
Document Retrieval Facilities for

Repository-Based System Development Environments

Andreas Henrich

Praktische Informatik, Fachbereich Elektrotechnik und Informatik

Universitat Siegen, D-57068 Siegen, Germany

Email: henrich~informatik. uni-siegen.de

Abstract

Modern system development environments usually deploy

the object management facilities of a so-called repository to

store the documents created and maintained during system

development. PCTE is the ISO and ECMA standard for

a public tool interface for an open repository [23]. In this

paper we present document retrieval extensions for an OQL-

oriented query language for PCTE. The extensions proposed

cover (1) pattern matching, (2) term based document re-

trieval with automatically generated document description

vectors, (3) the flexible definition of what is addressed as

a “document” in a given query, and (4) the integration of

these facilities into a CASE tool. Whereas the integration

of pattern matching facilities into query languages has been

addressed by other authors before, the main contribution of

our approach is the homogeneous integration of term based

document retrieval and the flexible definition of documents.

1 Introduction

Repository-based applications are in wide-spread use in the

domain of system development environments today. The in-

tention is that all tools available for system development in

a company should store the documents created in an open

repository to enable data integration. As a side-effect a

company wide information pool for system development is

created. However, powerful query facilities are needed to

exploit this information pool. Unfortunately PCTE – the

ISO and ECMA standard for a public tool interface for an

open repository [23, 30] – does not include such query fa-

cilities. Rather the usual access to objects is by navigation.

PCTE has no facilities to state queries against the OMS in

a descriptive way. To fill this gap, some proposals for query

languages have been made [28, 1, 14], but these proposals

are only concerned with traditional fact retrieval. Since the

data stored in a repository is usually made up of documents

like requirements documents, OOA-Diagrams, module spec-

Perrnission to make dlgitallhard copy of all part of this work for per-
sonal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice
is given that copying is by permission of ACM, Inc. To copy otherwi-
se, to republish, to post on servers or to redistribute to lists, requires
prior specific permission ador fee.
SIGIR’96. Zutich, Switzerland@1996 ACM 0-89791-792-
8/96/08.$3.50

ifications or source code, it seems to be natural to include

document retrieval facilities into these query languages.

To overcome the mismatch between the query facilities

and the data actually stored in the repository, we present

document retrieval extensions for an OQL-oriented query

language called P-OQL (PCTE-Object-Query-Language).

Although our considerations are based on this concrete

environment, their applicability y is by no means restricted to

P-OQL 01 PCTE.

To become more precise, we have to clarify our under-

standing of the term document, which can be described by

the definition given in [24]: A document is a unzfied collec-

tion of tnfor-mation pertaining to a specific subject or- r-elated

subjects.

Obviously this is a relatively open understanding of a

document. Examples for documents in this sense are: A

paper like this one, an 00A-document representing the re-

sult of an Object-Oriented Analysis, the source code of a

module, a bill, or a technical drawing.

The type of document retrieval we address in this pa-

per is concerned with the textual information of the doc-

uments. This information can be addressed either using

pattern matching facilities or using the term based methods

proposed in the field of information retrieval.

For our considerations it is important that documents

maintained in a repository, can be stored either at a coarse-

grained level or at a fine-grained level.

At the coar-se-gr-ained level, a document directly relates

to exactly one object. Beside other attributes like the au-

thor, the creation date or the last change date, such an ob-

ject has one attribute of type long field containing the docu-

ment itself. The document is usually stored in this attribute

in a proprietary format, which can be interpreted only by

the tool(s) especially designed to deal with this type of doc-

uments. E.g. in a software development environment, an

00A-document may be stored as a byte string which can be

interpreted only by the 00A-editor. If another tool wants

to access the 00A-document for some purpose, it has to use

services provided by the 00A-editor. In this case, our re-

trieval system would require each tool managing documents

to provide a method which yields an ASCII representation

of the textual parts of the document which in turn could be

used to apply our document retrieval facilities.

At the fine-gmmed level, the 00A-editor would use the

data modeling facilities of the repository to structure the

00A-document, i.e. to store the document as a complex

object consisting of several parts. For example each class,

each method and each attribute could be stored as an object

with corresponding attributes as depicted in the schema pre-

101

.in_doc

6

R

c

number.has_part
I 1

- TT ‘Um-f’erc’wsnumber.ls_pti_of

Anumber. applied_to
.for_class

R

I--!!d numbeJ==’&d
Figure 1: Example schema

sented in figure 1 which will be described in more detail in

section 3. Here an OOA-document is modeled as a complex

object which consists of class definitions. The class defini-

tions themselves consist of the attributes name, virtual and

comment and the corresponding attribute and method defi-

nitions which are stored as objects with respective attributes

themselves. In this case the textual information of a docu-

ment is stored as ASCII text in the string attributes of the

objects forming the document.

Regardless of whether the data is modeled at a coarse-

grained or at a fine-grained level, document retrieval should

be possible. To this end, a retrieval system together with the

associated query language has to deal with various topics:

1

2.

3.

Addressing a document: If coarse-grained modeling

is used, addressing a document does not cause ma-

jor problems because a document corresponds to ex-

actly one object. On the other hand, using fine-grained

modeling the situation is somewhat more complicated.

In this case the query language should allow to address

the whole textual information of a “document” which

may be distributed over many objects of different types

in a simple but nevertheless flexible way to apply doc-

ument retrieval facilities. The techniques developed

for this purpose will be explained in section 5.

Performing document retrieval via pattern matching:
The query language should allow for queries using pat-

tern matching facilities similar to the UNIX gr-ep-com-

mand. To this end, we introduce an operator for P-OQL

named grep which will be described in section 4.

Performing term based document retrieval: Besides full

text retrieval using pattern matching, term based re-

trieval should be supported. Here each document is

4.

5.

6.

associated with a document description vector. Each

component of this vector indicates the relevance of the

document with respect to a given term. Then a query

can be stated giving the terms of interest which may

be weighted. In the field of information retrieval vari-

ous techniques for the automatic creation of document

description vectors and to calculate the similarity be-

tween a query vector and a document description vec-

tor have been proposed. In section 6 we will show how

these techniques can be integrated into P-OQL.

Integrating document retrieval and fact retrieval: Ob-

viously there should not be the alternative to do either

document or fact retrieval, rather there should be an

integration of both. In section 4 and section 6 we will

show that our extensions allow for a flexible coopera-

tion between fact and document retrieval.

Building an easy and flexible end-user-interface: As

with all other powerful query languages writing a com-

plex query in P-OQL is no simple task which can be

performed by an unexperienced end user on the fly.

Hence, we have built a front-end for our query lan-

guage which allows to enter most document retrieval

queries in an easy and straightforward manner and to

key in complex queries directly in P-OQL. The con-

cepts of this interface are sketched in section 7.

Presenting the result: In contrast to usual document

retrieval we are not concerned with a homogeneous set

of documents which can be presented to the user of the

system using a standard document viewer. Rather we

deal with a variety of documents and for each doc-

ument type only the corresponding tool knows how

to present the documents. Furthermore, a query may

yield objects which do not directly have a correspond-

ing editor, because they are not documents themselves,

but parts of documents. In section 7 we will explain

how these problems can be overcome when a retrieval

component is integrated in a CASE environment.

Before dealing with the topics sketched above in more

detail, section 2 will give a short survey of related work.

Thereafter the concepts of PCTE and P-OQL which are

essential for this paper are sketched in section 3.

2 Related Work

The work done in three related research areas has stimulated

our work, namely (1) query languages for system develop-

ment environments (2) path expressions to simplify navi-

gation in object-oriented queries and (3) the integration of

information retrieval concepts and databases.

An early approach towards query languages for system

development environments is DQMCS presented in [28].

DQMCS is a reusable building block for tool writers that

provides query facilities on the object base but incorporates

no special document retrieval capabilities. In [18] first ideas

for a query language are sketched together with more general

considerations on an information retrieval common service

for PCTE. In this work the need for a pattern matching
facility is stressed as an important but open issue. Two

interesting query languages for PCTE are presented in [1].

PNQL is an approach for a navigation-oriented query lan-

guage using path expressions extended by predicates and

output definitions. PQL has an SQL-like syntax, but is nev-

ertheless largely navigation-oriented. Both languages do not

contain document retrieval facilities.

102

As mentioned in the introduction the combination of

fine-grained data modeling and document retrieval facili-

ties brings up the need to define, which objects make up

a document. One way to define such a set of objects is to

use regular path expressions. Then all objects which can

be reached from a given root object via paths matching a

given path expression are considered as parts of the docu-

ment. Many papers dealing with path expressions in object

oriented databases have been published (see e.g. [12, 19, 20,

16, 3, 27, 10]). In contrast to our approach most of these

papers use path expressions as some kind of abbreviation to

specify a desired connection between two objects. Hence,

some of them discuss several strategies which can be used

when the connections are ambiguous. Instead, we use path

expressions to define a set of objects. Furthermore, the data

model of PCTE – where relations are normally hi-directional
— enforces special considerations and prevents the direct ap-

plication of existing approaches to path expressions in our

environment.

Over the years a lot of work has been done integrat-

ing information retrieval concepts and database concepts.

For example, Brown et al. [2] use a persistent object store

to support the inverted file of a full-text information re-

trieval system. In earlier papers Croft et al. [6, 7] describe

a loosely-coupled integration of a text retrieval system and

an object-oriented database system. However, their focus is

on the inference net model used as the retrieval model for

the complex objects. They do not address the integration

at the query language level nor do they discuss the flexible

definition of the addressed “documents” , rather they use a

given part-of hierarchy. Fuhr [11] introduces a probabilistic

algebra which is a generalization of the standard relational

algebra. As with our approach this allows to combine doc-

ument retrieval and standard database queries, but since

the probabilistic algebra is based on relational algebra, it

neglects many aspects of object-oriented data models.

In [22] and [13] approaches for the construction of soft-

ware libraries based on information retrieval techniques are

presented. Some of the ideas presented in these papers can

be adapted to our system. For example in [22] an indexing

scheme based on lexical affinities is used to identify a set of

attributes for each document. However both papers do not

deal with an integration at the query language level, or with

fine-grained modeling of data.

In recent years also various systems introducing query

languages for document retrieval have been proposed.

In [4] a mapping from SGML documents into 00DBs

and an extension of an SQL-like 00DB query language in

order to deal with SGML document retrieval is given. The

query language extensions address pattern matching as well

as querying paths. However, the integration of term based

document retrieval and the flexible definition of documents

needed in this context are not discussed. Furthermore the

presented facilities for querying paths are not appropriate for

the PCTE data model containing key attributes for links.

The same is true for the W3QS described in [21]. W3QS

is a query system for the World-Wide Web and includes an

SQL-like query language providing pattern matching facil-

ities and graph patterns which can be used to address the

structure of WWW documents. Since the “data model” of

the WWW has nearly nothing in common with the PCTE

data model, there are – and must be – a lot of syntactic and

semantic differences compared to our query language.

In [5] HyperFile is presented as a data and query model

for hypertext documents. HyperFile can be seen as an add-

on system that enhances a DBMS for hypertext manage-

ment. As with our approach links in the data can be used

by queries to produce sets of objects in a navigating manner.

The w-row and setjilter notations used in the HyperFile In-

terface Language (HIL) are somewhat similar to our regular

path expressions. On the other hand, as with the other sys-

tems HIL does not include term based document retrieval

and in contrast to our approach HyperFile is based on an ex-

tremely simple data model. Furthermore, HIL is a separate

Prolog-like query language whereas our approach extends an

OQL-oriented query language in a homogeneous way.

3 Example Environment

3.1 PCTE

As mentioned PCTE (Portable Common Tool Environment)

is the 1S0 and ECMA standard for a public tool interface

for an open repository [23, 30]. The PCTE object manage-

ment system (OMS) can be envisaged as a generalization of

the UNIX file system. Files are replaced by objects which

may have contents of type long field. Arbitrary relationships

between objects can be expressed by links. Attributes can

be applied to objects and links. The usual access to objects

and links is by navigation.

H-PCTE [17] — the PCTE implementation used as the

basis for our implementation — is a main-memory-oriented

high-performance implementation of the OMS of PCTE es-

pecially designed to meet the performance requirements aris-

ing from fine-grained data modeling.

The PCTE data model is structurally object-oriented

and can be seen as an extension of the binary Entity-Re-

lationship Model. The object base contains objects and re-

lations. Relations are normally hi-directional. Each relation

is realized by a pair of directed links, which are reverse links

of each other, i.e. point into opposite directions.

. Oblects: The type of an object is given bv its name.

●

●

a s-et of applied-attribute types and a set” of allowed

outgoing link types. New object types are defined by

inheritance, i.e. each new object type is a subtype of

one or more existing types.

Object references are the PCTE means to access ob-

jects. They are normally set by navigating operations.

Attributes: An attribute type is given by an attribute

name, a value type and an initial value. The permissi-

ble value types are boolean, stringl, integer, real, time

and user defined enumeration types. Structured and

set-valued attributes are not supported.

Links: A link type is given by a name, an ordered set

of attribute types called key attributes, a set of (non-

key) attribute types, a set of allowed destination object

types and a category. The category of a link type de-

fines how instances of that link type will affect the be-

havior of certain PCTE primitives, e.g. if the deletion

of a link leads to the deletion of its destination object.

PCTE offers five link categories: composition (defin-

ing the destination object as a component of the ori-

gin object), ezistence (keeping the destination object

in existence), reference (assuring referential integrity

lAccording to the standard for PCTE, an object can also have “a

storage of data representing the tradataonal file concept” called its

contents. However, in H-PCTE contents are treated as normal string

attributes, and the operations defined in the standard for contents

are available in H-PCTE for string attributes.

103

and representing a property of the origin object), zm-

plicit (assuring referential integrity) and designation

(without referential integrity).

Throughout this paper we will use the simplified schema

for 00A-documents given in figure 1 in the typical PCTE

schema diagram style as the basis for our examples. It con-

sists of the object types Document, OOA-Diagram, Class,

Attribute and Method. The attribute types applied to each

object type are given in the ovals at the upper left corner of

the rectangles representing the object types.

The link types representing the relationships between the

object types are indicated by arrows. A double arrowhead at

the end of a link indicates that the link has cardinality many.

Links with cardinality many must have a key attribute. In

the example the attribute number is used for this purpose.

A ‘C’, ‘E’ or ‘R’ in the triangles at the center of the line

representing a pair of links, indicates that the link in the

corresponding direction has category composition, existence

or r-e~erence. In the example, each OOA-diagram contains

one or more root classes as components, i.e. classes which

do not have a superclass. Because the link types contains,

has-subclass, has.method and has_attr- have category compo-

sition, for an actual 00A-diagram all classes, methods and

attributes contained in the graph originating from the ob-

ject representing the OOA-diagram and spanned by links

of these types, are regarded as components of the OOA-

diagram.

Finally the schema contains a subtype relationship be-

tween the object types Document and 00A-Diagram which

is indicated by a broad shaded arrow.

3.2 P-OQL

P-OQL is an OQL-oriented query language for (H-)PCTE

[14]. The main differences to standard OQL are due to the

adaptation to the data model for PCTE. Hence, especially

the treatment of links is specific to P-OQL.

Because of its similarity to OQL, P-OQL can be used

very similar to SQL. For example, the following query would

yield a bag containing the name of each class in the object

base for which the virtual attribute is true:

select name from Class where virtual = true

A query in P-OQL is either a select-statement, or the

application of an operator like count, sort+, sort–, or union.

The following example computes the number of classes in

the object base:

count (select name from Class)

In general, a select-statement consists of three main parts:

select <target-clause>

from <base-sets-clause>

where < qualification-clause>

In all three parts of a select-statement, It might be useful, to

address objects or links relative to another object or link. To

give an example, assume that we want to search for the name

and the attributes of all classes in the 00A-diagram named

‘[Billzng” for which the instances can be used as parts:

select C:name,

c: _ .has_attr/->name

from D in 00 A_ Diagram,

C in (D:_. contains/[_ .has_subclass] */->.)

where D: name = “Billing” and

O < count C:_. is_part_of ->.

In the base-sets-clause of this query two base sets

are defined: Base set D addressing all 00A-diagrams

in the object base and base set C addressing all ob-

jects which can be reached from the actual object of base

set D via a path matching the regular path expression

. contains/ [. has_subclass] *. The definition of base set

C has the following interpretation:

●

●

●

●

●

D: means that the actual element of base set D is used

as starting point of the definition.

_. cent ains means that exactly one link of type con-

tains must be traversed. ‘ _‘ is used as a wild-card

for numerical key attributes denoting that arbitrary

key values are allowed. In addition intervals can be

specified for numerical key attributes and regular ex-

pressions can be used for string key attributes.

[_. has.subclass] * means that zero or more links

matching the link definition _. has_subclass have to

be traversed. In fact, not only links can be used in

the [] * construction but arbitrary path defini-

tions (e.g. consisting of a sequence of link definitions

separated by slashes). Furthermore P-OQL knows

[path_ definition] + to indicate that a path matching

path_ dejinztion has to be traversed at least once and

[path-definition 1 to indicate that a path matching

path-definition is optional.

The semantics of these constructs is as follows: If an

object is reached via the same link definition (which

may be the last link definition in a [path_ definition 1,

[path-definitw-m 1 + or [path_ definition 1*) for the sec-

ond time, the investigation of the path under concern

is stopped without any further action. This assures

termination and brings up the expected result.

/-> is used to address the destination object of the

path. In addition -> can be used to address the last

link of the path.

means that the ob iect (or link) under concern is ad-

dressed. It is also p~ssible, to address an attribute –

which is e.g. the case in the target-clause of the ex-

ample query above – or to address a tuple containing

several components (see [14] for more details).

It remains to mention that base set C in our exam-

ple depends on base set D. Hence, for each element in D

the expression D:_. contains/ [_ .has_subclass] */->. de-

fines a set of objects which are used as base set C for this

element of base set D.

Summarizing, P-OQL knows five types of base sets:

1.

2.

3.

Object Types: Since PCTE object types build an inher-

itance hierarchy, P-OQL allows to define the objects

addressed by an object type in two ways:

● o bject_type_name : only objects of this type

● o bject_type_name - : all objects of this type and

its descendant types

Link Types: Links of a given link type can be addressed

by stating the link type name.

Select-Statements: The result of a select-statement can

be used as base-set if it is either a setlbag of objects

or a setlbag of links.

104

4.

5.

Passed Sets of Objects or Ltnks: At the API of P-OQL

the calling application can pass sets of objects- and

links as base sets which can be addressed in the query.

Sets Defined via Regular Path Definitions: As in our

example, a regular path definition can be used as base-

set if it addresses either objects or links.

In the qualification-clause of our example query two

conditions are given. D: name = “Billing” means that the

attribute name of the 00A-diagram under concern must

have the, value “Billing”. In the second condition the regular

path expression C:_. is_part _of ->. is used to address the

set of links of type is.part-of originating from the class (ele-

ment of base set C) under concern. The condition says, that

the number of elements in this set must be greater than zero.

Besides the simple predicates in the example query, P-OQL

(like OQL) includes other features, like quantification, set

operations or type tests.

The target-clause of the example query defines, that a

bag of pairs is requested. Each pair consists of (1) the name

of the class and (2) a bag with the names of the attributes

of the class. In addition, arithmetical operations, set oper-

ations and sub-selects can be used in the target-clause.

4 Pattern Matching

As mentioned in the introduction, one way to perform docu-

ment retrieval is to use pattern mat thing facilities. A typical

example for this technique is the gr-ep command in UNIX,

which has proven to be extremely useful for everyday infor-

mation retrieval problems as long as documents are stored

as text files.

To allow similar operations on an object base, we inte-

grated a new operator grep into P-OQL which can be used

similar to the UNIX command. grep is realized as a binary

operator, where the first operand must be a regular expres-

sion and the second operand must address a string attribute
— other possible choices for the second operand will be dis-

cussed later on. The grep operator yields a set of quintuples.

One quintuple for each line in the string attribute containing

a pattern that matches the regular expression. Each quin-

tuple has the following components: (1) an object reference

or a link descriptor (reference to the origin object plus link

name) for the object or link accommodating the attribute,

(2) the name of the attribute, (3) the number of the line

containing the pattern(s), (4) the contents of the line con-

taining the pattern(s) and (5) a set with pairs containing

the start position and the length for each pattern in the line

that matches the regular expression.

Using this grep operator, the following query searches for

the classes where the term ‘(Billing” or “bzhzg” occurs in

the comment attribute:

select (‘ [Bb] llllng’ grep co~ent)

from Class

where O < count (‘ [Bb] illing’ grep co~ent)

The result of this query is a bag of sets of quintuples.

The qualification-clause assures that a set of quintuples is in-

serted into the result bag only for those classes for which the

set of quintuples created by ‘ [Bbl llling’ grep co~ent is

nonempty.

One remaining difference to the UNIX command is that

the P-OQL query above considers only the comment at-

tribute while the UNIX grep command addresses the whole

textual information of a file. To overcome this remaining

difference, we extended the grep operator such that it can

be applied to objects and links as w@l. If it’ is applied to

an object or a link, it is automatically applied to all string

attributes of the object or link. Hence, the following query

would search for patterns matching the regular expression

J [Bb] illing J in all string attributes of the class objects –

i.e. in the attributes name and comment:

select (‘ [Bb] illing’ grep .)

from Class

where O < count (‘ [Bb] illing’ grep .)

Since the grep operator is homogeneously integrated into

P-C)QL, it, can be combined with all other features of P-OQL.

5 Addressing a document

Up to now we have assumed that we are searching for doc-

uments – class definitions – which are storec(in exactly one

object. However, if the data is modeled at a fine-grained

level, this approach is not sufficient. If we take into consid-

eration that a class definition in our example schema consists

of the object of type Class and the methods and attributes

connected to this class via composition links, it seems to be

natural to regard all text attributes of the class itself and the

referred attributes and methods as the textual description

of the class.

This means that our document retrieval extensions must

allow to address the text attributes of all objects building

the document under concern as one operand for the oper-

ators dealing with the “textual representation” of a docu-

ment. Hence, P-OQL had to be extended by new features

which allow to deal with complex objects in an elegant way.

These extensions have two aspects: (1) The operators used

for document retrieval (such as the grep operator) have to

deal with sets of objects representing one document. (2)

Powerful features to define sets of objects which – in. their

entirety – should be considered as one document are needed.

The set of objects which build a class definition in the ex-

ample can be addressed by the features of P- OQL presented

in section 3.2 as follows:

([- .has-attrl /->. union - .has_rnethod/->.)

In this expression [_. has_attr] /->. addresses the class

itself as well as the associated attributes because passing a

link of type has_attr is indicated to be optional using the

[1 construction. Hence, we get a set containing the

class itself and the attribute definitions. Then we build the

union of this set and the methods associated with the class

via links of type has-method.

Now we extend the semantics of the gr-ep operator to sets

of objects: If a grep is applied to a set of objects, the result

is the union of the results we achieve applying a grep to each

element in this set. Using this extension, we can state the

example query, searching for all class definitions for which

the textual description – consisting of the class definition it-

self and the definitions of the corresponding attributes and

methods – contains a pattern matching the regular expres-

sion ‘ [Bb] i,lling’, as follows:

select . , (‘ [Bb] illing’ grep ([_ .has_attr] /->.

union

_ .has_method/->.))

from Class

where O < count (‘ [Bb] illing’ grep

([_ .has-attrl /-> -

union

_. has_method/->.))

105

In this query a ‘ . > is used as first component in the target-

clause to get a pair consisting of an object reference for the

class in the first component and the result of the gr-ep op-

erator in the second component. Each entry in the set pro-

duced by the grep operator exactly identifies the position of

the matching pattern, because – according to the definition

of the result of the grep operator in section 4 – it contains

an object reference for the object which has the matching

attribute and the attribute name.

The above query is a typical example for a situation,

where it is useful to follow alternative path definitions. Since

this seems to be a common situation, we introduced a new

feature into P-OQL in order to allow for a simpler definition

of such queries. We allow alternative path definitions to

be given in a regular path expression using the following

notation:

(path-definitionl I . . . I path. dejinitzo%)

Although this brings up a somewhat easier notation, it

does not introduce real new concepts. On the other hand

the definition of cumbersome path definitions has been ad-

dressed in various research done in recent years. In a lot of

articles like e.g. [12, 19, 20, 16, 3, 27] the authors state, that

it would be much more convenient to specify simply that

some type of connection must exist between two objects –

i.e. that a path between these objects must exist. However

as mentioned in [12] this strategy brings up severe problems

if connections between objects are usually hi-directional –

as is the case with the PCTE data model.

PCTE itself overcomes part of this problem using the

link categories. For example there are operations in PCTE

to pick up all links originating from an object. If the scope of

this operation is set respectively, the operation returns all

links originating from any component of the object under

concern. Hence, the complex object built by composition

links is regarded as the operand of the operation.

Our simple example which tries to address a class defini-

tion consisting of the class itself and the attached attribute

and method definitions shows that simply applying this ap-

proach does not yield satisfactory results, because in our

example schema not only the attribute definitions and the

method definitions are components of a class definition, but

also the subclass definitions together with their attribute

and method definitions and their subclass definitions .

Hence, we introduced a more powerful mechanism into

P-OQL which includes addressing all components of an ob-

ject as a special case.

In contrast to the link definitions used up to now, which

have been based on a given link type name and a definition of

the allowed values for the key attributes using wild-cards or

intervals, we decided to allow the specification of a set of link

categories instead, with the meaning that all links having

one of the given categories fulfill this link definition. E.g. the

expression [{c, ell +/->. addresses all objects which can

be reached via a path consisting only of links with category

composition or existence. However, as mentioned above, this

extension would not be sufficient to state the simple query

given above. Therefore, a shield option has been introduced.

This option allows to specify a set of object and/or link

types which must not be traversed. E.g. {c shield Class}

addresses all composition links except those for which the

destination object is of type Class.

Using this feature, we can state our example query as

follows:

select (‘ [Bb] illing

from Class

where O < count

grep [{c shield class}] /->.)

‘ [13bl illing’

grep

[{c shield Class}] /->.)

It remains to mention that not only the category of the

link itself, but also the category of its reverse link can be

specified. ‘c’, ‘e’, ‘r’, ‘i’ and ‘d’ can be used to specify

that the link should be of category composit~on, existence,

reference, implzcit or designation and ‘@c’, ‘@e’, ‘t%’ and

‘@i’ can be used to specify that the reverse link of the link

to be passed should be of category composition, existence,

reference or implicit. This feature allows e.g. to ask for all

documents containirm at least one attribute where a Dattern
L

mat thing the regular expression ‘ [As] c count } occurs in the

commentz:

select distinct D: .

from A in Attribute, D in A: [~@c}l +/->.

where O < count (‘ [As] ccount’ grep A: comment)

and D:. is of type Document-

ing this query base set D addresses all objects which have

the actual attribute – i.e. the actual element of base set A –

as a component, and the qualification-clause restricts D to

those objects which are of type Document or a respective

subtype.

6 Term Based Document Retrieval

Besides pattern matching, a second way to process docu-

ment retrieval aueries is to comDare description vectors for
L L L

the stored documents and the query. To this end a vocabu-

lary containing the terms which can be used to characterize

the documents is created either automatically or manually.

Techniques to create such a vocabulary automatically are

e.g. described in [25].

If the vocabulary contains t terms. each document D.
can be represented by a document description vector D =

(w,, w2,. . . . wit) where wd~ represents the relevance of

document D with respect to term k. In the literature vari-

ous term-weighting formulas are given to calculate the ‘Walk

automatically. In the following, we use the formulas pre-

sented in [26]. Let N denote the number of documents, n/c

denote the number of documents containing term k, and t~dk

denote the term frequency of term k in document D.

Then the components of the document description vector

V can e.g. be calculated as follows:

(1)

/
s(tfd, “10g:)2
,=1

In this formula the term frequency is multiplied by the in-

verse collection frequency and normalized.

If the query itself is given ae a text document Q for which

similar documents are searched, the following formula pro-

posed in [26] can be used to calculate the query description

vector Q = (w~l, wq2, . . , Wqt):

‘In P-OQL a select normally creates a bag. If a set is desired,

select distinct bas to be used.

106

‘%=[(05+*)’Og:‘f“qk>’(2)

(o if tfqk = O

Now the similarity between the query and a document

in the object base can be calculated using for example the

conventional vector product formula:

t

similarity (Q, ‘D) = ~ Wqk . WM. (3)

k=l

Using these formulas a typical query would be to search

for a list of the 25 documents with the highest similarity

values for a given query document Q sorted in descending

order with respect to the similarity values.

To integrate such document retrieval facilities into

P-OQL we introduced three new operators:

D-vector is a unary operator which calculates the document

description vector D for a “document” D according to

equation (1). The operand representing the document

D can be either a string attribute, or a link (then the

document is considered to be the concatenation of all

string attributes of the link), or an object (then the

document is considered to be the concatenation of all

string attributes of the object), or a set of the above

meaning that the “sub-documents” corresponding to

the elements of the set are concatenated.

Q-vector is a unary operator which calculates the query de-

scription vector Q for a “query” Q according to equa-

tion (2). The operand is interpreted similar to the

D.vect or operator and may in addition be a string

constant.

s im is a binary operator calculating the similarity of two

vectors according to equation (3).

When applying formula (1) to calculate the result of a

D_vector application, N and nk (1 < k < t)are calculated

taking into concern all “documents” – defined according to

the operand of the D_vect or application – over the corre-

sponding base set which fulfill the qualification-clause. If we

take the query

select D.vector [{c shield class}] */->.

from Class

where virtual = false

as an example, this means that N is the number of non-

virtual classes and nh for 1 < k < t is the number of

non-virtual classes for which the concatenation of the string

attributes of the class definition itself and the string at-

tributes of the associated attribute and method definitions

contains the term k at least once. The values for N and nk

(1 < ~ < t) when applying formula (2) to calculate the re-
sult of a Q_vect or application are chosen with respect to the

context. If the Q_ve ct or application occurs as one operand

of a s im operator and the other operand is a D_ve ct or appli-

cation – which is the usual situation – the respective values

of the D.vect or application are used. Otherwise, default

values calculated when generating the vocabulary are used3.

3The results presented in [29] suggest that it is not necessary to

use the exact values for N and nk. in dynamic information retrieval

systems. Therefore techniques to compute approximations for N and

nl seem to be an interesting research field.

Using these operators, we can e.g. search for documents

similar to a given 00A-diagram named ‘{Accounting”:

head[25]

sort- (

select (Cj_vector Q: [{cl] */->.

s im

D_vector D:[{c}l */->.),

D:.

from Q in 00 A_diagrem, D in clocument -

where Q:nsme = ‘! Accounting!’ and

Q:. != D:.)

In this query base set Q is used to address the query docu-

ment. To this end, base set Q is restricted to the OOA-

diagram named “Accounting “ in the qualification-clause.

The select-statement yields a bag of pairs, where the first

component is the similarity value for the actual document

in base set D and the second component is an object ref-

erence for this document. Since we use document- as the

base set for the documents, we are not only concerned with

OOA-diagrams, but with all types of documents stored in

the object base. Thesort- operator isapplied to the result

of the select-statement yielding a list with the pairs sorted

according to their similarity values. Then the head operator

is used to extract the 25 elements at the beginning of this

list. Thecondition Q:. != D:. in the qualification-clause of

the select-statement is used to extract the query document

from the result.

Taking a query document from the object base is only

one way to proceed. Another opportunist y would be to state

the query text directly in the query:

head [25]

sort- (

select (Q_vector “This is the query text on

‘MS and OQL”

s im

D_vector [{c}]*/->.),

from document-)

Although stating aquery in this way impossible, it may

not really be a good choice, because equation (2), which

is applied using the q-vector operator, has originally been

designed for real text documents but not for a short query

formulation. This becomes obvious from t!he fact, that the

term frequency in the query text is used to calculate the

weight of the terms. Therefore it might be a better choice

to state the query description vector itself. Let us assume,

that term 3 in our vocabulary is “OMS”, term 7 is “OQL”

and term 15 is ‘(PCTE” 4. Then the following query would

search for documents concerned with these topics and state,

that the relevance for “PCTE” is only half as important as

the relevance for the other topics:

head[25]

sort- (

select ((0.0 I (3: 1.0), (7: 10), (15: 0.5))

s im

D_vector [{c}]*/->.),

from document-)

4The terms in the vocabulary as well as the position of a given

term can be requested from the vocabulary manageT.

107

Note that the query description vector is given in the sparse

vector representation supported by P-OQL. Here the 0.0

given before the ‘l’-sign is the default value used for all

components except those which are explicitly defined in the

remainder of the vector definition.

It has to be mentioned that the described operators can

also be used to find e.g. pairs of similar documents. As an

example the following query retrieves the 25 pairs of classes

with highest similarity:

head [25]

eort- (

select (D.vector A: [{c shield Class}]/->.

s im

D_vector B:[{c shield Class}]/->.),

A:.,

B:.

from A in Class, B in Class

where A:. != B:.)

In this query two base sets with classes are used to address

all pairs of classes. The pairs for which both components

represent the same class are excluded in the qualification-

clause. In the target-clause the similarity of the classes is

calculated and an object reference foreach class is requested.

Wehaveuseda similar queryto detect redundant definitions

in the data element catalog of a large bank and achieved

impressive results.

One main advantage of the integration of document re-

trieval functionality into a flexible query language is that

arbitrary combinations of fact retrieval, and different types

of document retrieval can be used in one query. An exam-

ple is the following query searching for documents dealing

with ‘(OMS9J, “OQL” and “PCTE” which do not contain

the pattern “C++ ’’andcontainat least one object of type

Attribute:

head[25]

sort– (

select ((0.0 I (3: 1.0), (7: 1.0), (15: 0.5))

s im

D_vector [{Cal*/->.),

from docmnent-

where O = count (’C++’ grep [{c}]*/->.)

and exists O

in [{clI*/->.

with O:. is of type Attribute)

7 Integrating the Facilities into aCASE Tool

In the previous sections two points should have become ob-

vious. (1) Together with the document retrieval extensions

presented in this paper P-OQLis a powerful aid for the re-

trievalin a repository. (2) Unfortunately writing a complex

query in P-OQLis notrivial task at all.

Hence, when integrating P-OQL into the Software De-

velopment Environment Toolframe [8], we had to design a

user interface which allows, to state frequently used queries

in a straightforward manner and at thesame time to exploit

all features of P-OQL when necessary. For this purpose we

integrated a retrieval tool called Finder into Toolframe in

the following way.

5Besides this interactive user interface P-OQL can of course be
used via an API. This allows tool developers to realize e.g. integrity

checks or tool specific query functionality in an easy declarative way.

See [14] for more details.

At the root window of Toolframe the available tools can

be invoked. Onepossible choice isto call the Finder. Then

the main window of the Finder is presented and the user

can choose whether he wants to (1) key in a P-OQL query

directly or (2) use a predefine form to define a pattern

matching query or (3) use a menu based system to state

a term based retrieval or (4) load a query, which has been

created before using one of the other choices and stored for

future use. In the pattern matching case for example, the

user has to key in a regular expression, he has to select the

object types which have to be considered, and he can define

whether the components of an object should also be taken

into account or not.

Irrespective of which input facility has been used, the

system generates a P-OQL query which is processed by the

P-OQL query evaluator. Then the result of the query is

mesented bv a standard result viewer. Here all wdues exceDt

of link and ob iect references are mesented in a formatted. .
way. Link and object references are represented by buttons.

If a button representing an object is pushed, the Finder

first of all creates a list of all objects containing the object

under concern as a component. In this list the objects are

sorted with respect to the length of the paths of composition

links connecting the object in the list and the object under

concern. Then Toolframe is asked for each element in the

list if there are tools registered for the corresponding object

type. If exactly one tool exists for all elements in the list,

this tool is started. If more than one tool exists, a tool

selection menu is displayed where the tools which can be

applied to the object itself – if any – are presented at the

top of the selection list, and the user can choose the tool he

wants to start to work with the selected object. If no tool

exists, a standard object browser is opened. This browser

displays the attributes and links of the object under concern

and allows to navigate across the links. While navigating

with the browser, the browser always asks Toolframe for

the tools available for the actual ob iect and the user can.
start these tools from the menu bar. Since queries can be

saved, experienced users can compose queries for different

purposes, which can be used by other users.

8 Conclusion

We have presented document retrieval extensions for an

OQL-oriented query language for the 1S0 and ECMA stan-

dard PCTE in this paper. The main contributions made are

the homogeneous integration of term based retrieval facili-

ties into the query language and powerful features for the

flexible definition of the “documents” addressed bv the re-

trieval facilities in a given query. Furthermore, ~e think

that the realization of document retrieval facilities for the

PCTE standard is interesting in its own right because of

the semantically rich data model of PCTE and because of

the importance of PCTE as an international standard for

repositories.

Whereas the integration at the query language level has

proven to be practically applicable in our experiments, a lot

of open topics remain:

First of all, optimization and index structures are an im-

portant research direction. We try to use a multi-attribute

index structure [15] for standard attributes and document

description vectors at the same time. Alternativelv we trv

to use’ conventional B-trees for the standard attrib~tes and

inverted lists for the document description vectors exploit-

ing the results presented in [9] and [2]. To perform effective

query optimization in such an environment, a sophisticated

108

cost model is needed.

With respect to term based retrieval a crucial aspect is

the vocabulary. At the moment we use one vocabulary for

the whole object base, which brings up a vocabulary with

a large number of terms which in turn causes problems es-

pecially with the index structures. Therefore we will try

to use project specific vocabularies in the future. This will

help keeping the vocabularies smaller, but will cause prob-

lems with inter--project quer-ies.

Since we do not deal with large text documents but with

short descriptions and comments in the typical application

area of our system – i.e. in system development environ-

ments – it will be important to check which methods and

formulas for term based document retrieval proposed in the

literature are best suited for this particular application area.

The results presented in [31] might e.g. be useful in this re-

spect.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

B. Bird. An Open Systems SEE Query Language. In Proc.
7th Conf. on Software Engineering Environments, pages 34–
47, Noordwijkerhout, Netherlands, 1995.

E.W. Brown, J.P. Callan, W.B. Croft, and J.E.B. Moss.
Supporting Full-Text Information Retrieval with a Persis-
tent Object Store. In Proc. 4th lntl. Conf. on Extending

Database Technology, volume 779 of LNiCS, pages 365-378,

Cambridge, UK, 1994.

J. Van den Bussche and G. Vossen. An Extension of Path Ex-

pressions to Simplify Navigation in Object-Oriented Queries.
In Deductwe and Object- Oriented Databases, volume 760 of

LNiCS, pages 267–282, Phoenix, Ariz., USA, 1993.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.

From Structured Documents to Novel Query Facilities. In
Pr-oc. ACM SIGMOD Intl. Conf. on Management of Data,
pages 313–324, Minneapolis, Minn., USA, 1994.

C. Clifton, H. Garcia-Molina, and D. Bloom. Hyperfile:
A data and query model for documents. VLDB Journal,
4(1):45–86, 1995.

W.B. Croft, L.A. Smith, and H.R. Turtle. A Loosely-
Coupled Integration of a Text Retrieval System and an

Object-Oriented Database System. In Proc. 15th Annual
Intl. ACM SIGIR Conf. on Research and Development in

Information Retrieval, pages 223–232, Copenhagen, Den-
mark, 1992.

W.B. Croft and H.R. ‘Ilmtle. Retrieval of Complex Objects.
In PTOC. 3rd Intl. Conf. on Extending Database Technology,
volume 580 of LNiCS, pages 217–229, Vienna, Austria, 1992.

D. Diiberitz and U. Kelter. Rapid prototyping of graphical
editors in an open SDE. In Pvoc. 7th Conf. on Softwa~e
Engineering Environments, pages 61–72, Noordwijkerhout,
Netherlands, 1995.

C. Faloutsos and H.V. Jagadish. Hybrid Index Organizations
for Text Databases. In PTOC. 3rd Intl. Conf. on Extending
Database Technology, volume 580 of LNiCS, pages 310-327,

Vienna, Austria, 1992.

J. Frohn, G. Lausen, and H. Uphoff. Access to Objects by

Path Expressions and Rules. In Proc. 20th Intl. Conf. on
Very Large Data Bases, Santiago de Chile, 1994.

N. Fuhr. A Probabilistic Relational Model for the Integra-
tion of IR and Databases. In PTOC. 16th Annual Intl. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, pages 309–317, Pittsburgh, Penn., USA, 1993.

C. Harrison. An Adaptive Query Language for Object-
Oriented Databases: Automatic Navigation Through Par-
tially Specified Data Structures. Technical Report NU-CCS-

94-19, Northeastern University College of Computer Science,
October 1994.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

S. Henninger. Retrieving Software Objects in an Example-
Based Programming Environment. In Pmt. lJth Annual

Intl. ACM SIGIR Conf. on ReseaTch and Development in

Information Retrieval, pages 251–260, Chicago, Ill., USA,

1991.

A. Henrich. P-OQL: an OQL-Oriented Query Language for

PCTE. In PTOC. 7’th Conf. on Software Engineer-irsg Environ-
ments, pages 48–60, Noordwijkerhout, Netherlands, 1995.

A. Henrich and J. Mtiller. Extending a spatial access struc-
ture to support additional standard attributes. In Proc 4th
Intl. Symposium on Advances in Spatial Databases, volume
951 of LNiCS, pages 132–151, 1995.

Y.E. Ioannidis and Y. Lashkari. Incomplete Path Expres-

sions and their Disambiguation. In Pmt. ACM SIGMOD
Intl. Conf. on Management of Data, pages 138–149, Min-
neapolis, Minn., USA, 1994.

Udo Kelter. H-PCTE - A High-Performance Object Man-

agement System for System Development Environments. In
Proc. 16th Annual Intl. Computer Software and Applica-
tions Conf,, Chicago, Ill., USA, 1992.

Udo Kelter. An Information Retrieval Common Service
Based on H-PCTE. In Proc. 6th Conf. on Sofiware Engi-

nee~ing Envir-onments, pages 101–108, Reading, UK, 1993.

M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented
Databases. In PTOC. ACM SIGMOD Annual Conf. on Man-
agement of Data, pages 393–402, San Diego, Cal., USA,
1992.

W. Kim. Observations on the ODMG-93 Proposal for
an Object-Oriented Database Language. SIGMOD Record,

23(1):4–9, 1994.

D. Konopnicki and O. Shmueli. W3QS: A Query System
for the World-Wide Web. In PT-OC. 21 th Intl. Conf. on Very

Large Data Bases, pages 54–65, Ziirich, Switzerland, 1995.

Y.S. Maarek, D.M. Berry, and G.E. Kaiser. An Information
Retrieval Approach For Automatically Constructing Soft-
ware Libraries. IEEE, Tr-ansactions on Softwar-e Engineer-
ing, 17(8):800–813, 1991.

Portable Common Tool Environment - Abstract Specifica-
tion / C Bindings / Ada Bindings. Standards ECMA-149/-
158/-165, 3rd edition, and 1S0 IS 13719-1/-2/-3, 1994.

J.M. Rosenberg. Dictionary of computers, information pro-

cessing, and telecommunications. John Wiley & Sons, 2nd

edition, 1987.

G. Salton. Automatic Text Processing: the Transforma-
tion, Analysis, and Retrieval of Information by Computer.

Addison-Wesley, Reading, Mass., USA, 1989.

G. Salton and C. Buckley. Term-Weighting Approaches in
Automatic Text Retrieval. Information Processing & Man-
agement, 24(5):513–523, 1988.

E. Sciore. Query Abbreviation in the Entity-Relationship

Data Model. Information Systems, 19(6):491–511, 1994.

M. Tedjini, I. Thomas, G. Benoliel, F. Gallo, and R. Minot.

A query service for a software engineering database system.
[n PTOC. 4th ACM Symp. on Software Development Envi-
ronments, ACM SIGSOFT Newsletter 15:6, pages 238–248,

December 1990.

C.L. Viles and J.C. French. On the Update of Term Weights

in Dynamic Information Retrieval Systems. In Proc. 4th Intl.

Conf on Information and Knowledge Management, pages

167–174, Baltimore, Md., USA, 1995.

L. Wakeman and J. Jowett. PCTE - The standaTd for- open

repositories. Prentice Hall, Hemel Hempstead, Hertfordshire,
UK, 1993.

R. Wilklnson. Effective Retrieval of Structured Documents.
In PTOC. 17th Annual Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval, pages 311–317,

Dublin, Ireland, July 1994.

109

