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Abstract 

We show that any approach to develop optimum 
retrieval functions is based on two kinds of assump- 
tions: first, a certain form of representation for dc+ 
cuments and requests, and second, additional sim- 
plifying sssumptions that predefine the type of the 
retrieval function. Then we describe an approach 
for the development of optimum polynomial retrie- 
val functions: request-document pairs (f,, d,,,) are 
mapped onto description vectors Z(ft,&,), and a 
polynomial function of the form a” . G(Z) is develo- 
ped such that it yields estimates of the probability 
of relevance P(R]Z((fl,d,)) with minimum square 
errors. We give experimental results for the appli- 
cation of this approach to documents with weigh- 
ted indexing ss well as to documents with complex 
representations. In contrast to other probabilistic 
models, our approach yields estimates of the actual 
probabilities, it can handle very complex represen- 
tations of documents and requests, and it can be 
easily applied to multi-valued relevance scales. On 
the other hand, this approach is not suited to log- 
linear probabilistic models, and it needs large sam- 
ples of relevance feedback data for its application. 

1 Introduction 

A major goal of IR research is the development of 
effective retrieval methods. Any efforts in this direc- 
tion are based (explicitly or implicitly) on a certain 
concept of optimum retrieval. In contrast to perfect 
retrieval (e.g. retrieve all relevant documents ahead 
of the first nonrelevant one), optimum retrieval is 
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defined with respect to certain realistic restrictions 
concerning the retrieval process. Furthermore, some 
evaluation criteria must be given. Then optimum re- 
trieval is the best retrieval (in terms of the evalua- 
tion criteria) that can be achieved while following 
the predefined restrictions. 

With the exception of a recent approach 
([Wang et al. 881, see section 4) only for probabi- 
listic IR models optimum retrieval has been defi- 
ned precisely and the optimality has been proved 
theoretically: the “Probability Ranking Principle” 
(PRP) described in [Robertson 771 says that opti: 
mum retrieval is achieved when documents are ran- 
ked according to decreasing values of their probe 
bility of relevance (with respect to the current r+ 
quest), P(R]n, d,,,), where R denotes the event that 
a request-document pair (fr, dm) is judged relevant 
by the user. 

The explanation of the PRP given 
in [Robertson 771 and later discussions of this topic 
lack a precise definition of the events the probabili- 
ties relate to. In our view, these probabilities relate 
to the system’s representations of documents and re- 
quests, not to the documents and requests itself. For 
example, many retrieval models take sets of terms 
se representations of documents and queries. We 
will denote a specific request with fr and a specific 
document with & while fi and d,,, stand for the 
corresponding representations. This distinction also 
makes the difference between perfect and optimum 
retrieval clearer: Because of the representation, the 
system’s knowledge about documents and requests 
is limited, and it cannot distinguish between dif- 
ferent objects which have the same representation. 
Therefore, perfect retrieval is not possible for a real 
system. This statement is not in conffict with the 
observation that there are hardly ever two objects in 
existing collections which share the same representa- 
tion: We regard collections as samples from possibly 
infinite sets of documents and requests, where there 
may be several (up to infinity) objects with the same 
representation. Because of the poor representation 
of retrieval objects that is actually in use (in com- 
parison to the human understanding of documents 
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and requests), only a probabilistic approach is ade- 
quate for these representations. Approaches that 
attempt to perform perfect retrieval for the current 
collection will fail as soon as the next document or 
request is added to the collection. 

Regarding probabilistic IR models in more detail, 
it becomes obvious that these mode1.s do not really 
estimate probabilities for each specific representa- 
tion: they use additional simplifying assumptions in 
order to approximate these probabilities. As an ex- 
ample, regard models which use sets of features (e.g. 
terms) as representations. In practice, it is impos- 
sible to estimate the correct probability for a speci- 
fic set of features, because in most cases there will 
not be any relevance information available for this 
set. Therefore, probabilistic models need additio- 
nal independence assumptions: this way, probabi- 
lity estimates can be performed for single features 
(or pairs/triplets), and the probability for a set is 
computed by combining the probabilities of the ele- 
merits. 

This two kinds of approximations can be found 
with any probabilistic IR model: First is the choice 
of a certain form of representation for documents 
and requests. With respect to this representation, 
optimum retrieval (according to the PRP) can be 
defined. Second is the selection of an approximation 
method (e.g. certain independence assumptions). 

For the least squares polynomial (LSP) approach 
described in this paper, both kinds of approxima- 
tions are only roughly defined and can be optimi- 
zed with respect to a specific application. This ap- 
proach is based on the representation of request- 
document relationships in vectorial form Z( fr , dm). 
Then a polynomial function a(Z) is developed which 
yields estimates of P(R]z’). Both the mapping of 
a request-document relationship onto the -called 
“description vector” and the class of the polynomial 
function (e.g. linear, quadratic) can be chosen.The 
LSP approach is described in detail in the following 
section. 

2 Leas6 squares polynomial 
retrieval functions 

The LSP approach originally has been develo 
ped in the context of pattern recognition methods 
[Schiirmann 771 as a refinement of general minimum 
square error procedures [Duda & Hart 73, pp. 151- 
1591. In [Knors 83b] experiments with LSP indexing 
functions are described and the application for the 
development of retrieval functions is proposed. 

The task of the LSP approach is to classifiy ob- 
jects into one of n + 1 classes. In the retrieval case, 
the objects are request-document pairs (A, &), and 
the CkiSSifiCatiOn iS the assignment of a value rk from 

a relevance scale R, = (r-0,. . . , r,,) (The case of 
multi-valued relevance scales is diecusaed in more 
detail in the following section). In order to deve- 
lop a LSP retrieval function, 8 mapping of request- 
document relationships onto description vectors I = 
Z(fl,d,,,) has to be defined. Furthermore a repre- 
sentative sample of request-document pairs tog+ 
ther with their relevance judgements must be gi- 
ven. From this sample, a function is derived which 
yields for a pair (4, &) estimates of the probabili- 
ties P(rklif(fr, &)), k = 0. . . n. 

In the following, the relevance judgement rk of 
t pair UI, 44 is represented by a vector y’ = 

s,...,~,,) with 

Yi = 
{ 

1, ifi=L 
0 otherwise. 

Now we seek for a vectorial regression function 
Z’&,*(2) which yields optimum approximations 3 of 
the class vectors $. As optimizing criterion we use 
the condition (E( .) denotes the expectation): 

E(fy’- ZVt(q]z) C min. (1) 

With this condition, Z&(Z) yields probabilistic 
estimates P(rkIzT in the components of 3 (see 
[Schiirmann 77, pp. 163-1641). 

Equation (1) is the formulation of a general v& 
riation problem: Among all possible functions e7Z), 
we seek for the optimum function fulfilling the above 
criterion. Because of the probabilistic nature of the 
approach, Z&(Z) is the optimum retrieval function 
(with respect to the chosen vectorial representation 
of request-document relationships) that follows the 
PRP. 

However, this variation problem cannot be solved 
in its general form, so we have to restrict the me- 
arch to a predefined class of functions. With this 
restriction, we will only find a sub-optimum solu- 
tion, but our general variation problem now becc+ 
mea a parameter optimization task. The resulting 
functions yield least squares approximations of I?& : 
In [Schiirmann 77, pp. 17%1801, it is shown that 
an approximation with respect to the expression 
E@- 31”) A min yields the same result as an opti- 

mization fulfilling the condition E( ]E( @!) - $1’) L 
min. So our restricted optimiziation process yields 
least squares approximations of the probabilities 
P(rkIz(fr, drn))- 

In the LSP approach, polynomials with a prede- 
fined structure (see below) are taken as function 
classes. Let v’ = v’(Z) be a class of polynomials. 
The task of the parameter optimization now is to 
estimate n + 1 Coefficient VeCtOrS &(k = 0 . . . 7’8) 
such that the average (as approximation of the ex- 
pectation) Ia- & T - v’l2 is minimized. By assem- 
bling the coefficient vectors & in a coefficient matrix 
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A=(’ - OO,~l,-.., &), the optimizing criterion can be 

formulated as E(]y’- AT * 51”) A min. The class 
of polynomials c(Z) is specified as follows: for each 
relevance class rk we define a polynomial 

“k(4 = OOk + all, . Xl f +aaa ’ 22 + . . . 

+aN+l,k ’ xf + aN+2,k - xl - 22 + . . . 

where N is the number of dimensions of 5’. So the 
class of polynomials is given by the components zf . 
xm . x; . . . . (i,j,k E P,Nl;h m, n > 0) which are to 
bfe included in the polynomial. In practice, mostly 
linear and quadratic polynomials are regarded. 

The coefficient matrix is computed by solving the 
equation system [Schiirmann 77, pp. 175-1761 

E(WT).A=E(v’.y’). (2) 

The development of a polynomial retrieval func- 
tion is performed in two steps: 

1. 

2. 

Statistical evaluation of a learning sample: A 
representative sample of request-document re- 
lationships together with relevance juddements 
must be given. From these relationships, the 
pairs (Z, y’) are derived and then the empirical 
momental matrix M is computed: 

The matrix M contains both sides of the equa- 
tion system (2). 

Computation of the coefficient matrix by means 
of the Gauss-Jordan algorithm [Schiirmann 77, 
pp. 199-2271. 

There are two important properties of the LSP 
retrieval functions: 

- The basic assumptions of the LSP approach is 
that we can approximate the expectations by 
average values. In order to avoid parameter 
estimation problems, learning samples of suf- 
ficient size are required. From previous expe 
rience with LSP applications in the IR context 
[Knorz 83a], [Fuhr 881, we can derive a rule of 
thumb for this size: per component of the coef- 
ficient vector &, there should be about 50-100 
elements in the learning sample. Therefore, it 
seems to be inappropriate to develop request- 
specific retrieval functions. Instead, we de- 
fine request-independent retrieval functions by 
mapping request-document pairs (&, &) onto 
description vectors Z((fr , dm). 

- LSP retrieval functions yield estimates of the 
probability of relevance P(rk]z((f,, dm)), in 

contrast to other probabilistic models where it 
is nearly impossible to get these estimates, be- 
cause there are too many parameters which can 
be hardly estimated. We think that estimates 
of the probability of relevance could help a user 
of an IR system to get some impression of the 
overall quality of an answer. 

3 LSP retrieval functions and 
probabilistic models 

In this section, we first describe the development 
of LSP retrieval functions for non-binary relevance 
scales, then we discuss the relationship between LSP 
and log-linear models. 

Bookstein [Bookstein 831 has shown how the PRP 
can be extended to non-binary, ordinal relevance 
scales: Assume that for the n + 1 relevance values 
with r, < ri < . . . < r,, the corresponding costs for 
the retrieval of a document with that relevance jud- 
gement are CO > Ci > . . . > C,,. Then documents 
should be ranked according to their expected costs 

Now we apply the LSP approach for the estima- 
tion of the probabilities P(rk]z(‘(fi, dm)): 

L 

(where L is the number of dimensions of v’(Z)). Then 
the expected costs can be approximated by 

From the above expression, we can see that we 
only need a single polynomial instead of n + 1 po- 
lynomials for the different relevance classes. This 
single polynomial yields estimates of the expected 
costs, which is our ranking criterion. For the coeffi- 
cients of this polynomial, the following relationship 
holds: 

n 
Uj = c ck ’ ajk 

k=O 

In order to develop this kind of polynomial, we 
have to change the definition of the class vector 
Y- t now this vector has only one component, to 
which we assign the appropriate cost value Ck for 
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a request-document relationship with relevance jud- 
gement Pk. This way, the polynomial yields with 
fi(lc’) a least squares approximation of E(ylZ) = 
EC(Z). Most probabilistic ranking functions can be 
expressed in a log-linear form (e.g. [Rijsbergen 791, 
[Robertson et al. 821) similar to 

m 

log P(RIZ) = a0 + Cai lOgPi 

i=l 

where the ai’s are some coefficients (mostly one of 
(-1, +l)) and the pi’s are single probabilities, pro- 
ducts or quotients of probabilities. This log-linear 
form seems to be very well suited for the applic* 
tion of the LSP approach, in order to estimate coef- 
ficients (ai) or probabilistic parameters (log pi). 

For a more detailed discussion of this approach, 
let us make the simplifying assumption that the 
components of the description vector are assigned 
the V~U~S CQ = logpi. Furthermore we will only 
regard a single polynomial for the estimation of 
P(RJ2). Instead of the class value y E (0, l}, we 
would now have to take the value logy, where we 
must define a suitable value for log 0, With the LSP 
retrieval function, we would try to approximate 

logP(R]Z) = log E(y]lc’) M liT * Z 

However, this approach cannot work, because the 
optimizing criterion for the LSP now is 

E( ] log y - a’T .Z]‘) Z!Z min 

from which we get a least squares approximation of 
Wvidyl3), but 

wg(YlKN # 1% E(Yl3c3 

So this kind of LSP retrieval function does not 
yield the desired estimates. This is a paradox situa- 
tion: the favourable property of the LSP retrieval 
function to yield estimates of the probability of re- 
levance is here in conflict with the probabilistic me 
del. The probabilistic model suggests a log-linear 
form, while the LSP approach only can handle po- 
lynomials. 

An alternative method of developing log-linear 
functions by using maximum-likelihood estimates 
has been published recently [Bookstein 881. 

4 Optimum linear retrieval 

In [Wong et al. 881, Wong et al. give an opti- 
mum linear retrieval function for the vector model 
[Salton 711. Th ere is earlier work in this area done 
by Rocchio [Rocchio 711 who defined an optimum re- 
trieval function based on the cosine similarity func- 
tion. However, Rocchio could not give a theoretical 
proof for his approach. 

Wong et al. formulate an “acceptable ranking 
strategy” for optimum retrieval. They assume that a 
user gives “preference relations” for document Pairs 
(d, d’) instead of relevance judgements for sin& 
documents (The concept of preference relations is 
more powerful than that of relevance SC&S, but for 
reasons of simplicity we will restrict the following 
discussion to a binary relevance scale). The fact 
that a user prefers document d’ over d is denoted ss 
d <e d’. 

Now linear retrieval functions of the form n”r . d 
are regarded, where <represents the current request 
and d a document. Then the acceptable ranking 
strategy can be formulated: For any two pairs d, d’ 
the following implication should hold: 

This means that for any document pair for which 
the user has given a preference relation, the retrieval 
function should yield the correct ranking. 

For the task of finding a vector < which fulfills 
the above criterion for a given sample of documents 
with preference relations, Wong et al. propose a gr+ 
dient descent procedure. This procedure was ori- 
ginally developed for pattern recognition problems 
[Duda & Hart 73, pp. 138-147]. 

In our view, the major weakness of the approach 
described above is that it is well suited for retro- 
spective retrieval where complete relevance informa- 
tion is available, but of limited value for the predic- 
tive case. Duda & Hart already stated “Of course, 
even if a separating vector is found for the design 
samples, it does not follow that the resulting clas- 
sifier will perform well on independent test data” 
[Duda & Hart 73, p. 1501. 

A second problem with the “acceptable ranking 
strategy” occurs in the case when no optimum solu- 
tion exists (e.g. when two documents with the same 
representation have different relevant judgements), 
because the gradient d-cent procedure does not 
converge in this csse. For this problem, Duda & 
Hart proposed minimum squared error procedures, 
and these procedures are in fact preliminary versions 
of the LSP approach. 

5 Experimental setting 

For the experiments described in the following sec- 
tion, we took the collection from the AIR retrieval 
test [Fuhr & Knorz 841 with the (Boolean) search 
formulations relating to controlled language terms 
(called descriptors here) only. First, a very broad 
Boolean search with binary indexing was perfor- 
med. For that, we applied a small cut-off value 
of 0.01 to the probabilistic indexing called Al in 
[Puhr &C Knorz 841 which is based on a LSP indexing 
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function. In the following, only the sets of output 
documents selected this way are regarded. We com- 
pare the effect of different retrieval functions on the 
ranking of the documents within the output sets. 

The 244 queries from the AIR retrieval test that 
had non-empty answer sets for the Boolean search 
were divided randomly into three samples named A, 
B and C. For the development of the LSP retrieval 
functions, we used sample B as learning sample and 
samples A and C as test samples. The number of 
queries and request-document pairs in each sample 
is shown in table 1. The multi-valued scale that 
has been used for the relevance judgements and the 
distribution of these judgements in the output sets 
is depicted in table 2. 

Most of the experiments described in the following 
sections (unless stated otherwise) were performed 
using a binary relevance scale, where all documents 
not judged “irrelevant” or “digressive” were treated 
as being relevant. 

For evaluation, we use the normalized recall 
measure as defined in [Bollmann et al. 861 for multi- 
valued relevance scales. This measure only considers 
documents in different ranks and with different re- 
levance judgements. A pair of these documents is in 
the right order if the document with the higher re- 
levance judgement comes first, otherwise it is in the 
wrong order. Let S+ be the number of document 
pairs in the right order, S- the number of those 
in the wrong order, and S,$,, the number of docu- 
ments in the right order for an optimum ranking. 
The normalized recall is then defined as follows: 

& 
s+ - s- 

of-m = - ; 1+ 
( SL > 

A random ordering of documents will have a 
&a orm value of 0.5 in the average. For the cases 
with S&,=0 we defined &,,,=l. Because of the 
large scattering of the answer sizes, we use two aver- 
age methods besides the macro average (arithmetic 
mean) R,Mo,,: 

- the micro-macro average qm,,, is a weighted 
average with respect to the answer sizes. Let ni 

be the answer size of retrieval result Ai, then 
the micro-macro average of hotrn for a set of 
t queries is defined as: 

R~&,@I,. . . , At) = 
C:=l ni * Rnorm(Ai) 

C:=, ni 

- the micro average R&,, is computed by first 
combining the rank orders of different queries 
and then computing the horrn measure for this 
combined rank order. There are several me- 
thods of combining rank orders for the compu- 
tation of micro measures [Keen 711. Here we 

use the retrieval status value computed by the 
retrieval function as criterion. This way, the 
%ovrn measure takes into account the query- 
wise ranking of the documents -as well aa the 
query-independent interpretation of the retrie- 
val status values assigned by the retrieval func- 
tion. This property is important for the eva- 
luation of retrieval functions that are assumed 
to compute estimates of the probability of re- 
levance, because these probabilities also have a 
query-independent interpretation. 

6 Experimental results 

We have performed numerous experiments with LSP 
retrieval functions ([Fuhr 881; [Konstantin 851). Be- 
cause of the limited space, we only desribe the major 
results here. 

In order to develop LSP retrieval functions, first 
a description vector has to be defined. This de- 
scription vector is derived from the representati- 
ons of requests and documents. In our case, re- 
quests are represented by a set of descriptors (the 
Boolean connectives were dropped here), and docu- 
ments by a set of pairs (descriptor, indexing weight). 
The elements of the corresponding description vec- 
tor Z((fi, dm) are listed in table 3. 

The following discussion refers to two polynomials 
derived from the description vector listed in table 3: 

111(S) = acJ+al2l+aa23+a324+a42a+a52s 

+ a627 + a7z9 + am0 + a9211212 

+al12~+fm2626+m3zs210 

+al42~fal5262lO+al6z:O 

u#) = &)+a121 +a222+a326+a429+a5210 

+a62ll+a721o+a32:+a92126 

+ ~10wa0 + mdj + al228210 

+ al343 

As can be seen from table 3, the elements 
29 . . . 213 will be constant for one request, so their 
value is not needed for a pure request-specific ran- 
king of the documents. However, the LSP approach 
needs this information for the estimation of the pro 
bability of relevance P(RIZ((n, &)). Experiments 
without these elements showed inferior results with 
respect to all three measures Rtorm, Rfmm and 
Rm noTm. Because of these results, we regarded a vit 
riation ~‘1, ui of the polynomials listed above where 
each occurrence of one of the elements 21O,zll, 212 

is replaced by the element 213: this element gives 
the probability of relevance of an arbitrary docu- 
ment from the output set. The idea behind this 
was that we wanted to ease the adaption process 
of the coefficients: As the LSP approach attempts 
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to produce good probability estimates, the retrieval 
results are optimized with respect to R$:,,,,.,. With 
the additional information about the average probEG 
bility of relevance for all documents of a query, this 
task becomes easier. Now the hope was that, (as a 
side effect) the request-oriented ranking (measured 
by Rzrm and RrO,,,) also is improved. It is ob- 
vious that the value of 213 would not be available 
in a real application, but this would only affect the 
estimation of the probability and thus the results of 
Riorrn (marked by an asterisk here). 

The results for the four polynomials are shown 
in table 4. The e,,, values follow the theoretical 
considerations described above: with the element 
~13 instead of 210, ~ll,zlz, we get better results. 
However, the RF*,.,,, and h$&, values show that 
the request-specific ranking gets worse - just the 
contrary of what we expected. Other experiments 
where the polynomials VI and va were extended by 
the element 213 showed similar results. So we end up 
with the conclusion that LSP retrieval functions are 
optimized with respect to P(R)Z(c’(f,,d,)) and thus 
yield good REor,,., values, but this does not neces- 
sarily imply a good request-specific ranking of the 
documents. 

For comparison, table 4 also shows the results for 
the cosine similarity function. This retrieval func- 
tion yields results similar to those of the LSP ap- 
proach. We think that there are two reasons why 
the LSP approach does not perform better in this 
application: 

- The representation of requests and documents 
are simple and well suited to the applica- 
tion of the cosine measure. Especially, the 
probabilistic indexing weights of the docu- 
ments cover all the information necessary for 
achieving a good ranking (this also has been 
shown for probabilistic models, see [Fuhr 861, 
[Fuhr 891). The main strength of the LSP ap- 
proach is its ability to handle complex represen- 
tations, e.g. in the application for the develop- 
ment of indexing functions ([Fuhr & Knorz 841, 
[Biebricher et al. 881). In fact, the indexing 
weights used for our ranking experiments were 
computed by application of LSP indexing func- 
tions. 

- Our learning sample is too small with respect to 
the number of requests. As there are 82 queries 
in sample B, this means that we have only 82 
(statistically) independent elements from which 
we derive the request-specific properties 210 - 
x13. The experiments described above have 
shown the importance of request-specific infor- 
mation for the adaption process of the LSP rs 
trieval functions. So we assume that we would 

perform better with a larger number of requests 
in the learning sample. 

In all experiments described above, a binary rele- 
Vance scale was used for the adaption of the coef- 
ficient vectors a’. In order to investigate the in- 
fluence of the choice of the relevance scale on the 
final retrieval quality, experiments with a multi- 
valued scale were performed. Therefore we de- 
fined the following cost factors for the retrieval 
of a document with relevance judgement Ck : 
Co=C~=l, &=0.7, C3=0.5, C4=0.3, Cs=O. The re- 
sults achieved with this multi-valued scale were al- 
most the same as with the binary scale. So it seems 
that non-binary relevance scales do not give more in- 
formation (in a stochastic sense) than a binary scale. 
Therefore, the restriction of former work on proba- 
bilistic models with binary relevance scales doea not 
have any influence on the findings that were achie- 
ved. 

7 Conclusions 

In this paper, we have discussed the probabilistic 
concept of optimum retrieval. We have shown that 
actual retrieval functions cannot reach this opti- 
mum, because it is impossible to estimate the correct 
probabilities for each specific representation of docu- 
ments or requests. Therefore, additional simplifying 
assumptions are necessary. For most probabilistic 
models, certain independence assumptions are po- 
stulated, so the performance of a model depends on 
the extent to which the sssumptions fit to reality. 
With the LSP approach, the situation is quite diffe- 
rent: here a class of polynomial retrieval functions 
is defined on the basis of some heuristics, and then 
the function that fits best to the available data is 
selected. Of course, the definition of the description 
vector and the class of polynomials is also based 
on some implicit assumptions. However, these as- 
sumptions are in general more vague, and it is not 
required to state them as explicitly as with the other 
probabilistic models. 

The crucial point with this approach ia the selec- 
tion of features that make up the description vec- 
tor. It would be desirable to have some theoreti- 
cally well-founded method for this step. Another 
weakness of the LSP approach is the need of large 
learning samples, which is due to the problem 
of parameter estimation (see [Fuhr & Hither 881, 
[Fuhr & Hiither 891). Therefore, appropriate esti- 
mation methods for small samples should be deve- 
loped, e.g. by modifying the learning data. Finally, 
the LSP approach is not suited to log-linear functi- 
ons that are suggested by some theoretical models. 

In contrast to most other types of retrieval func- 
tions, the LSP approach yields estimates of the pro- 
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bability of relevance and can also cope with multi- 
valued relevance scales. The major advantage of 
the LSP approach is its ability to deal with com- 
plex representations of retrieval objects. Especi- 
ally for knowledge-baaed retrieval methods (see e.g. 
[Croft 87]), this approach is well suited: The repre- 
sentation is more complex then in the simple term- 
baaed case, and some kind of weighting scheme will 
be needed in any case. For this problem LSP func- 
tions can yield an optimum weighting baaed on the 
Probability Ranking Principle. 

In the areas of pattern recognition and of ma- 
chine learning, a number of sophisticated procedu- 
res for classifying complex objects have been deve- 
loped. These methods should be considered with 
respect to their applicability in the field of informa- 
tion retrieval, especially those that are based on a 
probabilistic model: they have a well-founded thm 
retical background and can be shown to be optimum 
with respect to certain reasonable restrictions. 
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v’1 
V2 
V'z 

Vl 

v: 

V2 

C 

0.774’ 0.751 
0.752 0.763 
0.771’ 0.745 

+ 

0.721 0.753 
0.771’ 0.740 
0.721 0.714 

0.716 
0.717 

0.708 
0.700 

- 
4- - - _ _ _ _ JL?!g: _ !vLO- ._ !@_9 

&sine - 0.668 0.728 0.704 
Vl A 0.741 0.775 0.723 

4 0.778’ 0.760 0.729 -----_---_l____ 
cosine 0.727 -b.m9- 0.537 - 

Table 4: Results of the polynomial retrieval functi- 
ons and the cosine measure 

judgement # pairs with sample 
judgement B C 

relevant ~5 2258 
conditionally relevant/more relevant 

(27%) 7A32 776 750 
r4 729 (9%) 200 217 312 

conditionally relevant f-3 440 135 160 145 
conditionally relevant/more 

(5%) 
irrelevant rs 716 (8%) 249 241 216 

irrelevant t-1 3489 (41%) 1204 1057 1228 
digressive r0 844 (10%) 315 371 158 _ total I 1 8476 (100%) 1 2835 1 2822 1 2819 

Table 2: Distribution of relevance judgements in the output sets 

element description 
Xl # descriptors common to query and document 
22 log(# descriptors common to query and document) 
23 highest indexing weight of a common descriptor 
24 lowest indexing weight of a common descriptor 
26 # common descriptors with weight 2 0.15 
26 # non-common descriptors with weight 1 0.15 
27 # descriptors in the document with weight 1 0.15 
Xl3 logC(indexing weights of common descriptors) 
x9 log(# descriptors in the query) 
x10 log(min(size of output set, 100)) 
Xl1 = 1, if size of output set > 100 
x12 = 1, if request about nuclear physics 
x13 proportion of relevant documents in the output set 

Table 3: Elements of the description vector Z((fi, &) 
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