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ABSTRACT
The task of retrieving information that really matters to
the users is considered hard when taking into consideration
the current and increasingly amount of available informa-
tion. To improve the effectiveness of this information seeking
task, systems have relied on the combination of many pre-
dictors by means of machine learning methods, a task also
known as learning to rank (L2R). The most effective learning
methods for this task are based on ensembles of tress (e.g.,
Random Forests) and/or boosting techniques (e.g., Rank-
Boost, MART, LambdaMART). In this paper, we propose a
general framework that smoothly combines ensembles of ad-
ditive trees, specifically Random Forests, with Boosting in
a original way for the task of L2R. In particular, we exploit
out-of-bag samples as well as a selective weight updating
strategy (according to the out-of-bag samples) to effectively
enhance the ranking performance. We instantiate such a
general framework by considering different loss functions,
different ways of weighting the weak learners as well as dif-
ferent types of weak learners. In our experiments our rankers
were able to outperform all state-of-the-art baselines in all
considered datasets, using just a small percentage of the
original training set and faster convergence rates.
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1. INTRODUCTION
Today, we live in an era of massive available information,

with a never-seen-before (and increasing) rate of information
production. It is not surprising that such a scenario imposes
hard to tackle challenges. For example, the availability of
massive amounts of data is not of great help if one is not
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able to effectively access relevant information that satisfies
her information needs. Retrieval systems, such as search en-
gines, question and answer, and expert search systems serve
exactly this purpose: given an information need, expressed
in the form of a query, and a set of possible information
units (e.g., documents), the main goal is to provide an or-
dered list of information units according to their relevance
with relation to the query. The desideratum is to increase
the likelihood of satisfying an user’s information need in an
effective manner, which translates to maintain the truly rel-
evant results on top of the less relevant ones.

One of the key aspects that influence retrieval systems
is how they determine the relative relevance among can-
didate results in order to produce a ranked list based on
their relevance with regard to some information need, posed
in the form of a query. The quality of those rankings is
thus paramount to guarantee efficient and effective access
to relevant information (and, hopefully, the satisfaction of
the user’s information needs). Several approaches to gener-
ate such ranked lists do exist, being traditionally performed
by the specification of a function that is able to relate some
user’s query to the set of known (indexed) information units.
Usually, ranking functions consider several features, such
as those that rely on the relatedness between query and
possible results (e.g., BM25, edit distance, similarities in
vector space models) or on link analysis information (e.g.,
PageRank, HITS). Such features must be somehow com-
bined to provide accurate relevance scores (and, thus, a
properly ranked list of results).

Unfortunately, to specify and tune ranking functions turns
out to be a major problem, specially when the number of fea-
tures becomes large, with non-trivial interactions. This mo-
tivates the use of supervised machine learning techniques to
devise such functions, since machine learning techniques are
effective to combine multiple pieces of evidence towards opti-
mizing some goal. This is the direction pursued by Learning
to Rank (L2R) techniques, the primary focus of this work.

More specifically, based on a set of query-document pairs
with known relevance judgments, the goal is to learn a func-
tion f(d, q) that is able to accurately devise the relevance
scores for a document d, with respect to a query q. Due to its
importance, several approaches for L2R have been proposed
in the literature. Ensemble methods, such as RankBoost [7],
AdaRank [32] and Random Forests [1] (and the variations
thereof, such as [11]), are deemed to be the techniques of
choice for L2R, achieving higher effectiveness in published
benchmarks when compared to other algorithms [11, 3]. Both
RankBoost and AdaBoost are based on boosting [26], an
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iterative meta-algorithm that combines a series of weak-
learners in order to come up with a strong final learner, fo-
cusing on hard-to-classify regions of the input space as the
iterations go by. The strategies based on Random Forest
rely on the combination of several decision trees, learned us-
ing bootstrapped samples of the training set, together with
additional sources of randomization (such as random fea-
ture selection) to produce decorrelated-correlated trees—a
requirement to guarantee its effectiveness.

In this work, we propose a general framework for L2R,
named Generalized BROOF-L2R that explores the advan-
tages of boosting and Random Forests, by combining them
in a non-trivial fashion. More specifically, at each itera-
tion of the boosting algorithm, a Random Forest model is
learned, considering training examples sampled according to
a probability distribution. Such probability distribution is
updated at the end of each iteration, in order to force the
subsequent learners to focus on hard to classify regions of
the input space. In particular, the use of RF models as
weak learners has its own advantages, since it is capable of
providing robust estimates of expected error through out of
bag error estimates and, by means of selectively updating
the weights of out of bag samples, one can effectively slow
down the tendency of boosting strategies to overfit (a well
known phenomenon that becomes critical as the noise level
of the dataset being analyzed increases).

As we shall detail in the next sections, the key aspects of
the proposed Generalized BROOF-L2R have to do with how
to update the probability distribution and how such update
should be performed, as well as the underlying ranker to be
used to produce the final set of results. In this work, we dis-
cuss a set of possible instances of the proposed general frame-
work, in order to highlight the behavior and potential of the
proposed L2R solution. In fact, the instances that makes
use of out-of-bag samples and optimizes through gradient
descent [12] over the residues is able to achieve the strongest
results, in terms of Mean Average Precision (MAP) and Nor-
malized Discounted Cumulative Gain (NDCG), with signif-
icant improvements over the explored adversary algorithms,
considering 5 traditional benchmark datasets. Our alterna-
tive instances were also able to achieve competitive (or su-
perior) results when compared to the baselines. Moreover,
as our experimental evaluation shows, our approaches based
on the proposed general framework are able to produce top-
notch results with substantially less training samples when
compared to the baselines. Such data efficiency is key to
guarantee practical feasibility as obtaining labeled data is
still a costly process.

To summarize, the contributions of this work are three-
fold. We provide a general framework for L2R that is able to
combine two strong methods (boosting and Random Forests)
in an original way, which can be specialized in several ways
and produce highly effective L2R solutions. We propose and
discuss a set of alternative instantiations of such a frame-
work, in order to highlight the behavior and effectiveness of
each possible choice. Finally, we advance the state of the
art in L2R by means of some instantiations of our proposed
framework that are able to outperform top-notch solutions,
according to an extensive benchmark evaluation considering
five datasets and seven L2R baseline algorithms.

Roadmap: Section 2 discusses related work. Section 3
presents our proposed Generalized BROOF-L2R framework,
as well as outlines our proposed set of possible instantiations

of the proposed framework. We clarify our experimental
setup and discuss the obtained results in Section 4. Finally,
Section 5 concludes and highlights some future work.

2. RELATED WORK
Learn to Rank (L2R) [17] is the focus of active devel-

opments due to its cross-industry and society importance.
Here, we review some relevant work on this topic, position-
ing our work in the literature.

L2R attempts to improve traditional strategies for ranking
query results according to some relevance criteria, by explor-
ing supervised machine learning algorithms to combine var-
ious relevance related features into a more effective ranking
function, based on a set of queries and associated documents
with relevance judgments. L2R have been successfully ap-
plied to a variety of tasks, such as Question and Answer [28],
Recommender [29, 16] and Document Retrieval [14] systems.

Solutions specifically tailored to improve document re-
trieval have been extensively studied in the past years [4,
19]. In general, there are three major L2R approaches: the
pointwise, pairwise and listwise approaches. Pointwise L2R
algorithms are probably the simplest (yet successful) ap-
proaches, directly translating the ranking problem to a clas-
sification/regression one. In this case, the training set for the
supervised learning algorithm consists of pairs 〈qi, (xi,j , yi,j)〉
of queries qi and a list of associated documents xi,j , each one
with its relevance judgment yi,j . In this case, each triple
〈qi, xi,j , yi,j〉 is considered to be a single training example.
The goal is to learn a classifier/regressor model capable of
accurately predicting the relevance score of a document x′,
with relation to a query qi, thus producing a partial or-
dering over documents. Pairwise algorithms, on the other
hand, transform the ranking problem into a pairwise classifi-
cation/regression problem. In this case, learning algorithms
are used to predict orders of document pairs, thus explor-
ing more ground-truth information than the pointwise ap-
proaches. Unlike both mentioned strategies, the listwise ap-
proaches essentially treat 〈qi, (xi,j , yi,j)j〉 as a single training

instance (that is, considering a ranked list of documents for a
query qi as a single training example), capturing more infor-
mation from the training set (namely, group structure) than
the previous alternatives. Of course, being able to better
capture training data information when learning a ranking
function comes with a price: usually, pairwise and mainly
listwise approaches are harder to train, since they require
more sophisticated (e.g. query-level) loss functions [17].

In terms of the state-of-the-art in L2R, methods based
on Random Forests (RFs) and boosting were shown to be
strong solutions according to already published benchmarks
[22, 11, 3]. More specifically, RFs (and the variations thereof
[11]) as well as boosting algorithms such as Gradient Boosted
Regression Trees (GBRT) [9] and LambdaMART [33], are
considered by many [3, 22, 18] to be the state of the art in
L2R tasks. This work is based on both RFs and boosting
strategies. Thus, in the following we briefly review some
previous literature on them.

The RF algorithm was proposed in [1] as a variation of
bagging of low-correlated decision/regression trees, built with
a series of random procedures, such as bootstrapping of
training data and random attribute selection. The popu-
larity of RFs is highlighted by their successful application in
several domains, such as tag recommendation [3], object seg-
mentation [27], human pose recognition [30] and L2R [3, 22],

96



to name a few. Thus, it is natural to expect several exten-
sions to it, in order to improve its effectiveness even more.
One such extension is the extremely randomized trees (ERT)
model [10] and its application to L2R [11]. The ultimate
goal of ERTs is to reduce the correlation between the trees
composing the ensemble, a requirement to guarantee high
effectiveness of RF models. This is achieved by modifying
the RF algorithm in, essentially, two aspects: each tree is
learned considering the entire training set, instead of boot-
strapped samples. Furthermore, in order to determine the
decision splits after the random attribute selection, instead
of selecting a cut-point that optimizes node purity, ERTs
simply select a random cut-point threshold. This ultimately
reduces tree correlation, potentially improving generaliza-
tion capability of the learned model. As a final remark,
such RF based models can be regarded as nonlinear point-
wise approaches for L2R.

Boosting strategies have also been shown to produce state
of the art results on L2R tasks, with GBRT [9] (a.k.a, MART1

(Multiple Additive Regression Trees) and Lambda-MART [33]
as the two perhaps most widely used strategies. Both algo-
rithms are additive ensembles of regression trees. GBRT
learns a ranking function by approximating the root mean
squared error (RMSE) on the training set through gradient
descent. As with typical boosting algorithms, the goal of
GBRT is to focus on regions of the input space where pre-
dicting the correct relevance score is a hard task. Since this
algorithm aims at approximating the RMSE on the train-
ing data, it can be regarded as a pointwise approach. The
Lambda-MART algorithm, on the other hand, is a listwise
approach that directly optimizes the ranked list of docu-
ments according to some retrieval measure, such as NDCG
(instead of simply approximating the RMSE of the train-
ing documents relevance scores in isolation). To this end,
Lambda-MART learns a ranking function that generates a
list of relevant documents to a query that is as close as pos-
sible to the correct rank. As GBRT, it is based on gradient
descent to optimize such metric.

Due to the successful application of RFs and boosting
in machine learning tasks (such as classification and L2R),
some authors propose to use both strategies in order to come
up with better learned models. For example, in [22] GBRTs
and RFs are independently explored in order to learn better
ranking functions. More specifically, the GBRT model is
initialized with the residues of the RF algorithm, followed
by the traditional iterations of a GBRT model. The main
motivation behind this approach is that RFs are less prone
to overfitting, being ideal to initialize the GBRT algorithm
instead of the usual uniform initialization. According to the
reported benchmark, such strategy was shown to be superior
to the GBRT algorithm.

Unlike [22], in [21] the authors propose an enhanced RF
model for classification by boosting the decision trees com-
posing the ensemble. In this case, each tree is learned with
training examples weighted by wi, resembling boosting by
re-weighting. In particular, training instances with higher
weights influence more when determining the decision nodes
(and cut-point threshold definition). Furthermore, each tree
is evaluated according to this weighted training set, which
enables the ensemble to focus on hard-to-predict regions.
The observed effect of such combination is the ability to

1From now on, we will use MART and GBRT as synonyms.

come up with high quality models with substantially reduced
training sets. As we shall detail, our proposed framework is
tailored for the L2R task and, instead of introducing boost-
ing into random forests, we apply boosting to several RF
models, which act as weak learners.

Differently from the aforementioned previous work, we
base ourselves in a recent development for text classification,
namely, the BROOF algorithm [25]. In BROOF algorithm,
RF and boosting strategies are tightly coupled in order to
exploit their unique advantages: by exploiting out of bag er-
ror estimates as well as selectively updating training weights
according to out of bag samples, the BROOF model is able
to focus on hard-to-classify regions of the input space, with-
out being compromised by the boosting tendency to overfit.
This ultimately leads to competitive results when compared
to state of the art algorithms. In here, we generalize such
approach specifically for L2R tasks in order to come up with
better ranking functions: the Generalized BROOF-L2R. As
we shall see, this general framework is flexible enough so
that it can be instantiated in several ways, exploiting dis-
tinct characteristics of the ranking tasks being addressed. In
special, with this general framework we are able to achieve
state of the art results, with rankers superior to the top
notch algorithms proposed so far in all evaluated cases.

3. GENERALIZED BROOF-L2R
In this section, we detail our proposed Generalized BROOF-

L2R framework. Briefly speaking, this framework allows the
definition of learners based on the combination of Random
Forests and the Boosting meta-algorithm, in a non-trivial
fashion. As we shall see, this framework establishes a set of
operations to be performed during the boosting iterations,
in a well defined order of application. The goal is to drive
the weak learners towards hard to predict regions of the un-
derlying data representation, in order to come up with an
optimized additive combination of weak learners to form the
final predictor. The extension points of the proposed frame-
work can produce a heterogeneous set of instantiations that
typically produces very competitive results for L2R. In the
following, we present the generalized framework for L2R, as
well as some pointwise instantiations. We stress that the set
of instantiations discussed here is far from exhaustive, being
possible to elaborate even better possibilities in future work.

3.1 Framework Description
Based on the BROOF algorithm, proposed in [25] to solve

text classification tasks, we here extend the proposed ideas
in order to exploit the combination of Random Forests and
Boosting for the specific task of L2R. However, instead of
directly adapting the original algorithm to a single L2R
method, we here generalize it into an extensible framework
that is flexible enough to permit a series of possible in-
stantiations. The proposed framework, named Generalized
BROOF-L2R is an additive model composed of several Ran-
dom Forest models, which act as weak-learners. Each fitted
model influences the final decision proportionally to its ac-
curacy, focusing — as the boosting iterations go by — on
ever more complex regions of the input space, in order to
drive down the expected error. As usual in a boosting strat-
egy, two aspects play a key role: (i) the influence βt of each
learner in the fitted additive model, and (ii) the strategy to
update the sample distribution wi,j in each iteration t of the
boosting meta-algorithm.
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The basic structure of the framework is outlined in Algo-
rithm 1, together with a brief explanation of what we call
its extension points—the general functions exploited by the
framework to determine how the optimization process works.
There are 5 general functions whose purpose is to specify the
weight distribution update process, the error estimation and
the underlying input representation. Particularly, the use of
the Random Forest classifier as a weak learner extends the
range of possible instantiations of the framework, since it
enables us to come up with better error rate estimates and
a more selective approach to update the examples’ weights,
through the use of the so-called out-of-bag samples.

Let Qtrn = {(qi, {xi,j , yi,j})|mij=1} be the training set, de-
scriptively the set of documents xi,j , with associated graded
relevance judgment yi,j with relation to a query qi. Ini-
tially, associate a weight wi,j with each training example
xi,j according to the general function InitializeWeights.
For each boosting iteration t, the input data representation
may be updated, through the general function UpdateEx-
amples. This general function can considerably extend the
range of possible implementations of the framework, allow-
ing us for example, to instantiate a Gradient Boosting Ma-
chine algorithm [20, 12]. Then, a Random Forest regressor
model RFt is learned considering this data representation.

In order to evaluate the generalization capabilities of RFt,
predict ŷ for a set of training documents given by Valida-
tionSet. The output of this step is paramount to guide
the optimization process towards hard to classify regions of
the input space. Although being of great importance to
boosting effectiveness, this focus on hard to classify regions
of the input space may also be harmful to the optimiza-
tion process, specially when dealing with noisy data. As
noted by [8, 13], boosting tends to increase the weights of
few hard-to-classify examples (e.g., noisy ones). Thus, the
decision boundary may only be suitable for those noisy re-
gions of the input space while not necessarily general enough
for general examples. In order to offer a greater robustness
against such a drawback, our framework exposes an interme-
diary step related to how the examples weights get updates
as the boosting iterations go by. The general function Val-
idationSet serves the purpose of specifying which training
examples should be used during error estimation and weights
update. The main goal here is to provide some mechanism
to slowdown overfitting as well as provide more robust esti-
mates of error weight (to capture the generalization power
of each weak learner and to determine how they should in-
fluence the final predictor).

The selected training examples are then used to compute
both the error rate of the model and the influence βt of
the weak learner on the final model, through Compute-
LearnerWeights. Finally, the training examples’ weight
distribution is updated by UpdateExampleWeights. This
update process should, ideally, take into account the gener-
alization capability of the current weak learner RFt, as well
as how hard is to correctly predict the ranked lists of the
validation examples. Validation examples whose outcome
is hard to predict by an accurate learner should influence
more in the following boosting iterations. An early stopping
strategy is adopted, terminating the boosting iterations if
the current learner has an estimated error rate greater than
0.5. The final prediction rule is then given by an additive
combination of the weak-learners RFt, weighted by βt.

Instantiation
Description

Extension Point Variation

BROOFabsolute

InitializeWeights Uniform
UpdateExamples Identity
ValidationSet OOB
ComputeLearnerWeights Absolute
UpdateExampleWeights OOB

BROOFmedian

InitializeWeights Uniform
UpdateExamples Identity
ValidationSet OOB
ComputeLearnerWeights Median
UpdateExampleWeights OOB

BROOFheight

InitializeWeights Uniform
UpdateExamples Identity
ValidationSet OOB
ComputeLearnerWeights Height
UpdateExampleWeights OOB

BROOFgradient

InitializeWeights Uniform
UpdateExamples Residue
ValidationSet OOB
ComputeLearnerWeights Constant
UpdateExampleWeights Constant

Table 1: Generalized BROOF-L2R: Possible instan-
tiations.

3.2 Possible Instantiations
In this section, we describe a set of possible instantiations

of the proposed framework. Due to space limitations, we
here focus on four possible instantiations, stressing that this
is far from being an exhaustive list of possibilities. In fact,
we consider some representative alternatives that highlight
the flexibility of the proposed framework to produce L2R
solutions that typically produces very competitive results.

In order to induce a L2R algorithm based on the Gener-
alized BROOF-L2R framework, one needs to specify the 5
generic functions discussed earlier. Our proposed instantia-
tions can be found in Table 1. In that table, we specify which
alternative was chosen for each generic function, providing
details on how they are implemented.

As it can be observed, BROOFabsolute, BROOFmedian and
BROOFheight rely on out-of-bag samples in order to drive
the boosting meta-algorithm further on hard to predict re-
gions of the input space. Such samples are explored when
estimating the weak-learner’s error rate through out-of-bag
estimates. Recall that in boosting, the usual way of assess-
ing the errors is to use the training to measure the error.
This is too optimistic, since the same data that was used
to train the model is used as a measure of error. By using
the out-of-bag samples we are able to produce better error
estimates, since the out-of-bag are an independent set of
samples that was left apart during the construction of the
model. Thus, it is able to better approximate the expected
error rate of the learner and is a more reliable measure than
the usual training error rate [1].

In addition, the out-of-bag errors estimates are used to
identify the weights’ distribution that should be applied
on following iterations of the boosting procedure; allowing
the model to focus on hard to predict regions of the in-
put space. We hypothesize that such selective update strat-
egy can slowdown the algorithm’s tendency to overfit. The
major difference between them relates on how each weak-
learner influence on the final predictor. The proposed in-
stantiations can be found outlined in Algorithms 2 to 4.
More specifically, we considered the absolute regression loss,
|yi,j − ŷi,j |, computed for the out-of-bag samples. We call
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Algorithm 1 Generalized BROOF-L2R: Pseudocode

1: function Fit(Qtrn = {(qi, {xi,j , yi,j}|
mi
j=1}, max iter=M , num trees=N , shrinkage=η)

2: wi,j =InitializeWeights(Qtrn)
3: x′i,j ← yi,j

4: for each t = 1 to M do
5: x′i,j ←UpdateExamples(Qtrn , x

′
i,j)

6: RFt ← RFRegressor .Fit({(x′i,j , yi,j)}, N)

7: {(ŷti,j , y
t
i,j)} ←ValidationSet(RFt, Qtrn)

8: 〈eti,j , βt〉 ←ComputeLearnerWeights(RFt, {(ŷti,j , y
t
i,j)})

9: if
∑
i,j e

t
i,jwi,j ≥ 0.5 then

10: break
11: end if
12: wi,j ←UpdateExampleWeights(eti,j , βt, {(ŷ

t
i,j , y

t
i,j)})

13: end for
14: return {(RFt, βt)}|Mt=1
15: end function

Function Description

InitializeWeights
Initial weights associated to each example, ressambling boosting by re-weighting.
Uniform: Equal weights for each example, wi,j = 1∑

i,j mi,j
.

Random: Randomly initialized weights, wi,j =Random(), 0 ≤ wi,j ≤ 1.

UpdateExamples
Determines the underlying representation of the input data, directly defining what the algorithm should
optimize for.
Identity: Maintains the original representation of input data, x′i,j = xi,j .

Residue: Optimizes for the residues: x′i,j =

{
x′i,j − ηŷ

t−1
i,j if t > 1

yi,j otherwise
, where η is a shrinkage factor.

ValidationSet
Determines which training data will be considered during weight update and error rate estimation, with
direct influence on the algorithm robustness to overfitting.
OOB: The set of out of bag examples OOBt related to RFt.
Train: The entire training set Qtrn .

ComputeLearnerWeights

Determines how to compute the influence of the current weak learner on the final predictor.
Absolute: βt = η ε

1−ε , where ε =
∑
i,j e

t
i,jwi,j , e

t
i,j = |yi,j − ŷi,j | and η is a shrinkage factor.

Median: Similarly to the above variant, βt = η ε
1−ε and ε =

∑
i,j e

t
i,jwi,j . However, the errors are given

by eti,j = |Median(Rŷi,j ) − ŷi,j | where Ri denotes the list of predictions ŷi,j associated to documents

whose real relevance score is i.
Height: Similarly to the variants above, both βt = η ε

1−ε and ε =
∑
i,j e

t
i,jwi,j . Unlike them, eti,j ={

# irrelevant documents above xi,j if xi,j is relevant
# relevant documents below xi,j otherwise

, in the ordered list of results.

Constant: Produces constant coefficients, βt = η.

UpdateExampleWeights

Specifies how to update the training examples weights to be used in the next iteration.
OOB: Updates the weights associated to the out of bag samples according to βt and the difficulty involved

in predicting the samples’ outcomes. More specifically, wi,j = wi,jβ
1−eti,j
t

Train: Updates the weights associated to the entire training set. Similarly to the above variant, the
update strategy considers both the coefficient βt and the error eti,j .
Constant: Keeps the same weights during the boosting iterations, wi,j = wi,j .

this variant BROOFabsolute. We also considered two other
alternatives, that rely on the position of documents in the
predicted ranked lists. One alternative, named BROOF-
L2Rmedian, relies on the intuition that documents with the
same relevance judgment should be as nearer as possible to
each other on the current ranked list. We thus consider as
loss |Median(Rŷi,j )− ŷi,j | where Ri denotes the list of pre-
dictions ŷi,j associated to documents whose real relevance
score is i. The second alternative, named BROOFheight,
is inspired on ideas of [5]. We define the height of a docu-
ment xi,j as the total number of irrelevant documents ranked
higher then xi,j if xi,j is relevant, or the total number of rel-
evant documents ranked below xi,j if it is an irrelevant one.

Finally, in order to illustrate the generality of our pro-
posed framework, we provide a fourth instantiation, BROOF-

gradient, that resembles the gradient boosting machines (GBM),
that optimizes through gradient descent [12] over the resi-
dues. More specifically, by a suitable combination of alter-
native implementations for each general function outlined in
Algorithm 1, one can come up with an algorithm that could
be named Gradient Boosted Random Forests (GBRF). This

is achieved by considering an alternative representation of
input data, that optimizes for the residues, such as y− ŷ, in-
stead of the original input representation, updating them ac-
cording to the negative gradient of the cost function (in this
case, RMSE). Such alternative is outlined in Algorithm 5.

As we shall see in our experimental evaluation (Section 5),
our proposed instantiations achieve very strong results com-
pared to seven state-of-the-art baselines algorithms in five
representative datasets. In particular, BROOFabsolute and
BROOFgradient were shown to be the strongest algorithms,
obtaining significant improvements over the best baselines.

4. EXPERIMENTAL EVALUATION
We conducted extensive experiments in well-known L2R

benchmarks. In the following, we describe the characteris-
tics of the used datasets, the baseline algorithms, the exper-
imental protocol/setup and the experimental results.

4.1 Datasets
The corpus we use are freely available online for scientific

purposes. Such datasets can be divided into two groups
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Algorithm 2 BROOFabsolute: Pseudocode

1: function Fit({(qi, {xi,j , yi,j}|
mi
j=1}, M , N , η)

2: wi,j = 1∑
i,j mi,j

3: x′i,j ← yi,j

4: for each t = 1 to M do
5: x′i,j ← xi,j

6: RFt ← RFRegressor .Fit({(x′i,j , yi,j)}, N)

7: {(ŷti,j , y
t
i,j)} ← RFt.OOB

8: eti,j ← |yi,j − ŷi,j |
9: ε←

∑
i,j e

t
i,jwi,j

10: βt ← η ε
1−ε

11: if ε ≥ 0.5 break

12: wi,j ← wi,jβ
1−eti,j
t

13: end for
14: return {(RFt, βt)}|Mt=1
15: end function

Algorithm 3 BROOFmedian: Pseudocode

1: function Fit({(qi, {xi,j , yi,j}|
mi
j=1}, M , N , η)

2: wi,j = 1∑
i,j mi,j

3: x′i,j ← yi,j

4: for each t = 1 to M do
5: x′i,j ← xi,j

6: RFt ← RFRegressor .Fit({(x′i,j , yi,j)}, N)

7: {(ŷti,j , y
t
i,j)} ← RFt.OOB

8: eti,j ← Median(pos(yi,j)− pos(ŷi,j))

9: ε←
∑
i,j e

t
i,jwi,j

10: βt ← η ε
1−ε

11: if ε ≥ 0.5 break

12: wi,j ← wi,jβ
1−eti,j
t

13: end for
14: return {(RFt, βt)}|Mt=1
15: end function

considering the relevance judgments and their sizes. The two
largest datasets contain 〈query, document〉 pairs with five
relevance levels, ranging from 0 (completely irrelevant) to 4
(highly relevant). In this group we have one dataset from the
“YAHOO! Webscope Learning to Rank Challenge”, divided
into three partitions for training, validation and test. The
second largest dataset, WEB10K, consists of 10, 000 queries
released by Microsoft. In contrast to the YAHOO! datasets,
the Microsoft dataset is partitioned into 5 folds for cross-
validation purposes, with 3 partitions used for training, 1
for validation and 1 for test.

The second group of datasets corresponds to well-known
LETOR 3.0 Topic distillation tasks, TD2003 and TD2004
(a.k.a., informational queries), of the Web track of the Text
Retrieval Conference 2003 and 2004. These datasets con-
tain binary relevance judgments. Similarly to the WEB10K
benchmark, these datasets are partitioned into 5 folds to be
used in a folded cross-validation procedure.

For comparative purposes, considering that the Microsoft
and LETOR datasets were designed for a folded cross-vali-
dation procedure, we applied this same strategy to the YA-
HOO! dataset by merging the original partitions into a single
set, and splitting the sorted queries into 5 folds, distributed
using the same proportions: 3 folds for training, 1 for vali-
dation and 1 for test. We report results for both splits: the
original one (called YAHOOV1S2) and the new 5-fold split
(called YAHOOV1S2-F5).

4.2 Baselines
In our experiments we consider as baselines freely avail-

Algorithm 4 BROOF-L2Rheight: Pseudocode

1: function Fit({(qi, {xi,j , yi,j}|
mi
j=1}, M , N , η)

2: wi,j = 1∑
i,j mi,j

3: x′i,j ← yi,j

4: for each t = 1 to M do
5: x′i,j ← xi,j

6: RFt ← RFRegressor .Fit({(x′i,j , yi,j)}, N)

7: {(ŷti,j , y
t
i,j)} ← RFt.OOB

8: eti,j ←
{

# irrelevant documents above xi,j if xi,j is relevant
# relevant documents below xi,j otherwise

9: ε←
∑
i,j e

t
i,jwi,j

10: βt ← η ε
1−ε

11: if ε ≥ 0.5 break

12: wi,j ← wi,jβ
1−eti,j
t

13: end for
14: return {(RFt, βt)}|Mt=1
15: end function

Algorithm 5 BROOFgradient: Pseudocode

1: function Fit({(qi, {xi,j , yi,j}|
mi
j=1}, M , N , η)

2: wi,j = 1∑
i,j mi,j

3: x′i,j ← yi,j

4: for each t = 1 to M do

5: x′i,j ←
{
x′i,j − ηŷ

t−1
i,j if t > 1

yi,j otherwise

6: RFt ← RFRegressor .Fit({(x′i,j , yi,j)}, N)

7: {(ŷti,j , y
t
i,j)} ← RFt.OOB

8: eti,j ← |yi,j − ηŷi,j |
9: ε←

∑
i,j e

t
i,jwi,j

10: βt ← η
11: if ε ≥ 0.5 break
12: wi,j ← wi,j
13: end for
14: return {(RFt, βt)}|Mt=1
15: end function

able implementations of state-of-the-art L2R methods, in-
cluding AdaRank (with MAP and NDCG as loss functions),
Random Forests, SVMrank, MART, LambdaMART and Rank-
Boost. We used the RankLib2 (under the Lemur project)
implementations of RankBoost, MART and LambdaMART.
For AdaRank we used the implementation freely available
at Microsoft Research3. For SVMrank, we used the origi-
nal implementation of [15]4. Finally, for Random Forests,
we used the implementation available in Scikit-Learn[24] li-
brary, which is also the basis of our implementations.

4.3 Experimental Protocol and Setup
To validate the performance of our approaches, we use

two statistical tests to assess the statistical significance of
our results, namely, the Wilcoxon signed-rank test and the
paired Student’s t-test. We consider the Wilcoxon signed-
rank test since it is a non-parametric statistical hypothesis
testing procedure that requires no previous knowledge of the
samples distribution. In fact, some authors believe that it is
one of the best choices for the analysis of two independent
samples [6]. However, there is also some discussion in the
literature favoring the Student’s t-test when comparing L2R
methods [23]. Due to the lack of consensus, we perform our

2http://sourceforge.net/p/lemur/wiki/RankLib/
3http://research.microsoft.com/en-us/downloads/
0eae7224-8c9b-4f1e-b515-515c71675d5c/
4https://www.cs.cornell.edu/people/tj/svm light/svm
rank.html
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analysis with both tests, considering a two-sided hypothesis
with significance level of 0.95% in both tests.

The statistical tests are computed over the values for Mean
Average Precision (MAP) and the Normalized Discounted
Cumulative Gain at the top 10 retrieved documents (here-
after, NDCG@10), the two most important and frequently
used performance metrics to evaluate a given permutation
of a ranked list using binary and multi-relevance order [31].
To compute these metrics we used the standard evaluation
tool available for the LETOR 3.0 benchmark (for binary
datasets), as well the tool available for the Microsoft dataset
for all multi-label relevance judgment datasets 5. For MAP,
let Q be the set of all queries. These tools simply compute

MAP =
∑
q∈Q

AveragePrecision(q)

|Q| .

Regarding NDCG, we assume that NDCG@p is 0 (zero)
for empty queries, i.e., queries with no relevant documents.
Some of the available evaluations tools (e.g., the one from
YAHOO!) assume the value of 1 for these cases, which may
lead to higher values of NDCG [2]. We chose to standardize
this issue, using the same criterion used by most evaluation
tools, e.g., those available for the Letor (3.0 and 4.0) and
Microsoft datasets, in order to allow fairer comparisons. Ac-
cordingly, let IDCGp be the maximum possible discounted
cumulative gain for a given query. These tools implement
NDCG@p as follows:

NDCG@p =
DCGp

IDCGp
,where DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
.

In terms of algorithm tuning, we follow the usual pro-
cedure of tuning the hyper-parameters using training and
validation sets. Considering the Random Forest based ap-
proaches we vary the number of trees ranging from 10 to
1000. We achieved convergence around 300 trees, We also
optimized the percentage of features to be considered as can-
didates during node splitting, as well as the maximum al-
lowed number of leaf nodes. The optimal values were 0.3
and 100, respectively.

For BROOFabsolute, BROOFmedian and BROOFheight, we
limited the number of iterations to 500, reminding that the
algorithms have an early stopping criterion that prevents
further boosting iterations when the error rate exceeds 0.5.
On average, our strategies converge at about 15 iterations
on the LETOR datasets, and around 5 to 10 iterations on
the multi-relevance judgment datasets. An exception was
BROOFgradient which converged at about 100 iterations for
the largest datasets.

Concerning the SVMrank baseline, we favored the use of
a linear kernel considering the fact that we verified in our
analysis that a polynomial kernel is infeasible on large scale
benchmarks such as WEB10K. The cost parameter C was
calibrated using the training and validation sets with the
explored values: 0.001, 0.01, 0.1, 1, 10, 100 and 1000. For
the boosting methods Mart and LambdaMART, we tuned,
always considering the validation set, the number of itera-
tions ranging from one to a hundred, with a step of 1, and
then scaling it up to 1000 iterations, with steps of 100. For
the shrinkage factor of the predictive models, we tested the

5Reminding that, at the time of the writing of this paper,
the evaluation tool used in the YAHOO! competition was
not available online.

values of 0.025, 0.05, 0.075 and 0.1. The best found values
for the MART and LambdaMART were ensembles of 1000
trees with shrinkage factor η of 0.1. For the AdaRankMAP ,
AdaRankNDCG@5 and for the RankBoost algorithm, similar
procedures were performed in the validation set to configure
the number of iterations.

Finally, we performed 5, 10 and 30 runs of the 5-fold cross
validation procedure for WEB10K, YAHOO! and LETOR
datasets, respectively. The differences in the number of rep-
etitions are due to the size of the datasets and the need to
properly address the variance of the results. The reported
results on Tables 2 and 3 are the average of all these runs,
being the statistical tests applied to these results.

4.4 Results
In this section we analyze our proposals in terms of effec-

tiveness, comparing them to the 7 explored baseline algo-
rithms on the 5 described datasets. The results are reported
on Tables 2 and 3.

We start by considering the MAP metric (Table 2). Briefly,
the MAP results show that, overall, our proposed framework
outperforms or ties with the strongest baselines in all cases.
More specifically, with the TD2003 dataset, BROOFheight

outperformed the strongest baseline (RF) considering both
statistical tests, with BROOFabsolute and BROOFmedian as
the winners according to at least one statistical test. In this
dataset, BROOFgradient was statistically tied with the best
baseline. Considering TD2004, BROOFabsolute was consid-
ered the top performer amongst the proposed solutions, be-
ing tied with the strongest baseline – RankBoost – in this
dataset. Regarding the WEB10K dataset, we can see that
BROOFgradient was the top performer, according to both
statistical tests, being superior to MART, the strongest base-
line. Finally, in the YAHOOV1S2 dataset all four proposed
algorithms were statistically superior to the strongest base-
line (RF) according to both statistical tests, whereas in the
YAHOOV1S2-F5 dataset BROOFgradient was the best ap-
proach. In sum, according to the MAP metric, our results
clearly show that the proposed instantiations of the General-
ized BROOF framework produced very competitive results
as the best algorithm, being superior in the majority of the
cases (and tying in the others) – a very significant result.

Turning our attention to the NDCG results, reported on
Table 3, a similar behavior can be observed: our proposed
instantiations are no worse than the strongest baselines in
all cases, being superior in the majority of cases. Consid-
ering the TD2003 and TD2004 datasets, our solutions were
no worse than any baseline, being statistically tied with the
strongest one (RF, in both cases). BROOFgradient was the
best algorithm in the three remaining datasets, according to
both employed statistical tests. Furthermore, BROOFmedian

was also superior to the best baseline (MART) in the YA-
HOOV1S2 dataset (according to the Student’s t-test), with
BROOFabsolute and BROOFheight tied with the MART algo-
rithm. Again, this set of results highlights the effectiveness
of the proposed approaches.

We now turn our attention to some behavioral aspects
of our algorithms, namely, convergence and learning effi-
ciency. In order to better understand the convergence rate
of our proposals, we provide an empirical evaluation of our
most effective solution (i.e., BROOFgradient), by analyzing
the obtained NDCG@10 as we vary the number of boost-
ing iterations, contrasting these results with the boosting
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Algorithm
Datasets

TD2003 TD2004 WEB10K YAHOOV1S2 YAHOOV1S2-5F

B
a
se

li
n
e
s

Mart 0.192633 0.193744 0.352491 0.559721 0.568821
LambdaMart 0.165181 0.169605 0.350263 0.5545 0.563694
RF 0.278644 0.2522 0.337702 0.563355 0.559019
RankBoost 0.235189 0.255467 0.316201 0.544887 0.547524
AdaRank-MAP 0.2003 0.196801 0.294792 0.413846 0.480190
Adarank-NDCG 0.121672 0.132435 0.304359 0.540243 0.538514
SVM-Rank 0.257490 0.220392 0.324552 0.544887 0.551333

B
R

O
O

F BROOFabsolute 0.288039+ 0.263288 0.342437 0.565486∗+ 0.563729
BROOFmedian 0.282427∗ 0.259941 0.347665 0.567696∗+ 0.567284
BROOFheight 0.285937∗+ 0.259058 0.340340 0.564774∗+ 0.557727
BROOFgradient 0.280634 0.252342 0.36251∗+ 0.572918∗+ 0.57656∗+

‘∗’: better than the strongest baseline, with statistical significance according to Wilcoxon Test
‘+’: better than the strongest baseline with statistical significance according to Student’s t-test
‘n’: statistically tied results considering both tests

Table 2: Mean Average Precision (MAP): Obtained results.

Algorithm
Datasets

TD2003 TD2004 WEB10K YAHOOV1S2 YAHOOV1S2-5F

B
a
se

li
n
e
s

Mart 0.271274 0.263926 0.4404 0.703757 0.714763
LambdaMart 0.224536 0.237338 0.445437 0.69619 0.706287
RF 0.36346 0.350582 0.424498 0.703139 0.702384
RankBoost 0.31613 0.33399 0.397071 0.682478 0.681796
AdaRank-MAP 0.271921 0.281035 0.35732 0.51767 0.607867
AdaRank-NDCG 0.166241 0.182031 0.385761 0.66309 0.664115
SVM-Rank 0.344177 0.303471 0.399902 0.682478 0.691064

B
R

O
O

F BROOFabsolute 0.360802 0.358146 0.434964 0.70633 0.706954
BROOFmedian 0.36798 0.350466 0.436284 0.708538+ 0.709148
BROOFheight 0.368195 0.355356 0.42882 0.70383 0.701985
BROOFgradient 0.368695 0.348532 0.456081∗+ 0.717271∗+ 0.725129∗+

‘∗’: better than the strongest baseline, with statistical significance according to Wilcoxon Test
‘+’: better than the strongest baseline, with statistical significance according to Student’s t-test
‘n’: statistically tied results considering both tests

Table 3: Normalized Discounted Cumulative Gain (NDCG@10): Obtained results.

baselines. We here focus on the three largest datasets: YA-
HOOV1S2, YAHOOV1S2-F5 and WEB10K. Results can be
found on Figure 1. As it can be observed, BROOFgradient

share similar behavior with three explored boosting algo-
rithms, namely, MART, RankBoost and AdaRank-NDCG:
the four algorithms show fast convergence rates. The two
key differences are: (i) our approach is able to achieve sig-
nificantly better results at the initial boosting iterations
and (ii) BROOFgradient converges to a higher asymptote
than the other algorithms. On the other hand, the conver-
gence rate of LambdaMART was significantly slower than
the convergence rate of the mentioned algorithms. In sum,
BROOFgradient enjoys faster convergence rates, with higher
NDCG values at the initial boosting iterations and higher
asymptote. This is paramount to guarantee practical fea-
sibility of our solution: although high effectiveness is a re-
quirement, achieving such high effectiveness with just a few
boosting iterations is key to minimize running time.

Another aspect of direct impact on the practical feasibility
of the solutions is to what extent the algorithms are “data
efficient”. That is, to what extent each algorithm is capable
of delivering highly effective rankings with reduced train-
ing sets. We evaluate the solutions under this dimension
by analyzing each algorithm’s learning curve. To this end,
we measure the effectiveness of each algorithm as we vary
training set size. We randomly sample s% examples from
the training set, selected at random. We vary s from 10% to
100%, with steps of 10%. The obtained results can be found

on Figure 2. Considering the WEB10K dataset, we can ob-
serve a surprising result: BROOFgradient is able to outper-
form all algorithms with just 20% of the training set, even
considering the other algorithms trained with larger train-
ing sets (including the entire training set). Also, it can be
noted that BROOFabsolute is no worse than the baseline algo-
rithms, even with 10% of the training set. In fact, with about
40% of the training set BROOFgradient is able to achieve its
maximum effectiveness, whereas for BROOFabsolute 10% is
enough. For the YAHOO datasets, a similar behavior was
observed: with about 20% to 30% of the training set our
approaches were able to outperform the baseline algorithms
(or match, in the case of BROOFabsolute), even considering
the baseline algorithms trained with the entire training set.
In these datasets, our algorithms were able to achieve max-
imum effectiveness at 50% to 80% of the training set. Con-
sidering the TD2003 and TD2004 datasets, the RF baseline
was a bit more competitive to our approaches, exhibiting
a similar behavior in terms of effectiveness as the training
set size varies. In these datasets, 50% to 60% of the train-
ing set was enough to produce the best effectiveness on the
TD2003, while 40% was enough to surpass all baselines on
TD2004. These findings have also a direct influence on the
practical feasibility of our solutions. First, smaller training
sets translates to smaller runtimes. Second, obtaining la-
beled data is critical but also costly. Clearly, being able to
produce highly effective models from reduced training sets
is an important characteristic of a successful approach.
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Figure 1: Convergence analysis: NDCG as the number of boosting iterations increases.

Figure 2: Learning curve analysis for the boosting algorithms.

Finally, we turn our attention to the effect of the use of
out-of-bag samples by our approaches. Due to space re-
strictions, we here focus on BROOFgradient, considering the
WEB10K dataset. We analyze the effect of weak-learner er-
ror rate estimation through out-of-bag samples by contrast-
ing it with a variant whose generic function ValidationSet
equals to Train. The effectiveness of BROOFgradient and
the mentioned variation, as the boosting iterations go by,
can be found on Figure 3. From that figure, it is clear that
the out-of-bag error estimation produces more effective re-
sults than the simple training error estimate. In fact, for all
boosting iterations, the BROOFgradient variation with Val-
idationSet set to OOB produces better results than the
results obtained with ValidationSet set to Train. This
highlights the importance of exploiting the out-of-bag er-
ror estimates in our proposed framework instantiations. As
a final remark, as it can be observed in Figure 3, even the
variant that uses the training error rate is able to outperform
the explored baselines. This is also an important aspect that
highlights the quality of the proposed framework.

5. CONCLUSIONS AND FUTURE WORK
In this work, we propose an extensible framework for L2R,

called Generalized BROOF-L2R, which smoothly combines
two successful strategies for Learning to Rank, namely, Ran-

Figure 3: BROOFgradient: Effect of out-of-bag sam-
ples versus entire training set.

dom Forests and Boosting. Such combination, that uses
Random Forests models as weak-learners for the boosting
algorithm, relies on the use of the out of bag samples pro-
duced by the Random Forests to (i) determine the influence
of each weak-learner in the final additive model and (ii)
update the sample distribution weights by means of a more
reliable error rate estimate. In fact, the framework is general
enough to provide a rather heterogeneous set of instantia-
tions that, according to our empirical evaluation, are able to
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achieve competitive results compared to state-of-the-art al-
gorithms for L2R. We proposed four different instantiations.
Three instantiations closely follows the ideas of a recently
proposed algorithm for text classification, namely, BROOF.
The fourth instantiation is based on gradient descent op-
timization, resembling gradient boosting machines. In fact,
such instantiation can be seen as a gradient boosted random
forests model. As our results show, despite the fact that all
the four algorithms provide very competitive results, two of
them are consistently the top-performers, highlighting the
quality and effectiveness of our proposed framework. Also,
our proposals have two properties that are paramount to
guarantee their practical feasibility, namely, data efficiency
and fast convergence rates.

The space of possible instantiations of the proposed gen-
eral framework for L2R is rather large. This clearly makes
room for further investigations regarding such possibilities.
In fact, one can come up with improved instantiations of
the framework, by means of extending the set of possible
implementations for each generic function composing the
framework. This is under investigation. We also plan to
study a more comprehensive set of instantiations, in order
to build a substantially larger catalog of algorithms based
on the Generalized BROOF-L2R to better understand the
effects of each choice on model effectiveness.
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