THE NEAREST NEIGHBOUR PROBLEM IN INFORMATION RETRIEVAL

An Algorithm Using Upperbounds

A.F. Smeaton and C.J. van Rijsbergen

Department of Computer Science,
University College Dublin, Belfield, Dublin 4.

INTRODUCTION

The nearest neighbour problem can be expressed as
follows: Given a set of N points in n-space and
a distinguished point, g, find the m {m < N)
points 'closest' to g, closeness being measured
by some distance measure. In information
retrieval we can apply the model to the situation
where N is the number of documents, each document
corresponds to a point in n-space, g corresponds
to a query and m corresponds to a user specific-
ation of how many retrieved documents or nearest
neighbours are desired. 'Closeness' is measured
by any of a number of similarity measures (see
later) and n-space corresponds to n concepts or
index terms. For simplicity we consider the
case where the user requires only one, the
nearest, neighbour to a query, but later on we
can generalize to more nearest neighbours.

The standard way of doing a nearest neighbour
search is a sequential search of the entire
collection, calculating a similarity measure
for each document and selecting the best. This
requires O(N) calculations which is unreason-
able for large collections. Bentley and
Friedman <1> gave an algorithm of order log(N}
but this was unusable in the information
retrieval case because it has a multiplicative
constant of].6”, where n is the dimension of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the titie of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

(©)1981 ACM 0-89791~052-4/81/0500-0083 $00.75

83

the space. I.R. systems have typically
thousands of tens of thousands of dimensions or
index terms so 1.6" Tog(N) is also unreasonable.

A deterministic algorithm of Eastman and Weiss
<2,3> is based on a binary tree search using
priorities which searches a portion of the
collection and calculates an upperbound value of
a similarity measure for the rest of the collect-
ion and the algorithm stops when the upperbound
for the remainder is less than the largest value
of similarity measure encountered so far. This
algorithm works in 0(log N)K, K being a collect-
ion dependent constant, about 4 for document
collections tested so far. This algorithm
produces full search results without a full
search, but for small collections only saved
around 5-10%.

Weiss <4> produced a probabilistic method based

on the above, which is substantially faster than
a full search while providing nearly, but not
quite, the same level of performance as a full
search. In this algorithm, the user specifies
a limit to the error tolerance, but in many
applications of the nearest neighbour problem in
I[.R. (Maximum or Minimum Spanning Tree gener-
ation) a cost/quality tradeoff is not desired.

If an inverted file of the document collection is
available, then one can search the entries of the
appropriate records of the inverted file for
possible nearest neighbours. The case may

arise when a document may be compared to a

query more than once, if it is indexed by more
than one query term and so occurs in more than
one 'appropriate record' of the inverted file.

This can be oyercome by maintaining a set, say §,
containing all document numbers compared to the
query in the search so far. Document numbers as
entries in records of the inverted file are
tested to see if they are in S, and if they are
then that document has been encountered pre-
viously as a possible nearest neighbour, and it
can be ignored. Maintaining this set S is an
overhead, and the decision of whether to include
it or not depends on the properties of the
document collection. For our algorithm we shall

include this set and test for duplicate entries.

THE ALGORITHM

The algorithm maintains two sets, R and S. R
contains all those documents which at any given
time are candidates for the final set of nearest
neighbours. Let us assume for now that this set
is of size one, i.e. we are seeking the nearest
neighbour. S contains all documents examined so
far regardless of whether they are in R or not.
Initially both are empty. The algorithm takes
as input a test query of unweighted search terms
of the form

q = (t1, tys ... t).

K
We arrange the terms of g in order of their in-
creasing frequencies of occurrence within the
entire document collection, i.e. in order of
their increasing numbers of entries in the
appropriate records of the inverted file. We
then examine each of these terms and for each
we find all the documents in the collection
which contain that term. The nearest
neighbours to q will be found among these docu-
ments. We can do this if we assume that if the
number of co-occurrences of index terms between
a document and a query is zero, then the
similarity is zero, so we can eliminate all
those documents not indexed by at least one of
the search terms from our nearest neighbour
search. This principle is used for Maximum
Minimum Spanning Tree generation by

van Rijsbergen et al <5>.

Each term can be thought of as a 1ist of documents

ti = (diys dips oon dipegy)

where m(i) is the number of documents containing

84

term i. We inspect these documents in that
order. For each document we do the following:
Check if the document is in S. If it is then
we can ignore it as it has already been en-

If not then we add it to S, and we

calculate a similarity value between this docu-

countered.

ment and the query using one of the formulae (see
later).
value encountered so far, then this document

If this value is greater than the best

becomes the candidate for the nearest neighbour
and is added to R.
document containing a given term we can calculate

After looking at every

the maximum possible similarity value among

those documents not yet encountered, the upper-
bound, and if this upperbound is less than the
current best value, we can terminate the algorithm.

We can do this as follows (see Porter <6>).

Assume we have searched the entries in the records
of the inverted file, for the first i-1 terms of
the query. If any un-inspected document dij is
better than the best nearest neighbour found so
far, it cannot contain any of the index terms
ti,to, ..
countered earlier, therefore it hasn't any more

t;_1» otherwise it would have been en-

than k-i+1 terms in common with g, k being the
Let Lr be the length of the shortest
term 1ist of all documents indexed by tr

size of q.

L. = min | d.

j
j>=1
and 11 to be the smallest of the Lr of terms in g,
from term i onwards,
1; =min L =min | min | dpj [
r >=i r>=i j>=1
then we get the following upperbounds for these

similarity measures between document and query:

MEASURE FORMULA UPPER BOUND
SIMPLE c (k-i+1)
IVIE c/ak (k=1+1)/ (k*1,)
DICE 2¢/ (a+k) 2(k-1+1)/(1+k)
COSINE c**2/ak (k=1+1)**2/ (k*1,)
JACCARD ¢/ (at+k-c) (k-i+1)/(1i+i-1)
OVERLAP ¢/min(a,k) (k-1+1)/m1n(k,1i)

where ¢ equals the number of terms in common (co-
occurrences) and a and k are the sizes of the term
lists of the document and query respectfully.

If the maximum possible number of co-occurrences

for all documents not yet encountered in the
search is greater than the shortest term list of
documents indexed by term 1 and onwards of the
query (k-i+l1 > 11), then we reset the value of]i

to the value of the maximum possible number of co-

occurrences in order to get the highest theo-
retically possible value for all, as yet un-
inspected documents, as nearest neighbours.
This upperbound is applicable to any similarity
measure which combines number of terms in
common and term lengths of document and query.

TEST COLLECTIONS
The algorithm has been applied to two test
collections, UKC1S2 and NPL. The United Kingdom
Chemical Information Service (UKCIS) collection
is a large test collection of about 27,000
documents about chemistry <7>, and roughly split
into two halves (UKCIS! and UKCIS2) dealing with
seperate aspects of the subject.

The queries
and document titles are automatically indexed
using a stemming algorithm.
we use the UKC1S2 collection.

In our experiments

The national Physical Laboratory (NPL) test
collection is another Targe document collection
of 11429 documents about atmospherics and
computer science and was prepared by Vaswani and
For this collection, the document
title and abstract are also automatically index~
ed by stemming. The relevant statistics for
the two collections are given below.

Cameron <8>.

UKC1S2 NPL
number of documents 15748 11429
number of terms 8882 7491
average terms/doc. 6.4 19.9
average docs./term 11.3 30.4
number of test queries 182 93
average terms/query 7.8 7.14

From these figures it can be seen that the size
of the collections are of the same order with
regard to the numbers of documents and of
terms. The first important difference to note
between the collections is the different

levels of indexing exhaustiyity. The UKC1S2
collection has an average of 6.4 terms per
document, while for NPL this figure is nearly 20.
This means that the NPL documents are described
in more detail, i.e. by more index terms, than
the UKC1S2 documents.

85

A direct consequence of this difference which
will effect the results of our nearest neighbour
algorithm is that more documents are indexed by
a given term in NPL than in UKC1S2, the figures
being 30.4 to 11.3. This means that in the NPL
collection more comparisons of document to query
are necessary to find a nearest neighbour for an
average query, than in UKC1S2, if one is search-
ing the appropriate records of the inverted

files. We shall come back to this point later.

The algorithm was run for the 182 and 93 test
queries of the UKC1S2 and NPL collections
respectively. These queries consist of an
average of 7 index terms each. Most queries are
composed of both high and Tow frequency index
terms, i.e. terms occurring both a lot and
rarely, among all documents in the collections.
We shall see later on how important this property

of the test queries is.

EXPERIMENTAL RESULTS AND ANALYSIS

These are the results obtained for the 2 collect-
ions. The figures show the actual numbers of
similarity value calculations needed to obtain
the nearest neighbour, using the Cosine, Ivie and
Dice measures. The figures in parentheses for
the NPL collection show the numbers needed to
calculate the best five nearest neighbours
according to the given measures and I/F means the

inverted file.

UKC1S2 NPL
I/F Search (inc. dups.) 1117 4078
I/F Search (exc.dups.) 1040 3156

Cosine + u/bounds (exc.dups.) 663
Dice + u/bounds (exc.dups.) 585
Ivie + u/bounds (exc.dups.) 615

1876 (2251)
1591 (1900)
1755 (1989)

There are some important points to make about
these results. Firstly, the striking difference
in the number of comparisons needed in all cases
This 1:3 ratio,
right down the table, is a direct consequence of
the differing levels of indexing exhaustivity

between the collections, also about 1:3. An

between the two collections.

average of 17.3 documents indexed by a given
term in UKC1S2 as opposed to 30.4 in NPL means
that more comparisons are needed for the average

query term in NPL than in UKCiS2. Because the

average number of terms/query for the two
collections are almost the same, this ratio also
applies to the complete queries. An interesting
discussion of the influence of indexing exhaust-
ivity on calculating similarity functions

efficiently can be found in <9>.

The second point to note about the results is

the effect of including the set S to test for
duplicate entries in the inverted file records.
The difference is quite noticible, especially for
NPL where the reduction is almost 25% (4078 com-
parisons reduced to 3156). The reason for the
slightly less emphatic improvement in UKC1S2
(1117 reduced to 1043) is once again attributed
to the differing levels of indexing exhaustivity
of the collections. Because there are less
documents to be compared to the query, there is a
smaller chance of duplicate entries occurring.
Willett <10> gives details of how duplicate

checking may be implemented.

The last, and most important, point we wish to
make about the results are about the reductions
the upperbound method yields over an inverted
file search. This is approximately 40% for all
cases. The differing figures for the three
similarity measures we have chosen is a property
of the definition of those measures, and these
differences seem to be consistent for both
collections. We decided to calculate the five
nearest neighbours using the given similarity
measures, for the NPL collection. This in-
creased the number of comparisons needed by

15% to 20%.
CONCLUSIONS

From the previous section it can be concluded
that our algorithm yielded quite an improvement
over an inverted file search, while still
maintaining full search performance. There
are, however, certain overheads with our
algorithm. As well as a document file and an
inverted document file, we also need a file
containing the values of Lr for all index terms
These shortest document term

lists of all documents indexed by given terms are

in the collection.

needed to calculate the upperbounds accuratly.

86

We mentioned earlier the fact that we checked
for duplicates in inverted file record entries
and consequently our upperbound results would be
less of an improvement if we omitted this.
Whether to include this set S or not would be a
property of both the document collection and how
the algorithm was implemented.

Because query terms are sorted in order of their
increasing frequencies of occurrence within the
entire collection, query terms are processed in
this order. This means that the inverted file
records of the query terms with the highest
document frequency are not searched at all if an
upperbound is reached. An analysis of the
queries shows they are composed of medium and
high frequency terms with most queries reaching
an upperbound with about one or two query terms
yet to process. It is an important fact that
the terms left are the highest frequency terms,
and this explains why the results have been so

good.

ACKNOWLEDGEMENT

We wish to thank Dr Porter and Dr Harper for their
help in formulating some of the ideas in this
paper

REFERENCES

1. Bentley, J.L., Friedman, J.H., and Finkel,R.A.
"An algorithm for finding best matches in
logarithmic time", Stanford University
Computer Science Report, No.STAN-75-482,
(1975).

2. Eastman, C.M., "A tree based algorithm for
nearest neighbour searching in document
retrieval systems", Ph.D. dissertation, The
University of North Carolina at Chapel Hill,
(1977).

3. Eastman, C.M. and Weiss, S.F., "A tree
algorithm for nearest neighbour searching in
document retrieval systems", Proc.
International Conference on Information
Storage and Retrieval, SIGIR, Rochester, NY,
(1978).

4. Weiss, S.F., “A probabilistic algorithm for
nearest neighbour searching", Proceedings
ACM-BCS Symposium on Researcn and Development
in IR, Cambridge, England, (1980}).

van Rijsbergen, C.J., Harper, D.J. and Porter,

M.F., "The selection of good search terms",
Information Processing and Management, 17,
pp.77-91, (1981).

Porter, M.F., "The nearest neighbour problem
in document space - an algorithm", Private
Communication, (1980).

Barker, F.H., Veal, D.C. and Wyatt, B.K.,
Retrieval Experiments Based on Chemical
Abstract Condensates", Research Report No.2,
UKC1S, Nottingham, (1974).

Vaswani, P.K.T. and Cameron, J.B. "The
National Physical Laboratory experiments in
statistical word associations and their use
in document indexing and retrieval".
National Physical Laboratory, Teddington.
(1970).

Harding, A.F. and Willett, P. "Indexing
exhaustivity and the computation of
similarity matrices". Journal of the
American Society for Information Science, 31,

pp.298-30T, (1980).

Willett, P. "A fast procedure for the cal-
culation of similarity coefficients in
automatic classification", Information

Processing and Management (in press).

87

