
Addressing the Requirements of a
Dynamic Corporate Textual

Information Base

Peter G. Anicli, Rex A. Flynn, and David R. Hanssen

Intelligent Information Applications Development Group

Digital Equipment Corporation

290 Donald Lynch Blvd. DLB5-2/B4

Mmiboro, MA 01752-0749

ABSTRACT

AI-STARS is a lexicon-assisted full-text Information Retrieval

system, designed for use in a dynamic corporate environment.

In this paper, we explore how the requirements of such an envi-

ronment have influenced many key aspects of the design and im-

plementation of the AI-STARS system. We promote the use of

“views” to create logical partitions in large, heterogeneous data-

bases, and argue that storing not only article instances, but also

class defhitions, stored queries, display templates and linguistic

data in a single object repository has consequences that can be

exploited for schema and lexicon evolution, security and subject

filtering, information navigation, and data distribution.

1 INTRODUCTION

The AI-STARS project is an on-going research program at Digi-

tal Equipment Corporation, investigating methods for improving

full-text information retrievrd. Our target audience is Digital’s

Customer Support specialists, for whom ready access to on-line

technical infomlation is indkpensable for quick and accurate

handling of a wide range and heavy volume of customer inquir-

ies. For the past six years, Digital’s Support Centers have been

using the internally developed full-text infom~ation retrieval sys-

tem, STARS. This has made it possible for the AI-STARS team

to observe first-hand the strengths and weaknesses of full-text

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copv otherwise, or to republish, requirea a fee

and/or specific permission.

~ 1991 ACM 0-89791 -448 -1/91 /0009 /0163 . ..$1 .50

infomlation retrieval in a specific application environment,

While a major focus of our research continues to be directed at

improving query processing and interactive query reformulation

via the incorporation of computational linguistic techniques ancl

direct manipulation graphical interfaces, the recent growth in d-m

quantity and variety of on-line data at the Customer Support

Centers has led us to consider a number of other mchitectural is-

sues as well.

A key aspect of our target domain is that the on-line textual in-

formation is intended to serve the needs of a worldwide, hetero-

geneous user community made up of thousands of service spe-

cialists, engineers, and external customers. As with many large

corporate database applications, data security, schema evolution,

and data distribution ate as important as effective querying fa -

cilities and short response times. As a result, a good portion of

our research effort has been aimed at developing an infrastmc-

ture that wi~ flow us to garner the benefits of adding COmpLttal-

tional Linguistics and Artificial Intelligence technology to full-

text Information Retrieval within the practical constraints im-

posed by the actual operational environment.

This paper provides art overview of our experience to date. We

begin by introducing the approach taken in AI-STARS for full-

text indexing and searching. We then turn to the operational rc-

qukements of the Customer Service application and indicate

why we chose an object-oriented approach to representing semi-

structured information objects. Next we consi&r querying on

semi-stmctured objects and show how the notion of storing que-

ries can & exploited to support multiple logical “views” of large

databases. We then describe how our lexical and linguistic

knowledge can take advantage of the object-oriented infrastmc-

ture as well, arguing that a uniform representation of heterogene-

ous objects simplifies the tasks of data security, p~tioning, and

distribution. We conclude with a dkcussion of implementation

status and issues, related research, and user interface implica-

tions.

163



2 FULL-TEXT INDEXING AND SEARCHING IN

Al-STARS

We refer to AI-STARS as a “lexicon-assisted” retrieval system

because lexical information, both grammatical and relational, is

maintained on-line for use in full-text indexing. natural language

query processing, and interactive query reformulation. Utilizing

a morphological analyzer in conjunction with an on-line lexicon,

AI-STARS in&xes amicles according to the (uninflected) cita-

tion forms of all known words and phrases in the text. In this

way, the end-user does not have to use truncation operators to

match texts containing morphological variants of a search term

nor use proximity constraints to indicate when a sequence of

search terms is intended to make a canned phrase. The user que-

ries the system with a “natural language” query, which is con-

verted into a Boolean expression composed of the underlying

citation forms. In addition, a direct manipulation “Query Re-

formulation Workspace” wirtdow [ANICK90] is optionally avail-

able to the user to inspect the results of the natural language

analysis of the query and refomudate the query interactively,

with the help of an integrated on-line thesaurus. Figure 1 shows

a sample natural language query and the accompanying Query

Reformulation Workspace, As the intent of the workspace is to

provide a convenient way to visualize atsd manipulate Boolean

search expressions, it can be employed both to quickly reformu-

late one-shot search expressions as well as to hand tailor care-

fully designed queries for later (repeated) reuse.

3 REQUIREMENTS OF A DYNAMIC INFORMATION

ENVIRONMENT

The past several years have seen a spectacular increase in the

amount of on-line information available to Customer Support

specialists. Their 20,000 article &tabase of symptom-solution

descriptions, generated by specialists who wished to share their

problem-solving experience with other specialists and custom-

ers, has mushroomed into over 150,(00 articles from a vast vari-

ety of sources, including corporate publications, internal bulletin

boards, and external support documentation. While this growth

has greatly increased the information potentially available for

problem solving, it has also brought with it a host of new E-

quirements for on-line information management. In this section,

we will enumerate these concerns in order to motivate the dis-

cussion of system design in the sections that follow.

Gwry copying backtlp savesets Irom tape under vs.O

I

Query Matches ~1 I, ( I

QQqJ_, kmq
h STARS: Query Reformulation Workspace IIZIIE

File Ter’ms Heln

Terms associated with: tape

Phrases

Iautomatic tape
~

magnetic taue device Inl

~
Synonyms

Related Terms

G

❑ comp”’”)d ‘errns ‘“’ ~

Figure 1. AI-STARS query interface, showing “Query Reformulation Workspace” and thesaurus window.

164



3.1 INFORMATION PARTITIONING

The rapid growth of on-line information has exacerbated the

perennial problem of organizing the data for effective retrieval.

Jn the cutrent STARS system, administrators assign each article

to a database on the basis of the product it is mairdy about as

well as the kind of article (e.g. problem report or symptom-

solution article). However, many articles deal with multiple

products, making it difficult to decide how to categorize articles

into the set of databaws available, and, conversely, making it

difficult for searchers to know which databases to open for a

given query.

3.2 HETEROGENEOUS DATA

‘Ile typical information object in STARS is a 1-2 page “chunk”

of information, composed of both structured fields and fields

containing unstructured text. Although most objects share many

of the same fields, there are some classes of objects with spe-

cialized sets of fields. For example, articles about crash dumps

contain fields for CPU, operating system, and program count er

location in addition to the textual description of the problem and

solution. As the current version of STARS supports only a sin-

gle data format, such specialized fields are not queryable. The

specialized information must be included as part of the unstmc-

tured textual data. Clearly, support specialists could be more ef-

fective retrieving relevant articles if this specialized structural

knowledge could be queried explicitly.

3.3 DYNAMIC SCHEMA

Jf the system is to support heterogeneous article classes, it must,

in addition, support the evolution of the database over time. Not

only will new classes of information need to be added to the sys-

tem as new sources of data become available, but the exrsting

classes may require modification as business needs change and

new fields are found to be useful.

3.4 HYPERINFORMATION LINKS

Certain kinds of information being imported into the on-line da-

tabase, such as bulletin board postings and replies, are most

naturally represented as linked collections of information. On

retrieving a posting, one may want to navigate through the re-

plies. Likewise, large documents broken into display-size

“chunks” will need previous and next pointers to allow for se-
quential access in addition to the “random” accessprovided by
content-based retrieval. Beyond such basic requirements, the
value of hyperinformation links for connecting objects in a large

information apace is well known ~LSEN89] and should be

made available to specialists as an alternative search strategy.

3.5 DATA SECURITY

With thousands of users, including many levels of internal spe-

cialists and numerous external customers, on-line information

must be appropriately protected. Junior specialists may need to

be restricted from retrieving articles that have not yet been re-

viewed for accuracy. Customers must not be allowed access to

articles containing sensitive or proprietary infomlation. A flex-

ible security mechanism which does not depend on separate

physical databases for different audiences is required.

3.6 DATA DISTRIBUTION

The on-line Customer Service databases are used by support per-

sonnel world-wide. Although remote access to a central data-

base is one approach to sharing data, many sites prefer to store

copies of data locally to guarantee fast access to important sub-

sets of the information base. Jn a database in which the schema

may change over time, this means distributing not only article

data but also data about new types of articles and changes to ex-

isting types.

4 AN OBJECT-ORIENTED DATABASE APPROACH

The need to support heterogeneous data in a dynamically evolv-

ing information environment has led us to pursue an object-

onented approach to data representation. Jn an object-oriented

database (OODB) [ZDONJK90], the behavior of an object is

typically defined by the class (or type) it is an instance of.

Classes in turn are usually organized into atr inheritance hierar-

chy, in which the behaviors of superclasses are inherited by their

subclasses, unless explicitly overridden. The state of an object,

as calculated by the methods defined for it by its class, may in-

clude references to other objects. 00DBs also typically provide

mechanisms to dynamically add or modify class definitions and

suppofi versioning of objects (e.g. [AHLSEN84]). Jn this sec-

tion we discuss how we are applying these concepts towards sat-

isfying the requirements of a co~orate information base as &-

scribed above.

4.1 APPLYING OBJECT-ORIENTED DATABASE
TECHNIQUES TO Al-STARS

The object-oriented approach addresses the needs of our applicat-

ion envkonment in the following ways:

●

●

●

●

●

It allows the addition and modification of information

classes without altering system software.

It allows classes to be organized into inheritance hierarchies

where subtypes can augment the fields defined by their par-

ent classes.

It allows the definition and support of multiple heterogene-

ous classes, and enables unifoml mechanisms to query

against fl ~stmces in the database, regardless of the~

class.

It provides a framework for dealing with semi-structured

objects, composed of combinations of structured fields such

as dates, and unstructured fields such as text bodies. Que-

ries express Boolean combinations of restrictions baaed cm

fields and their associated values.

Hyperirrfomlation links are supported by defining fields

which refer to other objects, allowing us to create networks

of infomlation objects relating, for example, product de-

scriptions to problem reports to bug fixes.

165



●

●

●

●

By adopting a self-describing metamodel, we obtain a uni-

form representation for classes (schema), infomlation ob-

ject instances, stored queries, and all other information

which is needed at nmtime (md which requires distribution

among sites.)

One can develop a single uniform mechanism for distribu-

ting any object regardless of its class.

It provides a framework for managing multiple versions of

objects, and synchronizing the view of an object in the con-

text of an evolving schema.

Through versioning, we are enabled to work in a distrib-

uted environment where updates propagate at finite veloci-

ties, and different sites may have different definitions of the

same classes.

While we borrowed the above ideas freely from object-oriented

databases, we chose not to fully encapsulate instance behavior

within methods. This was a useful short term expedient, simpli-

fying the design and development of the system.

4.2 Al-STARS DATA MODEL

AI-STARS has a built-in self-describing data model much like

that of SMALLTALK [GOLDBERG83]. Figure 2 shows the

basic classes and instances which fen-n the top level of our ob-

ject hierarchy. In order to create an object-oriented model suit-

able for use in an actual lnfoxmation Retrieval application, these

classes must be augmented with application-specitic classes.

Figure 2. Top level of the AI-STARS data model. Thin

arrows indicate instance-of links while bold arrows in-

dicate subclass-of links. Double ovals indicate class

objects; single ovals indicate instances.

For example, classes may be defined to correspond to the struc-

ture of mail messages, bulletin board entries, inter&partmental

memos, product releases, manuals, etc. Such classes will typi-

cally be created either as direct subclasses of the “Object” class,

or as subclasses of other application-specific classes. Inheri-

tance facilitates the construction of specialized classes from

mo~ abstract class definitions.

As needed, users can also create application-specific fields, such

as reviewer_name, modification_date, etc. New fields are de-

fined by creating instances of the “Field-Type” class, which

SPCCifY the new field’s value type. AI-STARS suppJ.iesa nm-
ber of predefine value types such as “Text”, which is parsed
prior to indexing; “Stxing”, which is not parse~ “Object”, which

allows reference to arbitrary objects; and “Date”. There are also

predefine enumerated value -s which are used to control

storage class, versioning, index generation, etc.

Field names arc globally defimed to facilitate their consistent use

across all object classes. Because queries are usually con-

structed with respect to multiple classes at the same time, it is

important that all classes use field names in a consistent manner,

and do not use different field names for the same semantic prop-

erty.

4.2.1 QUERYING ON SEMI-STRUCTURED
INFORMATION OBJECTS

The need to support queries that include both structured and un-

structured field values and return article sets containing objects

of multiple classes has required extending our query interface,

which was originally designed for full-text querying only. In our

original user interface (see figure 1), the system’s interpretation

of a natural laneguage query was made accessible for viewing and

modification by the user through a graphical “Query

Reformulation Woxkspace” window. In our new interface (fig-

ure 3), we allow the user to explicitly specify fields and rela-

tional operators in addition to their values. We associate a sepa-

rate Query Reformulation Workspace with each field restriction,

displayable on demand. By default, field-value restrictions are

ANDed together. A special top-level workspace is available for

modifying the Boolean relationships among the various field-

value nxtnctions via direct manipulation of graphical tiles. This

division into multiple workspaces permits users to interactively

adjust any ponion of the query independently, without affecting

the other query components.

We allow an object to contain multiple text fields with different

field names, so that. for example, a single class could have a

symptom_text field and a solution text field. User queries

may be expressed which refer to these specific field names, or

may refer to a special system-supported all-text field Queries

with respect to the all-text field refer to any field whose value is

of type “Text”. In this way, we allow querying on textual infor-

mation without requiring the user to know all the different ways

people have chosen to subdivide their texts (similar to the ap-

proach in [McALPINE89] and ~ERTIN088]).

Control over the fon-s-satting of objects for display is provided

through templazes. Templates define which fields of object in-

166



I
-1 QUCIY :Mam A

File contest Hell)— — —
‘ I

I

Im
Fields Relatior)al Operators Field \~alue

TECHNICAL–REV IEW–NA ~ Eqaals copying directories from ta,,e~

TECHNICA L–REV I EWED
~ Cuntains

TITLE
mm

UNIQUE-IDENTIFIER !

ll.i.>..l., m,,a... !ll..:< ..!>L. .,?,.llo-... -..n,, “
.,”, ,. . ,aLc ,“, 0,4,,, ,,V, . (.” ,“. .,

~,1

l— L

Figure 3. Query interface for queries containing multiple restrictions. Subquery window shows the workspace

for one of the restrictions. I

stances of a given class are to be presented on the screen, as well

as their relative positioning. An object class may have one or

more different templates, which are provided by database ad-

ministrators as part of object class definition. Since a single

query may return a heterogeneous set, we associate article

classes with icons and display the icons along with article titles

in the title list returned as the result of a query. E users wish to

futther differentiate the results of a search according to article

class, they can request that the title list be sorted by class.

5 STORED QUERIES AND VIEWS

5.1 VIEWS

In Relational Database systems, a user can define a “view” of a

database using a relational expression ~ATE90]. A view is a

virtuul table, providing a dynamic vd ndow into the actual data-

base tables. Views have a number of advantages, such as allow-

ing the user to focus solely on the subset of the data that is of

concern, and providing automatic seci.riity for data hidden from

the view. A device which provides some of the same capaiMi-

ties in an Information Retrieval system is the stored query,

which defines a dynamic subset of the infomlation objects in the

database. We have chosen to utilize stored queries in AI-

STARS to address the issues of data security and partitioning.

5.2 STORED QUERIES

Stored queries may be constructed by database administrators cm

by the users themselves. As objects defined within the AI-

STARS class hierarchy, they have names and textual description

fields. Users cart construct queries which return these stored

queries based on the stored textual deseriptions, and can add

queries so obtained as conjuncts or disjuncts within the context

of other queries.

When a stored query is employed as part of a larger query, it is

represented visually in the user’s “Query Reformulation Work-

space” as a single tile, just like any other query component, such

as a word or phrase. If refinement of the stored query is required

for query refommlation, the user may open the stored query tile

for manipulation of its components as shown in figure 4. Stored

queries may contain references to other stored queries, and may

be nested to arbitrary depth.

5.3 VIEWS FOR SECURITY

As noted earlier, articles in the Customer Service Center datii-

bases contain not only text but also a collection of structured

fields, indicating, among other things, whether the article has

been technically reviewed for accuracy and whether it is in-

tended to be read by external customers. Based on such flags,

the articles can be extracted into separate databases to be macle

available to specific audiences, such as junior specialists or out-

167



P
File Terms

m . . . . . .

I

I

HelD II

V)O* Space for Subquesy : Relational Database .J

Help

‘ I.File Tile Query. —

— —.

Himm File Tile ~u e Yy— — ~elp I

mm–
Wli9

m

Figure 4. Visual representation of a stored query with nested subquenes. ‘he corresponding Boolean expression is (OR I

(AND “relational” (OR “database” “algebra” “calculus”)) (AND “relation” “tuple”) (OR “sql” “qbe” “rdb” “ingress’’)).

side customers. Alternatively, one can use stored query views

to create alternate windows on the same physicrd data. In AI-

STARS, each user has a profile which inclu&s a security view.

This query is run against the full database when the user logs in

in order to create a logical subset of data viewable by the user

for the remain&r of the session. Consequently, the level of

granularity for security is the information object, not the data-

base. If an information object is modified such that it comes to

satisfy a view that it previously did not (as in changing the value

of the customer-readable field to “true”), then this object be-

comes visible to all users who share that security view,

5.4 VIEWS FOR SUBJECT AREAS

One of the problems that has intensified as the size of the infor-

mation base has expanded is that of classifying articles into

named &tabases, where the database names typically refer to

specific products. This is due to the fact that many articles

either fit into many possible product categories or would be bet-

ter classified according to some other dimension. In order to

circumvent this problem, we have opted to create the illusion of

a single universal database. Stored queries may lx applied to

this universal database in order to partition it along any number

of (potentially ad hoc) dimensions. The work of creating such

queries is left to a database administrator knowledgctble about

the contents and the needs of the end-user community. The ad-

ministrator creates a number of stored query views: these are

presented to the end-user through the user intetiace as selectable

subject areas. The user has the option of either querying the en-

tie on-line infom~ation base, or first restricting his/her view

sdong the twin dimensions of subject area and reticle class.

Thus, for example, a user may select to limit his/her \,iew to the

subjects “relational databases” and “ quety interfaces” and to the

classes “problem report” and “product description”. Thereafter,

all queries issued by that user are additionally filtered through

the view defined by the intersection of the security, class, and

subject views. Unlike the security view, the class and subject

views may be altered at any time during the session,

This portion of our interface has much in common with the

facet-based search interface of OAKASSIST [MEADOW89],

[BORGMAN89]. Just as the OAKASSIST user may edit search

tem~s within a “facet” window, the AI-STARS user may option-

ally refiie selected “subjects” by direct manipulation of the con-

tents of the stored queries. By giving users the ability to con-

struct queries via both direct selection of malleable topics and

natural language query, we hope to combine the advantages of

these two basic input modes to facilitate pro~essive search for-

mulation, in the spirit of [BELKJN90] and [CROFT87].

6 REPRESENTING LEXICAL KNOWLEDGE

AI-STARS indexes atticles with respect to an on-line lexicon of

words and phrases. If the lexicon could be assumed to be static,

then a special purpose static in-memory data structure containing

all lexicon items could be compiled and linked into the Informa-

tion Retrieval software to support morphological analysis. On

the other hand, if the lexicon is dynsmic, allowing the addition

of new entries over time, then lexicrd entries must be stored in a

malleable foml. Because of the dynamic nature of technicaJ vo-

cabulary, we chose to implement a dynamic lexicon, making use

168



of the storage and retrieval machine~ already developed to han-

dle our textual information objects.

6.1 LEXICON ENTRIES

Each lexical entry is actually an aggregate of thtee separate ob-

ject types, the stem, the lemma, and the word sense. In morpho-

logical analysis, a surface form is reduced to one or more poten-

tial stem forms and corresponding sets of constraints, such as the

expected part of speech and inflectional paradigm. These con-

straints ate used to construct a query to retrieve any stems in the

lexicon which meet the stipulated conditions. As shown in fig-

ure 5, each stem object in the database is associated with a sin-

gle lern&a object, which serves as a handle for the entire dic-

tionary ‘Atty. From a lemma, one can reach all the stems for a

given word as well as all the word senses. Word sense objects

can optionally contain textual definitions and semantic links to

other tird senses, thereby supporting the construction of an on-

line sense-disambiguated thesaurus. Although it would be

highly desirable to index articles with respect to word senses

~OVETZ89], due to the difficulty of word sense disambigua-

tion, we currently in&x instead with respect to citation forms,

which are stored as strings in the lemma objects reachable

through morphological analysis of surface forrns.-

lemma

wordsense %

Figure 5. Relationships among lexicon objects. Single and

double arrow heads indicate whether relationships are one-to-

one, one-to-many, or marry-to-many.

6.2 LEXICON VIEWS

In a corporate environment, certain words (such as names of in-

ternal projects or unreleased product code names) may be classi-

fied. These terms, their definitions, and any thesaurus links

based on the classified senses should only be visible to users

with the proper security rights. By treating lexicon objects as

full-fledged information objects, one can attach fields to them for

the purpose of security classification and use the stored query

view mechanism to assure that only the authorized audience has

access to these terms.

6.3 LEXICON DOMAINS

The words used in articles may belong to many overlapping

technical domains. For example, the noun “generation” is used in

computing both to dew.ribe q. particular version (of a file in a

source code control system) and to describe the process of con-

figuration (setting the parameters for an operating system). The

existence of such semantic ambiguities may diminish the effec-

tiveness of the on-line thesaurus. In the case of the word “gen-

eration,” if the thesaurus provided the related concepts “version”

and “configuration,” then a query reformulation strategy may

bring in both terms when only one is appropriate.

The general solution to this problem involves performing word

sense disarnbiguation. Since we have chosen not to index with

respect to word senses, we are exploring a few weaker (and sim -

pier) alternatives. The first arises from the observation that a

quener on AI-STARS uses the lexicon within the context of a

particular view of the database. We have therefore chosen to re-

strict the lexicon (and hence the thesaurus) dynamically to only

those words and phrases that appear in articles in the querier’:;

current view. There is little information content in displaying

words and phrases which are in the lexicon, but match no arti-

cles. As a consequence, in the case where a querier’s view con-

tains only articles about version control, the word “configura-

tion” is not likely to show up, and the ambiewity may be

avoided. Another alternative we are exploring is tagging worcl

senses with a domain field. This will allow a user to prc-select ii

subset of the word senses with the same mechanisms already

available for defining views, e.g. by executing a query on the

value of the domain field.

6.4 STORING LINGUISTIC RULES

In our current protoytpe, the linguistic roles for both morpho-

logical and syntactic analysis are compiled from their textual

representation into C source code files, which are in turn comp-

iled and linked into the AI-STARS image. This has the disad-

vantage that changing a rule or adding a new ruleset (as, for ex-

ample, a morphological mleset for a language other than

English) requites a software upgrade. In a corporate environ-

ment with perhaps hundreds of sites using the software, it pays

to minimize the frequent y of such upgrades. One approach we

are exploring is to compile rulesets into ruleset objects which

can then be loaded into the system as data and distributed in i~

manner similar to other database objects.

7 IMPLEMENTATION

The first prototype of the AI-STARS system was completed in

August 1990. Informal demonstrations of this system met with

an enthusiastic rcpsonse from current STARS users. However,

transforming the prototype into a fully functional substitute for

STARS, to enable true on-the-job evaluation, has nsquired :Z

complete rcimplementation, as we needed to address the addi-

tional problems outlined in section 3.

We will shortly begin a test of a new AI-STARS system with all

the features described above except for the mechanisms for dis-

169



tribution. The corporate environment in which we intend to de-

ploy this system necessitates a high level of performance, and

work to achieve these performance goals is on-going. While a

thorough treatment of implementation details and issues is be-

yond the scope of this paper, we will present here a short discus-

sion of our performance requirements and some of the imple-

mentation techniques we have pursued as a consequence.

7.1 PERFORMANCE REQUIREMENTS

As with other II? systems, our system must be optimized to-

wards performing queries. The desirability of enabliig special-

ists to answer a question in the context of a brief telephone con-

versation dictates that the response time for a query must be on

the order of seconds. What we have added to this problem is the

need to access a dynamic lexicon on the fly to intetpret the

query, and the complexities of dealing with heterogeneous ob-

jects.

What may be a less obvious problem is that of loading existing

&tabases into AT-STARS. Loading an article involves lexicaI

access at the inner loop, as well as a massive amount of index

up&ting. On the whole. adding an article to the database need

not be a fast operation (it can be an order or two magnitude

slower than querying). However, in converting from the existi-

ng STARS to our new database, we need to load 150,000 arti-

cles. A quick calculation shows that at the rate of 30 see. per

article, the amount of time required to re-load the database is 52

days.

7.2 CACHING

Perfonuing a couple of I/O’s to retrieve the citation form for

every word in an article with 500 words (a small article) alone

would take 15 sec. (for 2 I/O’s per word, 15 ms. per I/0). We

have the~fore implemented a cache for all objects and indexes

that flushes the least recently used entries. Our intention for

queries is to cache the terms in the lexicon that the querier uses

repeatedly. Our intention for loading information objects is to

cache as much of the lexicon as is normally used in processing

the texts.

In theory, such a cache ought to have performance comparable

to a static in-memory lexicon. In practice, we have much more

tuning to do in this area. This is for a number of reasons:

● There is a considerable amount of computation still in-

volved in performing lexicon operations on the in-memory

structures.

● The dynamic nature of the cache necessitates the dynamic

acquisition and freeing of memory.

● Our memory structures are not yet specialized for lexicon

access alone, but are generic objects. This means essen-

tially that our structures are not opttilzed for space,

thereby taking up more of the available cache.

We are currently pursuing implementing specirdized data struc-

tures and caching the results of morphological analysis, i.e. as-

sociating the surface string with its resulting computation.

One of the benefits of having a single object repository for our

system is that providing caching techniques improves access to

all the objects. Thus we expect our caching of indexes to benefit

users who repeat terms in subsequent queries. The other side is

that our cache must be more sophisticated, in that it must deal

with entities which vary widely in size and use.

7.3 INCREMENTAL UPDATE

Burkowski [BURKOWSK190] discusses a mechanism for

speeding up indexing of articles by updating the indexes in

memory and deferring writing out index blocks until they have

been fdled with multiple article updates. Since we believe

atomic transactions are necessary in any corporate database to

preserve data integrity, we have reformulated this idea as one of

providing incremental update during a long transaction. We

have implemented, but not tested out extensively, an “update”

cache, where objects and in&xes are updated in memory during

the transaction, and those that are updated most infrequently fall

to the bottom of the cache, and are written out. Our hope is that

this kind of updating will allow for a balance of CPU and I/O ac-

tivity, while deferring the writing of the most frequently updated

indexes.

7.4 METADATA INTERPRETATION

Since our system is self-describing, we use the class for each ob-

ject to interpret an object instance when it is being accessed or

updated. When performing queries, the number of classes in-

volved is generally small, so we expect our caching to remove

the I/O cost of bringing in the classes for each object. However,

there is a computational burden. We are not clear currently on

how gteat this computational burden is: so far we have chosen

to avoid it by means of specialized structures for accessing lexi-

con objects, while incurring it for the other objects. As dis-

cussed in section 4.1, a more rigorous object-oriented database

implementation than ours would encapsulate access to its objects

via methods. These methods could be compiled, requiring little

or no data structure navigation to process a method invocation.

7.5 FURTHER WORK

Although we believe there are many benefits arising ffom using

a unified object-oriented infrastructure, these benefits bring with

them a more complex implementation, and the requirement to

pay attention to many perfonuance details. We expect to have to

do much more work improving the performance of our cache.

WorKng in a complex programming environment with multiple

object types and inter-object references guarantees that there will

be issues involving dynamic memory management. We have

addressed some of these but expect the work in memory mrm-

agement to be on-going, coordinated with our work on cwhe
management. Finally, if the need arises, we may have to do ad-

ditional work in tuning the interpretation of metadata.

The major functional change we intend to work on next is to ex-

tend our system to handle distributed access. We have the re-

quirements defined for distribution, and have done some of the

design. We expect the implementation of a distributed AI-

STARS system to bring up many more perfotrnance issues.

170



8 DISCUSSION

8.1 RELATED WORK

Our model of Information Retrieval has much in common with

that developed for the EUROMATH project ~cALPlNES9].

Designed to support mathematicians in their research work

EUROMATH adopts an object-oriented approach to integrating,

within a uniform interface, a number of retrieval techniques for

share~ heterogeneous data. Like EUROMATH, AI-STARS

can be considered a “Knowledge Worker Support System, ” and

we see our own experience as affitming and extending the

mo&l proposed in [McALPINE89]. The fact that additional

consi&rations, such as ease of &ta distribution, security,

schema evolution and natural language processing support can

also be accommodated within the same basic model is, we feel,

indicative of the value of employing object-oriented techniques

within Information Retrieval applications.

Our work has also been influenced by the research on Informa-

tion Lens [MALONE87] and its successor, Object Lens

~A188], which explore the virtues of semi-structured informat-

ion objects as a medium of inter-personal communication f or

cooperative work. An important focus of this effort is informa-

tion filtering, the role instantiated by stored query views in our

system. Ln&ed, by associating views with individuals’ mail ad-

dresses, the AI-STARS system could be employed as an “Any-

one” Server ~ALONE87], actively broa&asting incoming arti-

cles to those parties registering specific interest.

The benefits of linking heterogeneous information objects (in-

chxling “concepts” connected by thesaurus relationships) have

long been a major theme in the work of Croft and his colleagues

[CROFT87], ~OMPSON89], [CROFT90]. Although we

have done some work on the integration of a thesaurus with our

query interface [ANICK90], we have not yet incorporated the

wide range of browsing mechanisms &veloped in systems like

13R.

The relationship between full-text indexing and hypertext has

been investigated by Coombs [COOMBS90]. The rich hypertext

environment of the IRIS Intermedia system, with its information

webs and within-article anchors provides a level of information

navigation not achievable solely with the field-object links cur-

rently available in AI-STARS.

[CELENTA.N090] employs object-oriented representational

techniques to encode domain knowledge in an office document

retrieval system, showing how knowledge of office procedures

and document relationships can add yet another dimension to ef-

fective document retrieval.

The use of stored queries has been further developed in the RU-

BRIC system [McCUNE%3]. RUBRIC adds a fuzzy logic

weighting scheme to stored query trees composed of words,

phrases and other stored queries, called “topics” in the system.

While the use of fuzzy Iogic is an intriguing enhancement, it is

unclear how much value it cars ultimately add in practice over

simpler Boolean concept trees, especially given the difficulty of

fine-tuning the weights. Since the precise intent of a “topic” is

likely to change from user to user, we currently opt to let users

do their own fine-tuning of Boolean stored queries at mn-tirne

via interactive query reformulation.

8.2 USER INTERFACE

One of the most difllcult aspects of complex system design is

constructing a user interface that hides that complexity from the

end-user. IrI [ANICK90], we describe how the Boolean interpre-

tation of natural language queries can be made accessible to the

user for query reformulation through a direct manipulation inter-

face. Our hypothesis is that by facilitating user controlled query

reformulation, the traditional shortcomings of Boolean query can

be overcome without recourse to more complicated and costly

retrieval models, such as the vector-space or probabilistic mod-

els [SALTON89]. Furthermore, in our application domain, users

often want the output sorted by temporal recency of the article 01

its frequency of use in problem solving, making it difficult to,

take direct advantage of the ranked output produced by these

other methods.

A second interface issue regards how much of the underlying,

object hierarchy the end-user should be aware of, The Object

Lens system 13A188] exposes the entire object hierarchy and al-

lows end-users full control over constructing and modifying

classes. Because of the security and consistency needs of the

AI-STARS database, we take a more conservative approach, di-

.iding the world into two sets of users: adminstrators andl

searchers. Administrators are responsible for modifying the

class hieratchy, defining fields, managing the knowledge bases,,

and creating stored query views representing areas of potential,

interest. For searchers, we “flatten” out the list of visible classes,

excluding system metadata and classes for which there are nc~

user accessible instances. User-visible classes have a set of vis-

ible fields, which may be used to construct queries. ‘Thus, the

searcher’s view of the database is as a set of subject areas, article

types and fields; one chooses the subject areas and classes of in-

terest, then constructs queries.

9 CONCLUSIONS

In this paper, we have touched upon a number of concerns that

arise when lexicon-assisted full-text Information Retrieval is ap-

plied to a large corporate text database that is dynamic, heteroge-

neous, and distributed. Notions from database theory and MEL

cial Intelligence, such as views, object caching @

self-describing representations, have played .an important role in

our current solution, as have hyperinfonnation concepts. With

an ever-increasing quantity of semi-structured information be-

coming available to organizations on-line, we believe that the

proper mix of these disciplines for a variety of real-world appli-

cations is likely to continue to be a major theme for Information

Retrievat research for some time to come.

171



ACKNOWLEDGEMENTS

The evolution of the ideas embodied in AI-STARS and its im-

plementation have been agroupeffofi. Jeffrey Robbins was the

principal designer andirnplementor of the original STARS sys-

tem. Jeff, along with Brysn Alvey, Norman Lastovica, and

James Wagner, of Digital’s Colorado SpMgs Customer Support

Center, are collaborating with Intelligent Infotrnation Applica-

tions Development Group members Suzame Artemieff, Jong

Kim, Clark Wright and the authors on the development of AL

STARS. The entke team’s contributions have been essentird for

the creation and realization of the ideas presented in this paper.

REFERENCES

[AHLSEN84] Ahlsen, M. , A. Bjomerstedt, A. Britts, S. Hulten,

and L. Soderlund, An Architecture for Object Management in

01S. ACM Transactions on Office Information Systems, 2(3),

1984.

[ANICK90] Anick, P. G., J. D. Brennan. R. A. Flynn, D. R.

Hanssen, B. Alvey and J. M. Robblns. A Direct Manipulation

Interface for Boolean Iixforrnation Retrieval via Natural Lan-

guage Query, in Proceedings of ACM/SIGJR ‘90, Brussels,

1990.

~ELKIN90] Belkin, N. J. and P. G. Marchetti. Determining

the Functionality and Features of an Intelligent Interface to an

Information Retrieval System, in Proceedings of ACM/SIGIR

’90, Brussels, 1990.

~ERTIN088] Befiino, E. et al. Query Processing in a Mukime-

dia Document System. ACM Transactions on Office Informat-

ion Systems, 6(l), 1988.

~ORGMAN89] Bergman, C. L. and C. T. Meadow. The De-

sign and Evaluation of a Front-End User Interface for Energy

Researchers. Journal of the American Society for Information

Science, 40, 1989, pp. 99-109.

~URKOWSK190] Burkowski, F. J. Surrogate Subsets: A Free

Space Management Strategy for the Jndex of a Text Retrieval

System, in Proceedings of ACM/SIGIR ’90, Brussels, 1990.

[CELENTAN090] Celentano, A., M. G. Fungini and S. Pozzi.

Knowledge-Based Retrieval of Office Documents, in Proceed-

ings of ACM/SIGIR ’90, Brussels, 1990.

[COOMBS90] Coombs, J. H. Hypertext, Full Text, and Auto-

matic Linking, in Proceedings of ACM/SIGIR ’90, Brussels,

1990.

[CROFT87] Croft, W. B. and R. T. Thompson. 13R: A New

Approach to the Design of Document Retrieval Systems. Jour-

nal of the American Society for Information Science, 38, 1987,

pp. 389-404.

[CROFT90] Croft, W. B. and R. Das. Experiments with Query

Acquisition and Use in Decument Retrieval Systems, in Pro-

ceedings of ACM/SIGIR ’90, Brussels, 1990.

[GOLDBERG83] Goldberg, A. and Robson, D. Smalltalk-80:

The Language and It: Implemmtation. Addison-Wesley, 1983.

[JARDINE71] Jardine, N. and C. J. van Rijsbergen. The Use of

Hierarchic Clustering in Information Retrieval. Information

Storage and Retrieval, 7(5), 1971, pp. 217-240.

[KAY80] Kay, M., Algorithm Schemata and Data Structures in

Syntactic Processing, Xerox Palo Alto Research Center, Tech

Report no. CSL-80-12, 1980.

[KROVETZ89] Krovetz, R. and W. B. Croft. Word Sense Dis-

ambiguation Using Machine Readable Dictionaries, in Proceed-

ings of ACM/SIG~ ’89, Cambridge, 1989.

~A188] Lai, K, W. Malone and K. Yu. Object Lens: A

“Spreadsheet” for Cooperative Work. ACM Transactions on Of-

fice Information Systems, October, 1988.

[MALONE87] Malone, T. W., K. R. Grant, F. A. Turbak, S. A.

Brobst and M. D. Cohen. Intelligent Information Sharing Sys-

tems. Communications of the ACM, 30(5), 1987.

[McALPINE89] McAlpine, G. and P. Jngwersen. Integrated In-

formation Retrieval in a Knowledge Worker Support System, in

Proceedings of ACM/SIGIR ’89, Cambridge, 1989.

[McCUNE83] McCune, B. P., R. M. Tong, J. S. Dean, D. G.

Shapiro. RUBRIC: A System for RuJe-based Information Re-

trieval. COMPSAC ‘83.

[MJ3ADOW89] Meadow, C. T., B. A. Cemy, C. L. Bergman

and D. O. Case. Online Access to Knowledge: System Design.

Journal of the American Society for Information Science, 40,

1989, pp. 86-98.

[NIELSEN89] Neilsen, J. Hypertext and Hypermedia. Aca-

demic Press, 1989.

[SALTON78] Salton, G. and A. Wong. Generation and Search

of Clustered Files. ACM Transactions on Database Systems,

3(4), 1978, pp. 321-346.

[SALTON89] Salton, G. Automatic Text Processing: the

Transformation, Analysis, and Retrieval of J.nfomlation by Com-

puter. Addison-Wesley. 1989.

[SALTON90] Srdton, G. and C. Buckley. Approaches to

Global Text Analysis, in Proceedings of ASIS ’90, Toronto,

1990.

~OMPSON89] Thompson, R. H. and W. B. Croft. Support

for Browsing in an Intelligent Text Retrieval System. Intern-

ational Journal of Man-Machine Studies, 30, 1989, pp. 639-668.

[ZDONIK90] zdon~ S. B. and D. Maier. Fundamentals of

Object-Oriented Databases, in S. B. Zdonik and D. Maier, Read-

ings in Object-Oriented Database Systems. Morgan Kaufmarm:

San Mateo, 1990.

~ATE90] Date, C. J. An Introduction to Database Systems.

Addison-Wesley, 1990.

172


