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ABSTRACT
Collaborative filtering with implicit feedbacks has been steadi-
ly receiving more attention, since the abundant implicit feed-
backs are more easily collected while explicit feedbacks are
not necessarily always available. Several recent work ad-
dress this problem well utilizing pairwise ranking method
with a fundamental assumption that a user prefers items
with positive feedbacks to the items without observed feed-
backs, which also implies that the items without observed
feedbacks are treated equally without distinction. Howev-
er, users have their own preference on different items with
different degrees which can be modeled into a ranking re-
lationship. In this paper, we exploit this prior informa-
tion of a user’s preference from the nearest neighbor set
by the neighbors’ implicit feedbacks, which can split item-
s into different item groups with specific ranking relation-
s. We propose a novel PRIGP(Personalized Ranking with
Item Group based Pairwise preference learning) algorithm
to integrate item based pairwise preference and item group
based pairwise preference into the same framework. Experi-
mental results on three real-world datasets demonstrate the
proposed method outperforms the competitive baselines on
several ranking-oriented evaluation metrics.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

Keywords
Collaborative filtering; Implicit feedback; Pairwise prefer-
ence; Item group

1. INTRODUCTION
Recommender systems, as an increasingly critical tools in

dealing with information overload on the Internet, have at-
tracted immense amounts of research recently. Collaborative
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Filtering(CF) [5, 7, 9], which is a content-free recommenda-
tion technique, widely performs as a core in recommender
systems. The underlying assumption of CF is that users
with common interests in the past would behave much more
similarly on items in the future. Most recent literature of CF
is focused on improving the accuracy of regression on users’
ratings [3, 9] or personalized ranking of items [10] by effec-
tively exploiting explicit feedbacks (e.g., typically numerical
ratings).

However, in most real-world scenarios, explicit feedbacks
are not necessarily always available while the abundant im-
plicit or one-class feedbacks [5, 7] are more easily collected
such as “clicks” on web pages or “bought” in e-commercial
websites. Some pointwise methods [2, 5] regard the observed
implicit feedback on an item as a user rating 1 and the un-
observed as 0 such that the problem can be addressed by
utilizing CF algorithms for explicit feedbacks with various
weighting or sampling strategies. Recently, some pairwise
methods [7, 12] are proposed with a more proper assump-
tion that a user prefers items with observed feedbacks to
items without feedbacks. Note that the assumption of pair-
wise preference essentially attempts to cope with the issue
of personalized ranking directly, which leads to better rec-
ommendation performance than pointwise methods. One of
the most widely studied pairwise methods is bayesian per-
sonalized ranking(BPR) [7] which shows a promising result
in handling problems of recommendation with implicit feed-
backs. And with its success, various extended methods from
distinct aspects for BPR are proposed, e.g., it is extended
from two dimensions to three dimensions in [8] by adopting
the concept of tensors and scenarios of multiple domains are
handled in [4] applying collective matrix factorization.

However, there still exists a challenging problem, which
lies in the assumption of pairwise preference over two items.
Previous pairwise methods (e.g., BPR) are simply built on
the assumption that a user prefers an item with a positive
feedback to an item without an observed feedback, which al-
so implies that items without observed feedbacks are treated
with no distinction or preference. Nevertheless, a user would
have his/her own preference on different items though the
items were not observed by him/her before. As a matter of
fact, it is reasonable to believe that a user’s preference on dif-
ferent items is usually presented in specific ranking relations,
which indicates that a user has individual prior preference
on different items with different degrees. A recommender
system should tend to rank higher those items with greater
prior preference for a user. Thereby, prior information for a
user should be exploited for a better recommendation.
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In this paper, we propose a novel approach which incor-
porates users’ prior preference, which were not considered
before, into the algorithms based on the pairwise preference
assumption of item level and construct an unified frame-
work. In a typical CF system, a user’s nearest neighbors
(most similar users according to historical feedbacks) usu-
ally share similar interests with that user. Then the items
with more positive implicit feedbacks from a user’s near-
est neighbor set could be more possibly liked by him/her,
such that a user’s prior preference on items can be discov-
ered. The core concept item group is defined in our work
as a subset of items with the same cumulative number of
implicit feedbacks from nearest neighbor set. Thus, ranking
relations of items for a user from his/her prior preference
can be reflected by the item groups with different positive
feedback numbers. Our approach constructs an item group
based pairwise preference for the specific ranking relations
of items and combine it with item based pairwise prefer-
ence to formalise a novel framework PRIGP(Personalized
Ranking with Item Group based Pairwise preference learn-
ing). Experiments on three real-world datasets demonstrate
the effectiveness of our model.

2. OUR APPROACH

2.1 Problem Statement
In a real world scenario, we have a set of users U with size

n and a set of items I with size m. Each user u ∈ U has
expressed their positive feedbacks on a set of items I+

u ⊆ I.
Moreover, in a user based system, a user u can have fair-
ly similar behaviors with a set of users who constitute the
nearest neighbor set denoted as Nu with size of |Nu|. Con-
sequently, based on the implicit feedbacks of users and in-
formation from neighbors, our goal is to recommend a per-
sonalized ranking list of items to a user from the item set,
I\I+

u , that have no observed feedbacks.

2.2 Item Based Pairwise Preference
The basic assumption of pairwise preference of two items

can be formally represented as

r̂ui > r̂uj , i ∈ I+
u , j ∈ I\I+

u

where r̂ui denotes preference of a user u on an item i and the
relation r̂ui > r̂uj indicates user u could have more interests
on the item i with a positive feedback than on the item j
without an observed feedback. By this item-level assump-
tion, we can further infer the ordinal relations for items in
I\I+

u and recommend top-K ranked items to user u.
There are various methods [7, 12] based on the assumption

of pairwise preference over two items, which are develope-
d from different perspectives of classification [7] or regres-
sion [12]. In our framework, to model the item based pair-
wise preference, we adopt a similar formulation employed in
BPR [7]. Note that our approach is a framework that is not
limited to applying BPR.
BPR attempts to maximize the joint probabilities of users’

preference on items in their corresponding I+
u more than

in I\I+
u . By derivations in BPR [7] with the negative log

likelihood loss, we can eventually formalize the item based
pairwise preference as minimizing the following criterion

BPR-Opt = −
∑
u∈U

∑
i∈I+

u

∑
j∈I\I+

u

lnσ(x̂uij(Θ)) +R(Θ) (1)

Figure 1: Illustration of Item Group Based Pair-
wise Preference. The set {un1, ..., un4} are the nearest

neighbor set of u0. Items are split into g
(0)
u , g

(1)
u , g

(2)
u

and g
(4)
u while g

(3)
u = ∅, according to implicit feed-

backs from neighbors. Thus we have the relation-
ships r̂

ug
(0)
u

< r̂
ug

(1)
u

< r̂
ug

(2)
u

< r̂
ug

(4)
u

.

where x̂uij(Θ) is computed as r̂ui(Θ) − r̂uj(Θ) with Θ to
be parameters for representing r̂ui and σ(x) = 1

1+e−x is
the logistic sigmoid function defining the likelihood of pair-
wise preference. More generally, by denoting L(I+

u , I\I+
u ) =

−
∑

i∈I+
u

∑
j∈I\I+

u
ln(σ(x̂uij(Θ))), we can further formulate

the item based pairwise preference learning as

min
Θ

∑
u∈U

L(I+
u , I\I+

u ) +R(Θ) (2)

where L(I+
u , I\I+

u ) is regarded as a loss function that mea-
sures the item based pairwise ranking loss for user u and
R(Θ) a regularization term to prevent overfitting.

2.3 Item Group Based Pairwise Preference
Previous item based pairwise methods improperly assume

that items in the unobserved subset are treated without dif-
ferences. However, a user may show his/her own preference
on different sets of items with different degrees, though the
items were not observed by him/her before. Since the rec-
ommender system will provide a ranking list of the unob-
served items to the users for personalized recommendation,
it should tend to rank these items higher for that user. For
each user, there can exist a nearest neighbor set that consist-
s of users who behave similarly with that user. Therefore,
effectively exploiting the collaborative information from the
nearest neighbor set can serve to discover users’ prior prefer-
ence information. In this section, we will show how to infer
this prior preference information of a specific user from near-
est neighbor set and propose a framework to make person-
alized ranking by incorporating item group based pairwise
preference and the item based pairwise preference.

We define item group of a user u as the set of items that
have the same number of observed feedbacks from his/her
nearest neighbors, which can be formulated as follows

g(k)u = {i|Ou(i) = k, i ∈ I, k ∈ Z}, (3)

where g
(k)
u is u’s item group with k feedbacks for each mem-

ber in it, Ou(i) denotes the number of feedbacks from u’s
nearest neighbor set, Z is the set of integers and k varies
from 0 to |Nu|. Thereby, we assume that a user u is like-
ly to express more preference on an item group with more
observed feedbacks from neighbors than an item group with

less. We denote Gu = {g(0)u , g
(1)
u , ..., g

(|Nu|)
u } where Gu is the

set of item groups for user u. Then, the preference relations
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among item groups w.r.t. a user u ∈ U can be formalised as

r̂
ug

(0)
u

< r̂
ug

(1)
u

< ... < r̂
ug

|Nu|
u

(4)

where r̂
ug

(k)
u

denote the preference of u on his/her kth item

group. If there exists a g
(k)
u whose size is 0, we can just ignore

that item group in Eq. 4. For the above method, we can
approximate a user’s prior preference with different degree
on different item groups via implicit feedbacks of nearest
neighbors. The item group based pairwise preference can be
explained by a toy example illustrated in Fig. 1. Specifically,
nearest neighbors are determined by cosine similarity of two
users’ implicit feedbacks.
Then, we will show how to model item group based pair-

wise preference of a user. For a user u ∈ U , we can define u’s

preference on the kth item group as r̂
ug

(k)
u

=
∑

i∈g
(k)
u

r̂ui/|g(k)u |
where |g(k)u | is the size of g(k)u . Then, we can formulate Eq. 4
into a likelihood probability form of pairwise preference over
item groups for each user as

P (Gu) =
∏

s,t:t>s

p(r̂
ug

(s)
u

> r̂
ug

(t)
u

) (5)

where p(r̂
ug

(s)
u

> r̂
ug

(t)
u

) is the likelihood probability between

item groups g
(s)
u and g

(t)
u . By introducing the negative log

likelihood loss function, we construct an item group based
pairwise ranking loss in the following form

L(Gu) = − lnP (Gu)

= −
∑

s,t:t>s

lnσ(x̂
ug

(t)
u g

(s)
u

(Θ)) (6)

where x̂
ug

(t)
u g

(s)
u

(Θ) = r̂
ug

(t)
u

(Θ)− r̂
ug

(s)
u

(Θ).

Combining the item based and item group based pairwise
ranking loss, we can eventually get our unified framework as

min
Θ

∑
u∈U

[L(I+
u , I\I+

u ) + αL(Gu)] +R(Θ) (7)

where α is a tradeoff parameter used to control the confi-
dence of the pairwise preference among item groups w.r.t.
a user and R(Θ) is a regularization term. Therefore, our
model PRIGP are obtained. Note that our model is a gen-
eral framework and it will reduce to the original item based
pairwise methods if α = 0 or |Nu| = 0.
More specifically, in our model, the parameter Θ = {Uu· ∈

R1×d, Vi· ∈ R1×d, bi ∈ R, u ∈ U , i ∈ I} where Uu·, Vi· are
the user and item latent factor vectors respectively and bi
is the item bias. And the parameter regularization term is
computed as R(Θ) = 1

2

∑
u∈U

∑
i∈I [λu||Uu·||2 + λv||Vi·||2 +

µv||bi||2]. Thereby, the preference on the item i of a us-
er u is generated by r̂ui = Uu·V

T
i· + bi. Moreover, we can

compute u’s preference on the kth item group as r̂
ug

(k)
u

=

Uu·V
T

g
(k)
u · + b̄

g
(k)
u

where V
g
(k)
u · = (

∑
i∈g

(k)
u

Vi·/|g(k)u |) and

b̄
g
(k)
u

=
∑

i∈g
(k)
u

bi/|g(k)u |. Once the parameter Θ are learned,

we can predict the preference scores of user u on item i ∈
I\I+

u as r̂ui = Uu·V
T
i· +bi, and a personalized ranking list of

items can be recommended to u by sorting predicted scores.
For obtaining a better optimization and boosting the train-

ing speed, bootstrapping based stochastic gradient descent
method is introduced to learn our model in Eq. 7. We omit
the detailed iteration algorithm due to the space limit, and
the similar updating method is described in [6, 7].

3. EXPERIMENTS

3.1 Datasets and Baselines
To empirically evaluate our method on the recommen-

dation with implicit feedbacks, we perform experiments on
three real-world datasets: MovieLens100K1, Douban2 and
Ciao3. MovieLens100K is a widely used benchmark dataset
for CF. Douban is a well-known website for users to ex-
press their preference on movies, books and music, where
we crawled users’ feedbacks on movies. A subset of pub-
lished Ciao dataset is also collected. To simulate the implicit
feedbacks, we keep the ratings larger than 3 as observed pos-
itive feedbacks [11] and then we obtain 55,375 observations
from 943 users and 1,682 items in MovieLens100K, 276,619
observations from 4,184 users and 2,069 items in Douban
and 43,966 observations from 1,296 users and 3,008 items in
Ciao.

Two popular baseline methods are used for empirical com-
parison, which is PopRank [6] and BPR [7]. (1)PopRank is
a basic algorithm for the problem of CF with implicit feed-
backs, which makes the recommendation to users in terms
of global popularity of items. (2)BPR is a strong pairwise
method for our comparison and is also a particular case of
our method. For the pointwise methods [5, 2], they perfor-
m much worse than the pairwise methods (e.g., BPR) and
comparisons are not made with them.

3.2 Metrics and Experimental Setup
Considering the real-world scenarios where new users are

usually only willing to check a few top-ranked recommend-
ed items, to measure the recommendation performance, we
adopt the widely used evaluation metrics in top-K recom-
mendation: NDCG, 1-call [1], F1-score, Precision, Recall
and with setting K = 5. Higher values on above metrics
correspond to better recommendation performance.

In our experiments, we randomly select 50% observations
as training data and the rest 50% as test data. The dimen-
sion of the latent factor vector is d = 10. The regulariza-
tion parameters of our model are set as λu = λv = µv =
0.02, 0.02, 0.1 for MovieLens100K, Douban and Ciao respec-
tively. And we vary α ∈ {0.01, 0.1, 1, 10, 30} to look for the
optimal tradeoff parameter. In addition, we set the size of
the nearest neighbours |Nu| from 0 to 200 with a step 20 to
study its impact. We choose the best parameters based on
the NDCG@5 performance on the test set.

3.3 Results and Analysis
Firstly, we compare the performance of our PRIGP ap-

proach with other baseline methods as illustrated in Ta-
ble 1. The optimal parameters we obtain for PRIGP are
{k = 1, |Nu| = 140} for MovieLens100K, {k = 10, |Nu| =
200} for for Douban, {k = 1, |Nu| = 40} for Ciao, and de-
tailed discussion will presented in this paper. We observe
that our proposed PRIGP framework consistently outper-
forms all the other baselines. Note that PopRank strategy
has a worse performance than BPR and PRIGP and, as a
matter of fact, PopRank is not a personalized algorithm for
recommendation, which shows the necessity of designing an
appropriate personalized recommendation model. A trend

1http://grouplens.org/datasets/movielens/
2http://movie.douban.com/
3http://www.public.asu.edu/ jtang20/datasetcode/
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Table 1: Prediction performance(mean ± std.) of PopRank, BPR and PRIGP on MovieLens100K, Douban
and Ciao datasets. By setting fixing d = 10 and K = 5. The results in bold indicate the best ones.

Dataset Method NDCG@5 1-call@5 Prec@5 Rec@5 F1@5

MovieLens100K
PopRank 0.3007± 0.0021 0.6777± 0.0196 0.2833± 0.0006 0.0581± 0.0038 0.0872± 0.0041
BPR 0.4289± 0.0073 0.8558± 0.0120 0.4180± 0.0074 0.1043± 0.0029 0.1478± 0.0037
PRIGP 0.4452± 0.0013 0.8647± 0.0083 0.4283± 0.0013 0.1076± 0.0016 0.1522± 0.0019

Douban
PopRank 0.3672± 0.0014 0.8028± 0.0020 0.3450± 0.0010 0.0597± 0.0003 0.0984± 0.0005
BPR 0.4152± 0.0016 0.8430± 0.0043 0.3981± 0.0011 0.0689± 0.0002 0.1135± 0.0002
PRIGP 0.4389± 0.0031 0.8700± 0.0042 0.4188± 0.0015 0.0724± 0.0002 0.1195± 0.0003

Ciao
PopRank 0.1259± 0.0003 0.3862± 0.0027 0.1236± 0.0007 0.0400± 0.0008 0.0578± 0.0010
BPR 0.1482± 0.0010 0.4498± 0.0054 0.1414± 0.0012 0.0449± 0.0005 0.0650± 0.0008
PRIGP 0.1533± 0.0015 0.4730± 0.0076 0.1471± 0.0021 0.0470± 0.0007 0.0680± 0.0009
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Figure 2: Parameter Study of |Nu| and α. (a)(b)(c)
study the |Nu| on MovieLens100K, Douban and Ciao
while (d)(e)(f) study α on MovieLens100K, Douban
and Ciao.

of our PRIGP methods can be observed that it always out-
performs BPR, which proves the effectiveness of our meth-
ods for personalized recommendation issues with implicit
feedbacks. Moreover, since our method adopts BPR into
its framework, the comparison of PRIGP and BPR could
demonstrate that by discovering the prior information of a
user’s preference from nearest neighbor set, our method can
definitely improve the pairwise personalized ranking method
the recommendation performance.
Then, the impact of parameter |Nu| is studied explicitly

with the metric NDCG@5. As illustrated in Fig. 2(a),(b),(c),
by fixing optimal α for all datasets, we can observe that the
recommendation performance will firstly increase rapidly as
the size gets larger because more information from neigh-
bors can be obtained. Then with |Nu| becoming larger, the
curves in Fig. 2(a),(c) reach an optimal point and turn to
decrease, and the curve in Fig. 2(b) increases much slower.
That is because a larger nearest neighbor set will include
more users with a lower similarity such that the informa-
tion from neighbors will not increase or even more noisy
than helpful ranking information will be involved from that
neighbor set. Specifically, the optimal |Nu| for MovieLen-
s100K, Douban and Ciao are at 140, 200, 40 respectively.
Finally, to understand the effect of different nearest neigh-

bor set sizes, we study the influence of the tradeoff param-
eter α which balances the item based and item group based
pairwise preference in ranking. As illustrated in Fig. 2(d),
(e), (f), we can observe that α = 1, 10, 1 are the most proper
tradeoff parameters empirically with setting |Nu| to be the
best one in each dataset.

4. CONCLUSIONS
In this paper, we propose a novel recommendation algo-

rithm PRIGP for CF problems with implicit feedbacks. In
our model, we integrate item based pairwise preference and
item group based pairwise preference into the same frame-
work with leveraging the observed feedbacks from neighbors.
The experimental results on three real-world datasets show
our proposed method performs a better top-K recommenda-
tion than baseline methods. Noting that our work provides
a framework which can be fit for any personalized ranking
method, we plan to generalize it to other pairwise methods
in the future.
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