],& : [2]]. For the second arch B 
of the query, our result were tows 2, 5 and 9 of the inverted 
file; the union of the witnesses list associated to the related 
concept of those rows is [di : [3],& : [4]] U [ds : [2]] U 
[dt : [3]] = [di : [3], ds : [2,4]]. Now, only the set of the docu- 
ments for which there is a join on the concept [Cis] associated 
to wit: will be a correct answer to the subgtaph of the query 
formed by arches A and B. To find the possible relevant doc- 
uments, which means the partial projections corresponding to 
this joining witness. we only have to do the intersection of the 
last two lists: [dt : [3,4],& : [2]] t-I [dl : [3],& : [2,4]] = 
[& : [3],1 : [2]]. Th ese are the specialized witnesses for the 
joining witness q : [l], fmm which the partial projections men- 
tioned above can be found by using the content of the inverted 
file. 

We now turn our attention to the second joining witness of 
the query, q : [2]. It joins arches B, introduced above, and 
C = [Ci] + (RI) + [C,,]. The same procedure is applied as 
for q : [l]. Therefore the specialized witnesses for q : [2], from 
which the projections of the subgmph of the query formed by 
B and C can be derived, are [dl : [l], dz : [5]]. 

There is one more operation to perform, in order to find 
the exact projection of the query in the document indexes and 
thus find the relevant documents. It corresponds to the function 
FINDALLPATHSBETWEENWIT1(Partidhjq) of the retrieval 
algorithm. The two joining witnesses q : [2] and q : [l] of 
the query (see figure 4) are associated to the concepts of the 
same arch B, which contains the relation RI. The specialized 
witnesses that we found, [dt : [l],& : [5]] (for q : [3]) and 
[di : [3], d2 : [2]] (for q : [2]), must fulfill the same condi- 
tion. It turns out that only [dl : [l]] and [dl : [3]1 do so, while 
[ds : [5]] and [da : [2]] do not belong to a common relation RI 
as required. Therefore, an exact projection from the query exists 
only in the first document index, and this is the only document 
that is retrieved by the algorithm. 

The interpretation of the result shows that our witness-based 
retrieval algorithm generates the same results as the classical 
projection. Moreover, relational reasoning allows to retrieve 

document dl, whose non-extended index does not contain an 
exact projection of the query. We obtain not only the documents 
that are relevant to the query but also the projection of the query 
in those documents. To exemplify, in the final result, [dl : [I]] 
and [dl : [3]] have the following interpretation: the projection of 
the query in the index of dl exists and it is the graph formed by 
arches that contain concepts that have these witnesses attached. 
The complete projection of the query in the first index can then 
be obtained from the inverted file. It is shown by the darkened 
part of the index of dl in figure 4. 

8 RELIEF: An Image Retrieval System 

Our image retrieval system is called RELIEF (a Relational Log- 
ical Approach based on Inverted Files) [21]. The system is im- 
plemented on top of the 0s system 3. The main component of 
the system is a conceptual graph platform allowing to perform 
all the graph operators. Our experimentations were done on an 
image test collection called PARYSIS [63, that was also used for 
test purposes with the systems developed in the framework of 
the European FERMI project *. The collection contains about 
650 photographs taken on the beginning of the century and it 
is accompanied by 30 queries. The collection was originally 
indexed by specialists of the French Ministry of Culture, in the 
form of keywords attached with descriptive comments about the 
images. Fmm these original indexes, manual indexing provided 
the corresponding indexes in the form of conceptual graphs, ac- 
cording to the image model introduced in [12]. The indexing 
process [6] used a concept lattice of about 7000 concepts and 
a relation lattice of 350 relations. The average indexing graph 
consists of 35 arches. 

The users introduce their queries through the Web structured 
query interface presented in figure 8. This figure corresponds to 
the query: ‘w tlw images that are street scenes and slww an 
human in tIlefront of a building”. The query is introduced using 
the three areas of the query formulation screen (see figure 8): 

0 

ii) 

iii) 

the query structural ama (the upper region of the inter 
face). In our example, the query searches for an image 
that is composed of two objects: ‘%uman (humain)” and 
‘Ifacade”. As shown in figure 8, the user can consult 7,. 
the query specification area (the middle region of the in- 
terface). It refines the query, in our case by specifying 
that the image type is ‘street scene”. The corresponding 
arch is [IMAGE] + (Genre de l’image) + [SCENE-DE- 
RUE]. 
the query relational area (the lower region of the inter- 
face). The symbolic and spatial (2D and 3D) relations are 
introduced here to provide more accuracy for image re- 
trieval. Together with the second area, it allows for the ex- 
tension of the query entered in the structural area In our 
case, it contains the spatial relation “before (devant)” and 
the arch is lJIUMAI.NJ + (devant-2D) + FACADE]. 

. 

When retrieval is started, the data introduced by the user 
are collected and an internal representation of the query is pm- 
duced The results are classified in relevance classes that corre- 
spond to the exact and partial projections respectively [2t]. 

To evaluate our system, we considered another system, 
EMIR’ [ 121, which also uses CGe as the underlying formalism 
and the classical projection operator as the matching function. 
The 30 FERMI queries were run on both RELIEF and EMIR’. 
An overview of the results is shown in tbe figure 9. They prove 
the significant speed-up that we obtained. 

For the analysis of the quality of answers, we also consider 
as reference the well-known SMART system [24,25]. The input 

‘See the &monstration session of this conference. 
‘EsptitBRA8134 
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data for SMART are the original keywords and textual descrip- 
tions of the images given by specialists ‘. The results of the 
comparison of our system to SMART and RMIR’, in terms of 
precision/ recall, are shown in figure 10. They show that a sim- 
ple formalism such as that used by SMART is not adequate to 
represent complex documents such as images. As compared to 
EMIR2, our system is slightly superior, thanks to the treatment 
of the relations, as we mentioned in [21]. To evaluate the im- 
pact of relational treatment, we compared the results obtained 
with and without derivations on relations. Figure 11 shows its 
importance, and confirms that our extension to the CGe formal- 
ism improves significantly the quality of answers (about 10%). 

Figure 8: The French query formulation screen 

lime (set) EMIR’ REL.ZEF 
Min 6 1 

-333 Max 
Average 18.8 18 

Figure 9: Compamtive execution times 
The size of the disk space required by the objects model- 

ing our structures is less than that of the objects modeling the 

5We admit that the comparison with SMART is somewhat inappmpriatc. aa 
the precision of the input ink data is quite different. However, we use it in order 
to illustmtc the limitations of keywords in terms of pmcisionlrecall. 

I 1.0, .:m (averageO.16) 

0.9 
0.6 
0.7 

. Cl.6 
us 
0.4 
0.2 
0.2 
0.1 
0.0 

Cl.0 Ul 0.2 UY 0.4 0.5 O.6 0.7 U.8 0.9 I.0 
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Figure 10: Comparative system precision/recall measures 

Figure 11: Importance of derivations on relations for the preci- 
sion/recall measures 

indexes. This is due to the implicit compression obtained us- 
ing the inverted file, as only the first occurrence of the identical 
arches is represented, while the others determine the addition of 
witnesses only. Our inverted file takes about 3600 KEI of disk 
space and the acceleration tables 4000 KB, while the objects 
modeling the conceptual graphs indexes occupy 10000 KB (see 
figure 12b)). We would like to mention that the indexes are no 
longer required once the structures are built, as the conceptual 
graphs can be m-generated from the inverted file. We obtain 
a reduction of the required space, which is indeed significant 
for a domain that deals with large amounts of data. However, 
for a larger test collection the space occupied would increase 
accordingly, and a solution has to be found to this issue. 

Indexing has also shown another aspect, concerning the 
time required to build our structures. Though the impact on 
time is not as important for indexing as it is for retrieval, the 
results of figure 12a) suggest that an improvement is required. 
From the 500th index, the loading time increases exponentially. 
This is an implementation problem due to the fact that we did 
not use all possible optimizations in our first implementation. 
However, we are addressing this problem. 

9 Conclusion 

In this paper we proposed a solution to the challenge of using 
expressive and therefore expensive formalisms and keeping a 
reasonable retrieval time performance. Not only did we obtain 
fast retrieval, but we also improved the quality of answers, by 
extending the conceptual graphs formalism on a sound basis. 
Even though our solution is given for the conceptual graphs for- 
malism, we believe that it is only an instance of a more gen- 
eral approach that can be applied to other expressive formalisms 
such as tcrminological logics [ 131, provided that adequate log- 
ical techniques are used. Our experiments were performed on 
a medium-sized image test collection. However, we consider 
the results to be suggestive, as the size of the indexes is im- 
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Domum& 

Figure 12: Time and disk space required to build our structures 

portant. According to our estimations, a collection of 10000 
images could be handled by the system with execution times 
no more than 20 seconds. This is very encouraging for a first 
implementation. Tests on larger collections is one of our imme- 
diate objectives. Presently, the construction of a large database 
of conceptual graphs in the CGs community is one of the pur- 
poses of the PEfRCE Workbench 6. 
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