
Fast Searching on Compressed Text Allowing Errors

Edleno Silva de Moura *
Depto. de Ciencia da Computa&o

Univ. Federal de Minas Gerais, Brazil
www.dcc.ufmg.br/-edleno

Nivio Ziviani r
Depto. de Ci&cia da Computa&o

Univ. Federal de Minas Gerais - Brazil
www.dcc.ufmg.br/“nivio

Abstract We present a fast compression and decom-
pression scheme for natural language texts that allows
efficient and flexible string matching by searching the
compressed text directly. The compression scheme uses
a word-based Huffman encoding and the coding alpha-
bet is byte-oriented rather than bit-oriented. We com-
press typical English texts to about 30% of their original
size, against 40% and 35% for Compress and Gaip, re-
spectively. Compression times are close to the times of
Compress and approximately half the times of Gzip, and
decompression times are lower than those of Gzip and
one third of those of Compress.

The searching algorithm allows a large number of vari-
ations of the exact and approximate compressed string
matching problem, such as phrases, ranges, complements,
wild cards and arbitrary regular expressions. Separators
and stopwords can be discarded at search time with-
out significantly increasing the cost. The algorithm is
based on a word-oriented shift-or algorithm and a fast
Boyer-Moore-type filter. It concomitantly uses the vo-
cabulary of the text available as part of the Huffman
coding data. When searching for simple patterns, our
experiments show that running our algorithm on a com-
pressed text is twice as fast as running Agrep on the un-
compressed version of the same text. When searching
complex or approximate patterns, our algorithm is up to
8 times faster than Agrep. We also mention the impact
of our technique in inverted files pointing to documents
or logical blocks as Glimpse.

1 Introduction

In this paper we discuss an efficient compression scheme
and also present an algorithm which allows to search

*This work has been partially supported by CAPES scholar-
ship.

‘This work has been partially supported by Fondecyt grant
l-950622 and AMYRI Project.

*This work has been partially supported by CNPq grant
520916/94-8, PRONEX grant 76.97.1016.00 and AMYRI Project.

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear. and notice is given that cowine is bv oermission of
ACM. ‘Inc. To cow otherv.&e. to renubibh. to &tbn servers or . I . .

to redistribute to lists, requires prior specific permission and/or
fee. SIGIR’98, Melbourne, Australia @ 1998 ACM l-58113-015-5
E/98 $5.00.

Gqnzalo Navarro t
Depto. de Ciencias de la Computaci6n

Univ. de Chile, Chile
www.dcc.uchile.cl./“gnavarro

Ricardo Baeza-Yates t
Depto. de Ciencias de la Computaci6n

Univ. de Chile, Chile
www.dcc.uchile.cl/-rbaeza

for exact and approximate patterns directly in the com-
pressed text. To the best of our knowledge this is the
first attempt to do approximate string matching on com-
pressed text, an open problem in [ABF96].

The compressed matching problem was first defined
in the work of Amir and Benson [AB92] as the task of
performing string matching in a compressed text with-
out decompressing it. Given a text T, a corresponding
compressed string Z, and a pattern P, the compressed
matching problem consists in finding all occurrences of P
in T, using only P and Z. A naive algorithm, which first
decompresses the string Z and then performs standard
string matching, takes time O(u + m), where u = ITJ
and m =]P]. An optimal algorithm takes worst-case
time O(n + m), where n =]Z]. In [ABF96], a new
criterion, called extra space, for evaluating compressed
matching algorithms, was introduced. According to the
extra space criterion, algorithms should use at most O(n)
extra space, optimally O(m) in addition to the n-length
compressed file. Most likely an optimal run-time algo-
rithm that takes O(n) additional extra space may not be
feasible in practice.

Apart from efficient searching, the compression meth-
ods try to minimize the compression ratio, which is the
size of the compressed file as a percentage of the uncom-
pressed file (i.e. n/u).

In our compression scheme we propose a variant of
the word-based Huffman code [BSTWSS, Mof89]. In our
work the Huffman code assigned to each text word is a
sequence of whole bytes and the Huffman tree has degree
256 instead of 2. As we show later, using bytes instead
of bits does not significantly degrade the compression ra-
tios In practice, byte processing is much faster than
bit processing because bit shifts and masking operations
are not necessary at search time. Further, compression
and decompression are very fast and compression ratios
achieved are better than those of the Lempel-Ziv fam-
ily [ZL77, ZL78].

Our searching algorithm is based on a word-oriented
shift-or algorithm [BYG92] and uses a fast Boyer-Moore-
type filter [SunSO] to speed up the scanning of the com-
pressed text. The vocabulary available as part of the
Huffman coding data is used concomitantly at this point.
This vocabulary imposes a negligible space overhead
when the text collection is large. The algorithm allows
a large number of variations of the exact and approxi-
mate compressed string matching problem. As a result,
phrases, ranges, complements, wild cards, and arbitrary
regular expressions can be efficiently searched. Our algo-
rithm can also discard separators and stopwords without

298

significantly increasing the search cost.
The approximate text searchang problem is to find all

substrings in a text database that are at a given “dis-
tance” k or less from a pattern p. The distance between
two strings is the minimum number of insertions, dele-
tions or substitutions of single characters in the strings
that are needed to make them equal. The case in which
k = 0 corresponds to the classical exact matching prob-
lem.

Let u, n and m be as defined above. For exact search-
ing, our approach finds all pattern occurrences in O(n +
m) time (which is optimal) and near O(fi) extra space.
For approximate searching our algorithms find all pattern
occurrences in near O(n + mfi) time and near O(J;I)
extra space.

Our technique is not only useful to speed up sequen-
tial search. In fact, it can also be used to improve in-
dexed schemes that combine inverted files and sequential
search, like Glimpse [MW93]. Glimpse divides the text
space in logical blocks and builds an inverted file where
each list of word occurrences points to the corresponding
blocks. Searching is done by first doing a search in the in-
verted file and then a sequential search in all the selected
blocks. By using our compression scheme for the whole
text, direct search can be done over each block improv-
ing the search time by a factor of 8. Notice that in this
context, the alphabet size (number of different words) is
very large, which is one of our working assumptions.

The algorithms presented in this paper are being used
in a software package called Cgrep. Cgrep is an exact and
approximate compressed matching tool for large text col-
lections. The software package is available from ftp: //
dcc . ufmg . br/pub/research/Nnivio/cgrep, as a proto-
type in its version 1.0.

This paper is organized as follows. In Section 2 we
present related work found in the literature. In Section 3
we present our compression and decompression method,
followed by analytical and experimental results. In Sec-
tion 4 we show how to perform exact and approximate
compressed string matching, followed by analytical and
experimental results. In Section 5 we present some con-
clusions and future work directions.

2 Related Work

In [FT95] it was presented a compressed matching al-
gorithm for the LZl classic compression scheme [ZL76]
that runs in time O(n log2(u/n) + m). In [ABF96] it was
presented a compressed matching algorithm for the LZ78
compression scheme that finds the first occurrence in time
O(n+m2) and space O(n+m’) or in time O(nlogm+m)
and in space O(n + m). Our approach differs from the
work in [FT95, ABF96] in the following aspects. First, we
use a distinct theoretical framework. Second, while their
work includes no implementation of the proposed algo-
rithms, we implement and thoroughly evaluate our algo-
rithms. Third, our empirical evaluation considers both
the compression scheme and the compressed matching
(exact and approximate) problem.

Another text compression scheme that allows direct
searching was proposed by [Man97]. His scheme packs
pairs of frequent characters in a single byte, leading to a
compression ratio of approximately 70% for typical text
files. Like this work we want also to keep the search at
byte level for efficiency. However, our approach leads to
a better compression ratio of less than half (30% against
70%) the compression ratio in [Man97]. Moreover, our

searching algorithm can deal efficiently with approxi-
mate compressed matching, comparing favorably against
Agrep [WMSS], the fastest known software to search (ex-
actly and approximately) uncompressed text.

3 The Compression Scheme

Modern general compression methods are typically adap-
tive as they allow the compression to be carried out in one
pass and there is no need to keep separately the parame-
ters to be used at decompression time. However, for nat-
ural language texts used in a full-text retrieval context,
adaptive modeling is not the most effective compression
technique.

We chose to use word-based semi-static modeling and
Huffman coding [Huf52]. In the semi-static modeling the
encoder makes a first pass over the text to obtain the pa-
rameters (in this case the frequency of each different text
word) and perform the actual compression in a second
pass. There is one strong reason for using this combina-
tion of modeling and coding. The data structures asso-
ciated with them include the list of words that compose
the vocabulary of the text, which we use to derive our
compressed matching algorithm. Other reasons impor-
tant in text retrieval applications are that decompression
is faster on semi-static models, and that the compressed
text can be accessed randomly without having to decom-
press the whole text as in adaptive methods. Further-
more, previous experiments have shown that word-based
methods give good compression ratios for natural lan-
guage texts [BSTW86, Mof89, HC92].

Since the text is not only composed of words but also
of separators, a model must also be chosen for them.
In [Mof89, BMN+93] two different alphabets are used:
one for words and one for separators. Since a strict al-
ternating property holds, there is no confusion on which
alphabet to use once it is known that the text starts with
word or separator.

We use a variant of this method to deal with words
and separators, which we call spaceless words. If a word
is followed by a space, we just encode the word. If not,
we encode the word and then the separator. At decod-
ing time, we decode a word and assume that a space
follows, except if the next symbol corresponds to a sepa-
rator. This idea was firstly presented in [MNZ97]. They
show that the spaceless word model achieves slightly bet-
ter compression ratios. Figure 1 presents an example of
compression using Huffman coding for spaceless words
method. The set of symbols in this case is {a, each,
is, for, rose, ,U}, whose frequencies are 2, 1, 1, 1, 3,
1, respectively.

Original text: for each rose. a rose is a rose

Compressed text: 0010 0000 I 0001 01 1 0011 01 I

Figure 1: Compression using Huffman coding for space-
less words

299

The number of Huffman trees for a given probability
distribution is quite large. The preferred choice for most
applications is the canonical tree, defined by Schwartz
and Kallich [SK64]. The Huffman tree of Figure 1 is a
canonical t,ree. It allows more efficiency at decoding time
with less memory requirement. Many properties of the
canonical codes are mentioned in [HL90, ZM95].

3.1 Byte-Oriented Huffman Code

The original method proposed by Huffman [Huf52] is
mostly used as a binary code. In our work the Huff-
man code assigned..to each text word is a sequence of
whole bytes and the Huffman tree has degree 256 instead
of 2. All techniques for efficient encoding and decoding
mentioned in [ZM95] can easily be extended to our case.
As we show later in the experimental results section no
significant degradation of the compression ratio is experi-
enced by using bytes instead of bits. On the other hand,
decompression of byte Huffman code is faster than de-
compression of binary Huffman code. In practice byte
processing is much faster than bit processing because bit
shift,s and masking.operations are not necessary at de-
coding time or at searching time.

The construction of byte Huffman trees involves some
details to deal with. As explained in [Huf52], care must
be exercised to ensure that the first levels of the tree
have no empty nodes when the code is not binary. Fig-
ure 2(a) illustrates a case where a naive extension of the
binary Huffman tree construction algorithm might gen-
erate a non-optimal byte tree. In this example the alpha-
bet has 512 symbols, all with the same probability. The
root node has 254 empty spaces that could be ocupied by
symbols from the second level of the tree, changing their
code lengths from 2 bytes to 1 byte.

256 elements 256 elements

256 elements 2 elements 254 empty nodes

Figure 2: Example of byte Huffman tree

A way to ensure that the empty nodes always go to
the lowest level of the tree follows. We calculate pre-
viously the number of empty nodes that will arise. We
then compose these empty nodes with symbols of small-
est probabilities. This step is sufficient to guarantee that
the empty nodes will end up at the deepest level of the
final tree. The remaining steps are similar to the binary
Huffman tree construction algorithm.

In fact, this first coupling step must consider 1 + ((v -
256) mod 255) symbols, where v is the total number of
symbols (i.e. the size of the vocabulary). Applying this
formula to our example we have that 2 elements must
be coupled with 254 empty nodes in the first step (1 +
((512 - 256) mod 255) = 2), as shown in Figure 2(b).

In the remaining part of this section we show that
the length of byte Huffman codes does not grow as the

text grows, even while the vocabulary does. The key to
prove this is to show that the distribution of words in
the text is biased enough for the entropy to be O(l), and
then to show that byte Huffman code has only a constant
overhead over the entropy.

We use the Zipf Law [Zip491 as our model of the
frequency of the words appearing in natural language
texts. This law is widely accepted in information re-
trieval. Zipf’s law states that, if we order the v words of
a natural language text in decreasing order of probability,
then the probability of the first word is ie times the prob-
ability of the i-th word, for every i. The constant 8 de-
pends on the text. This means that the probability of the

i-th word isp; = l/(ieH), where H = Hi” = cy=, l/je.
The Zipf Law comes in two flavors. A simplified form

assumes that 8 = 1. In this case, H = O(logv). Al-
though this simplified form is popular because it is sim-
pler to handle mathematically, it does not follow well
the real distribution of natural language texts. There is
strong evidence that most real texts have in fact a more
biased vocabulary. We performed in [ANZ97] a thorough
set of experiments on the TREC collection, finding out
that the 13 values are roughly between 1.5 and 2.0 de-
pending on the text, which gives experimental evidence
in favor of the “generalized Zipf Law” (i.e. 6’ > 1). Under
this assumption, H = O(1).

We have also tested the distribution of the separators,
finding that they also follow reasonably well a Zipf distri-
bution. Moreover, their distribution is more biased than
that of words, being 8 closer to 1.9. We therefore assume
that 0 > 1 and consider only words, since the same proof
will hold for separators.

We analyze the entropy E(d) of such distribution for
a vocabulary of v words when d digits are used in the
coding alphabet, as follows:

E(d) = 2pi log, ;
I

i=l

1 2 InHiB+HBlni
=-

lnd
i=l

=& 1nHkf + ky
i=l i=l

’ lni
= log, H + &c 7

i=l

Bounding the summation with an integral, we have
that

’ lni c In2 (0-l)ln2+1
FIT+ 20-‘(8 - 1)2

+O(logv/?Je-‘) = O(1)
i=l

which allows to conclude that E(d) = O(1).
Huffman coding is not optimal because of its inability

to represent fractional parts of bits. That is, if a symbol
has probability pi, it should use exactly log,(l/p,) bits
to represent the symbol, which is not possible if pi is not
a power of l/2. This effect gets worse if instead of bits
we use numbers in base d. We give now an upper bound
on the compression inefficiency involved.

In the worst case, Huffman will encode each sym-
bol with probability pi using [log,(l/p;)l digits. This
is a worst case because some symbols are encoded in

300

]log,(l/pi)J digits. Therefore, in the worst case the av-
erage length of a code in the compressed text is

&i [lO&(l/Pi)l I l+ 2Pi l”&i(l/Pi)
i=l t=l

which shows that, regardless of the probability distribu-
tion, we cannot spend more than one extra digit per code
due to rounding overheads. For instance, if we use bytes
we spend at most one more byte per word.

This proves that the entropy remains constant as the
text grows and therefore our compression ratio will not
degrade as the number of different words and separators
increases.

If we used the simple Zipf Law instead, the result
would be that E(d) = O(logn), i.e. the average code
length grows as the text grows. The fact that this does
not happen for 1 gigabyte of text is an independent ex-
perimental confirmation of the validity of the generalized
Zipf Law against its simple version.

On the other hand, more refined versions of the Zipf
Law exist, such as the Mandelbrot distribution [GBYSl].
This law tries to improve the fitting of the Zipf Law for
the more frequent values. However, it is mathematically
harder to handle and it should not alter our asymptotic
results.

3.2 Compression and Decompression Perfor-
mance

For the experimental results we used literary texts from
the TREC collection [HarSS]. We have chosen the follow-
ing texts: ap Newswire (1989), doe - Short abstracts from
doe publications, fr - Federal Register (1989), wsj - Wall
Street Journal (1987, 1988, 1989) and r#- articles from
Computer Selected disks (Ziff-Davis Publishing). Table 1
presents some statistics about the five text files. We con-
sidered a word as a contiguous string of characters in the
set {A. . .Z, a. . .z, 0. .9} separated by other characters
not in the set {A. .Z, a. . .z, 0. .9}. All tests were run
on a SUN SparcStation 4 with 96 megabytes of RAM
running Solaris 2.5.1.

Table 2 shows the entropy and compression ratios
achieved for Huffman, byte Huffman, Unix Compress and
gnu Gzip for the files of the TREC collection. The space
used to store the vocabulary is included in the Huffman
compression. As it can be seen, the compression ratio
degrades only slightly by using bytes instead of bits and,
in that case, we are still below Gzip. The exception is the
fr collection, which includes a large part of non-natural
language such as chemical formulas.

Method

Entropy

Files

aP I WY I doe I Z%fl fr
26.20 1 26.00 1 24.60 1 27.50 1 25.30

Huffman (bits) 27.41 27.13 26.25 28.93 26.88
Byte Huffman 31.16 30.60 30.19 32.90 30.14

Compress 43.80 42.94 41.08 41.56 38.54
Gzip 38.56 37.53 34.94 34.12 27.75

Table 2: Entropy and compression ratios achieved by
Huffman, byte Huffman, Compress and Gzip.

It is empirically known that the vocabulary of a text
with u words grows sublinearly [Hea78], and hence for

large texts the overhead of storing the vocabulary is min-
imal. However, storing the vocabulary represents an im-
portant overhead when the text is small (say, less than
10 megabytes). We therefore compress the vocabulary
using standard Huffman on characters. As shown in Fig-
ure 3, this makes our compressor better than Gzip for
files of at least 1 megabyte. The need to decompress
the vocabulary at search time poses a minimal process-
ing overhead which can even be completely compensated
by the reduced I/O.

Figure 3: Compression ratios for the wsj file compressed
by Gzip, Compress, byte Huffman and byte Huffman cod-
ing with compressed vocabulary

Table 3 shows the compression and decompression
times achieved for Huffman, byte Huffman, Compress
and Gzip for files of the TREC collection. In compres-
sion, we are 2-3 times faster than Gzip and only 17%
slower than Compress (which achieves much worse com-
pression ratios). In decompression, there is a significant
improvement when using bytes instead of bits. This is
because no bit shifts nor masking are necessary. Using
bytes, we are more than 20% faster than Gzip and three
times faster than Compress.

Our method is more memory-demanding than Com-
press and Gzip, which constitutes a drawback. The byte-
Huffman algorithm has near O(& space complexity
while the methods used by Gzip and Compress have con-
stant space complexity. For example, our method needs
10 megabytes of memory to compress and 3.7 megabytes
of memory to decompress the file zusj, while GzZp and
Compress need only about 1 megabyte to either com-
press or decompress this same file. However, for the text
searching systems we are interested in, the advantages
of our method (i.e. allowing efficient search on the com-
pressed text and fast decompression of fragments) are
more important than the space requirements.

4 Searching on Huffman Compressed Text

We show now how we search in the compressed text. We
first explain exact matching, then complex patterns, and
finally present a filter to speed up the search.

4.1 The Basic Algorithm

We make heavy use of the vocabulary of the text, which
is available as part of the Huffman coding data. The
Huffman tree can be regarded as a trie where the leaves
are the words of the vocabulary and the path from the
root to a leaf spells out its compressed code, as shown
in the left part of Figure 4 for the word “rose” (in this
example the word “rose” has a three-byte codeword 47
131 8).

Table 1: Text files from the TREC collection

Method
Compression Decompression

Huffman (bits) 4%
WSJ d

3:
ff fr d d fr

526 s”f 8 440 1% 1;; fjfi4 151
Byte Huffman 487 520 356 515 435 106 117 81 112 96

Compress 422 456 308 417 375 367 407 273 373 331
Gzip 1333 1526 970 1339 1048 147 161 105 139 111

Table 3: Compression and decompression times (in seconds) achieved by Huffman, byte Huffman, Compress and
Gzip

Figure 4: The searching scheme for the pattern “rose
is”

To search for a pattern we first preprocess it. The
preprocessing consists on searching it in the vocabulary
and marking the corresponding entry. This search can
be very efficient, for instance binary search or hashing.
In general, however, the patterns are phrases. To prepro-
cess phrase patterns we simply perform this procedure for
each word of the pattern. For each word of the vocabu-
lary we set up a bit mask that indicates which elements
of the pattern does the word match. Figure 4 shows the
marks for the phrase pattern “rose is”, where 01 in-
dicates that the word “is” is the second in the pattern
and 10 indicates that the word “rose” is the first in the
pattern. If any word of the pattern is not found in the
vocabulary we immediately know that it is not in the
text.

Next, we scan the compressed text, byte by byte, and
at the same time traverse the Huffman tree downwards,
as if we were decompressing the text. We report an oc-
currence of a symbol whenever we reach a leaf of the
Huffman tree. At each word symbol obtained we send the
corresponding bit mask to an automaton, as illustrated
in Figure 4. This nondeterministic automaton allows to
move from state i to state i + 1 whenever the i-th word
of the pattern is recognized. Notice that this automa-
ton depends only on the number of words in the phrase
query. After reaching a leaf we return to the root of the
tree and proceed in the compressed text.

The automaton is simulated by the shift-or algo-

rithm [BYG92]. We perform one transition in the au-
tomaton for each text word. The shift-or algorithm sim-
ulates efficiently the nondeterministic automaton using
only two operations per transition. In a 32-bit archi-
tecture it can search a phrase of up to 32 words using a
single computer word as the bit mask. For longer phrases
we use as many computer words as needed.

Finally, we show how to deal with separators and
stopwords. Most online searching algorithms cannot effi-
ciently deal with the problem of matching a phrase dis-
regarding the separators among words (e.g. two spaces
between words instead of one). The same happens to
the elimination of stopwords, which are usually disre-
garded in indexing schemes and are difficult to disregard
in online searching. In our compression scheme, we know
which elements of the vocabulary correspond in fact to
separators, and which correspond to stopwords: at com-
pression time we mark them so that the searching algo-
rithm ignores them. Therefore, we eliminate separators
and stopwords from the sequence (and from the search
pattern) at negligible cost.

4.2 Extending the Basic Algorithm for Com-

plex Patterns

Before entering into details of the searching algorithms
for complex patterns we mention the types of phrase pat-
terns supported by our system. For each word of a pat-
tern it allows to have not only single letters in the pat-
tern, but any set of characters at each position. In addi-
tion, system supports patterns combining exact matching
of some of their parts and approximate matching of other
parts, unbounded number of wild cards, arbitrary regular
expressions, and combinations, exactly or allowing errors.
In the Appendix we present in detail each type of query
supported by our system.

For complex patterns the preprocessing phase corre-
sponds to a sequential search in the vocabulary to mark
all the words that match the pattern. This technique has
been already used in block oriented indexing schemes for
searching allowing errors in uncompressed texts [MW93,
ANZ97]. Since the vocabulary is very small compared to
the text size, the sequential search time on the vocabu-
lary is negligible, and there is no other additional cost to
allow complex queries. This is very difficult to achieve
with online plain text searching, since we take advantage

302

of the knowledge of the vocabulary stored as part of the
Huffman tree.

Each word of the pattern is searched separately in
the vocabulary using a sequential pattern matching al-
gorithm. The corresponding mask bits of each matched
word in the vocabulary are set to indicate its position in
the pattern. Figure 5 illustrates this phase for the pat-
tern “ro* rose is” with k = 1 (allowing 1 error). For
instance, the word “rose” in the vocabulary matches the
pattern in positions 1 and 2.

Vcaabulary Marks

Figure 5: General searching scheme for the phrase “ro*
rose is” allowing 1 error

Depending on the pattern complexity we use two dif-
ferent algorithms to search the vocabulary. For phrase
patterns allowing k errors (k 1 0) that contain sets of
characters at any position we use the algorithm presented
in (BYN96]. If v is thesize of the vocabulary and w is the
length of a word W the algorithm runs in O(v + w) time
to search W. For more complicated patterns allowing Ic
errors (k 2 0) that contain unions, wild cards or regular
expressions we use the algorithm presented in [WM92],
which runs in O(lFv + w) time to search W.

The compressed text scanning phase is similar to the
one described above in Section 4.1.

4.3 Improving the Search with Boyer-Moore

Filtering

We show in this section how the search on the com-
pressed text is improved even more. The central idea is to
search the compressed pattern directly in the text, with a
fast Boyer-Moore-Horspool-Sunday (BMHS) [Sun901 al-
gorithm. This avoids inspecting all the bytes in the com-
pressed text, as the BMHS algorithm can be as good as
O(n/c), where n is the size in bytes of the compressed
text and c is the length of the compressed pattern.

To search for a single word we first look for the word in
the vocabulary and obtain its compressed code. Follow-
ing Figure 6, to look for “rose” we search for the three-
byte string 47 131 8. This code is searched directly in
the compressed text. Every time a match is found in the
compressed text we must verify whether this match in-
deed corresponds to a word. To see that this verification
is necessary, consider the word “ghost” in the example
presented in Figure 6.

To avoid processing the text from the very begin-
ning to make this verification we divide the text in small
blocks of the same size at compression time. The codes
are aligned to the beginning of blocks, so that no code
crosses a block boundary. Therefore, we only need to run
the basic algorithm from the beginning of the block that
contains the match.

Word Code

real
word
ghost

95 32 Text . ..real word...
29 212 99

Original

32 29 212 Compressed Text

I
ghost ?

Figure 6: An example where the code of a word is present
in the compressed text but the word is not present in the
original text

The block size must be small enough so that the
slower basic algorithm is used only on small areas, and
large enough so that the extra space lost at block bound-
aries is not significant. We run a number of experiments
on the wsj file for blocks of sizes 64, 128, 256, and 512
bytes. The worst search performance was for blocks of
64 bytes, due to the overhead of treating flags at the end
of each block. The performance improved for blocks of
128 and 256 bytes and decreased for blocks of 512 bytes,
the latter due to the overhead of performing more verifi-
cation work at each potential match. Therefore, a good
time-space tradeoff for the block size is 256 bytes.

In order to search for complex queries, we first search
the vocabulary as explained in Section 4.2. Once the set
of all words is obtained, we search for all the codes in
the text using an extension of the BMHS algorithm to
handle multiple patterns [BYN96, BYN97a].

In order to search a phrase pattern, we simply take
one of the words of the phrase as its representative. Once
the code of that element is found in the compressed text,
the verification phase searches the whole phrase. Since
we are free to use any representative, we take the one
with longest code (i.e. the most infrequent word), as
BMHS searching improves with longer patterns.

If the number of matching words in the vocabulary is
too large, the efficiency of the filter may be degraded, and
the use of the scheme with no filter might be preferable.

4.4 Analytical Results

We analyze the performance of our searching algorithm.
The analysis considers a random text, which is very ap-
propriate because the compressed text is mainly random.

It is empirically known that the vocabulary of a text
with ‘u. words grows as up [Hea78, ANZ97, MNZS’I]. For
the analysis we consider that: the vocabulary has v =
O(uB) 21 O(fi) words (typically p = 0.4..0.6), the com-
pressed search patterns are of length c (typically c is
equal to 3 or 4 bytes), the original text has u char-
acters, the compressed text has n characters, a com-
plex query matches p words in the vocabulary (typically
p = o(uo.l..o.2

) [BYN97b]), k is the number of errors al-
lowed, u is the coding alphabet (a = 256 symbols), the
pattern has m characters and j different words of length
wi , wj (cizl wi = m). Finally, we align the codes at
the boundaries of blocks of b bytes.

We first consider the preprocessing phase. Looking
exactly for a word of length w in the vocabulary can be
done in O(w) in the worst case by using a trie or on aver-
age by using hashing. Therefore, looking exactly for all
words in the pattern has a cost of O(C:,, wi) = O(m).
On the other hand, if we search a complex pattern we
preprocess all the words at a cost O(jup + xi=, wi) =

O(# + m) or O(j@ + xi,, wi) = O(jkd + m) de-
pending on the algorithm used. In all reasonable cases
the preprocessing phase is sublinear in the text size and

303

negligible in cost. Since k is taken as a constant, the pre-
processing cost is O(ju” + m) = O(mua), which is close
to O(mfi).

We consider now text searching for natural language
texts. The basic algorithm works O(1) per compressed
byte and therefore the search time is O(n + t) in the
worst case, where t is the preprocessing costs presented
above. This worst-case complexity is independent on the
complexity of the search.

On the other hand, the algorithm using BMHS filter
does not inspect all the characters. If the pattern is a
phrase we just look for one element of the phrase, so we
restrict our attention to single-word queries.

If the query matches a single word in the vocabulary,
the search time is very close to O(n/c+ t), where c is the
length of the compressed word. This is because the alpha-
bet size (256) is much larger than the length of the codes
(3 or 4 at most). Even in the case of a query matching
a few words in the vocabulary, the above formula holds
for the multipattern BMHS algorithm, provided c is the
length of the shortest code among the vocabulary words
matching the query (since the shortest code is the maxi-
mum length that the multipattern BMHS algorithm can
use). Notice that we refer to the shortest code among
those that match the selected word in the phrase, re-
gardless of the fact that the algorithm selects the word
whose shortest matching code is maximized.

In case of a complex query which generates many dif-
ferent patterns to search for, the effectiveness of the filter
can be degraded, being O(n + t) (albeit the constant is
smaller than in the basic algorithm). The exact constant
is an open problem [BYR92].

However, even when using a filter, some blocks must
be traversed with the basic algorithm to verify matches
found by the filter. When searching p codes of length c
in parallel, the probability of finding anyone in a given
block of length b is (1 - (1 - p/a’)*), and therefore the
total cost for verifications is

+(l-$)*) <n(l-e-b+=)

To give an idea of the real numbers involved, cnn-
sider that we search for a single word whose code has 3
bytes, and that we use b = 64. In this case, the BMHS
filter inspects on average 2 bytes to advance 4 positions,
therefore inspecting a total of n/2 bytes. The proportion
of bytes inspected due to verifications is smaller than
4 x 10e6. Since n is close to u/3, we inspect u/6 bytes,
which is close to a BMHS algorithm run over the original
text. Therefore, in this case our CPU costs are similar.
However, we perform only one third of the I/O required
by the uncompressed searching, which makes our search
significantly faster.

A well-accepted rule in Information Retrieval is that
queries are uniformly distributed across the vocabulary.
This makes queries with large c much more probable than
those with code length 1 or 2. Moreover, very short code
lengths correspond to stopwords and may therefore be
forbidden.

To search for a very complex pattern that makes the
filter unsuitable, we simply run the shift-or algorithm,
inspecting all n x u/3 bytes. However, in the uncom-
pressed version we would work at the very best O(1) per
original text character, which is three times our cost. The
I/O times are also in our case one third of those of un-
compressed searching.

4.5 Searching Performance

The performance evaluation of the algorithms presented
in the previous sections was obtained using 120 randomly
chosen patterns. In fact we considered 40 patterns con-
taining 1 word, 40 patterns containing 2 words, 40 pat-
terns containing 3 words, and submitted each one to the
searching algorithms. All experiments were run on the
wsj text file and the results were obtained with 99% confi-
dence. The sizes of the wsj uncompressed and compressed
files were 262.8 and 80.4 megabytes, respectively.

Table 4 presents exact (k = 0) and approximate (k =
1,2,3) searching times using Agrep [WM92], Cgrep filter-
less, and Cgrep with Boyer-Moore filtering for blocks of
256 bytes. It can be seen from this table that Cgrep filter-
less is almost insensitive to the number of errors allowed
in the pattern while Agrep is not. This happens because
the filterless version maps all the queries to the same au-
tomaton that does not depend on k. It also shows that
for exact searching Cgrep filter is almost twice as fast as
Agrep and nearly 8 times faster for approximate search-
ing. For all times presented, there is a constant I/O
time factor of approximately 8 seconds for Cgrep to read
the wsj compressed file and approximately 20 seconds for
Agrep to read the wsj uncompressed file.

The following test was for three different types of pat-
terns, as follows:

1. probltatic sign#ance: where # means any char-
acter considered zero or more times (one possible
answer is “problematic significance”)

2. petroleum services lines
3. Brasil

Table 5 presents exact (k = 0) and approximate (k =
1,2) searching times using Agrep, Cgrep filtedess, and
Cgrep with Boyer-Moore filtering for blocks of 256 bytes.

5 Conclusion and Future Work

In this paper we investigated a fast compression and de-
compression scheme for natural language texts and also
presented an algorithm which allows to search for exact
and approximate compressed matches. We analyzed our
algorithms and presented experimental results on their
performance for natural language texts. We showed that
we achieve about 30% compression ratio, against 40%
and 35% for Compress and Gzdp, respectively. For typ-
ical texts, compression times are close to the times of
Compress and approximately half the times of Gzip, and
decompression times are lower than those of Gzip and
one third of those of Compress.

For exact searching our algorithm is O(n + m) time
(which is optimal), using O(fi extra space, where n
is the size of the compressed text, m is the size of the
pattern and u is the size of the uncompressed text. For
approximate searching or complex queries our algorithm
is near O(n + mfi) time using O(fi) extra space. We
also presented a fast Boyer-Moore-type filter to speed up -
the search which is close to O(n/c + mJ;I) on average

.

and uses O(A) extra space, where c is the length of the
shortest code among the words matching the pattern.

An example of the power of our compressed matching
algorithm is the search of a pattern containing 3 words
and allowing 1 error, in a compressed file of approxi-
mately 80.4 megabytes (corresponding to the wsj file of
262.8 megabytes). It runs at 5.4 megabytes per second,
which is equivalent to searching the original text at 17.5

304

Algorithms j&-ii0 ~_~ k=l k=2 k=3
Aver 23.8 i 0.38 117.9 zk 0.14 146.1 + 0.13 174.6 f 0.16

Cgrep filterless 22.1 + 0.09 23.1 zt 0.14 24.7 & 0.21 25.0 zt 0.49
Cgrep filter 15.1 * 0.30 16.2 do 0.52 17.0 i 0.71 22.7 zk 2.23

Table 4: Searching times (in seconds) for the wsj text file.

._ _
Pattern Agrep Cgrep Cgrep Agrep Cgrep

filterless filter filterless
1 73 26 15 117 26
2 22 24 15 117 25
3 1 24 23 14 117 1 23 15 1 145 1 23 1 20 1

Table 5: Searching times (in seconds) for the wsj text file.

megabytes per second. As
text at 2.25 megabytes per
faster than Agrep.

Agrep searches the original (WADS’97), Springer-Verlag LNCS, v. 1272,
second, Cgrep is 7.8 times pages 174-184. 1997.

Currently, we are integrating our results in block [BYN97b]

oriented indexing schemes similar to Glimpse [MW93,
ANZ97], where this work can be nicely applied. We are
also working in a new compression scheme where the
compressed text does not need to be decoded at search
time, and any known sequential pattern matching algo-
rithm can be used for exact search [MNZB98]. [BYR92]

Acknowledgements

We wish to acknowledge the helpful comments of Berthier
Ribeiro-Neto and the many fruitful discussions with Mar-

[BMN+93]

cio D. Aratijo, who helped particularly with the algo-
rithms for approximate searching in the text vocabulary.

References
[BSTWSS]

[AB92]

[ABF96]

[ANZ97]

[BYG92]

[BYN96]

[BYN97a]

A. Amir and G. Benson. Efficient two-
dimensional compressed matching. Proc.
Second IEEE Data Compression Conference,
pages 279-288, Mar. 1992. [FT95]

A. Amir, G. Benson and M. Farach. Let
sleeping files lie: pattern matching in z-
compressed files. Journal of Computer and
Systems Sciences, 52(2):299-307, 1996. [GBYSl]

M. D. Aratijo, G. Navarro and N. Ziviani.
Large text searching allowing errors. In
R. Baeza-Yates, editor, Proc. of the Fourth [Har95]
South American Workshop on String Process-
ang, Carleton University Press International
Informatics Series, v. 8, pages 2-20, 1997.

R. Baeza-Yates and G.H. Gonnet. A new ap-
proach to text searching. Communications of
the ACM, 35(10): 74-82, 1992. [Hea78]

R. Baeza-Yates and G. Navarro. A faster
algorithm for approximate string matching.
In Proc. of Combinatorial Pattern Matching [HL90]
(CPM%), Springer-Verlag LNCS, v. 1075,
pages 1-13, 1996.

R. Baeza-Yates and G. Navarro. Multiple [HC92]
approximate string matching. In Proc. of
Workshop on Algorithms and Data Structures

R. Baeza-Yates and G. Navarro. Block
addressing indices for approximate text re-
trieval. In Proc. of Sizth ACM International
Conference on Information and Knowledge
Management CIKM’97, pages l-8, Las Ve-
gas, Nevada, 1997.

R. Baeza-Yates and M. RCgnier. Average run-
ning time of the Boyer-Moore-Horspool algo-
rithm. Theoretical Computer Science 92(l):
19-31, Jan 1992. Elsevier Science Publishers.

T. C. Bell, A. Moffat, C. Nevill-Manning,
I. H. Witten and J. Zobel. Data compres-
sion in full-text retrieval systems. Journal
of the American Society for Information Sci-
ence, 44: 508-531, 1993.

J. Bentley, D. Sleator, R. Tarjan and V. Wei.
A locally adaptive data compression scheme.
Communications of the ACM, 29: 320-330,
1986.

M. Farach and M. Thorup. String matching
in Lempel-Ziv compressed strings. In Proc.

27th ACM Annual Symposium on the Theory
of Computing, pages 703-712, 1995.

G. H. Gonnet and R. Baeza-Yates. Handbook
of Algorithms and Data Structures. Addison-
Wesley, 1991.

D. K. Harman. Overview of the Third Text
REtrieval Conference. In Proc. Third Text
REtrieval Conference (TRECQ), pages 1-19,
National Institute of Standards and Technol-
ogy Special Publication 500-207, Gaithers-
burg, Maryland, 1995.

J. Heaps. Information Retrieval - Compu-
tational and Theoretical Aspects. Academic
Press, 1978.

D. S. Hirschberg and D. A. Lelewer. Efficient
Decoding of Prefix Codes. Communications
of the ACM, 33(4): 449-459, 1990.

R. N. Horspool and G. V. Cormack. Con-
structing Word-Based Text Compression Al-
gorithms. IEEE Proc. Second Data Compres-
sion Conference, pages 62-81, 1992.

305

[Huf52]

[Man971

[MW93]

[Mof89]

[MNZ97]

D. A. Huffman. A method for the construc-
tion of minimum-redundancy codes. Proc.
of the Institute of Electrical and Radio En-
gineers, 40(9): 1090-1101, 1952.

U. Manber. A text compression scheme that
allows fast searching directly in the com-
pressed file. ACM lVansactions on Znforma-
tion Systems, 15(2): 124-136, 1997.

U. Manber and S. Wu. Glimpse: a tool to
search through entire file systems. Tech. Re-
port 93-34, Dept. of Computer Science, Univ.
of Arizona, Ott 1993.

A. Moffat. Word-based text compression.
Software Practice and Experience, 19(2):
185-198, 1989.

E. de Moura, G. Navarro and N. Ziviani. In-
dexing compressed text. In R. Baeza-Yates,
editor, Proc. of the Fourth South Ameri-
can Workshop on String Processing, Car-
leton University Press International Infor-
matics Series, v.8, pages 95-111, 1997.

[MNZB981 E. de Moura. G. Navarro. N. Ziviani and
R. Baeza-Yates. Direct Patiern Matching on
Compressed Text. Tech. Report 03-98, Dept.
of Computer Science, Univ. Federal de Minas
Gerais, Brazil, Apr 1998.

[SK641

[SunSO]

[WM92]

[Zip491

[ZL76]

(ZL77]

[ZL78]

[ZM95]

E. S. Schwartz and B. Kallick. Generating a
canonical prefix encoding. Communications
of the ACM 7: 166-169, 1964.

D. Sunday. A very fast, substring search al-
gorithm. Communications of the ACM 33(8):
133-142, 1990.

S. Wu, U. Manber. Fast text searching al-
lowing errors. Communicatdons of the ACM,
35(10): 83-91, 1992.

G. Zipf. Human Behaviour and the Principle
of Least Eflort. Addison-Wesley, 1949.

J. Ziv and A. Lempel. On the complexity of
finite sequences. IEEE 7Yansactions on Zn-
formation Theory, 22: 75-81, 1976.

J. Ziv and A. Lempel. A universal algorithm
for sequential data compression. IEEE !&an,-
actions on Information Theory, 23(3): 337-
343, 1977.

J. Ziv and A. Lempel. Compression of in-
dividual sequences via variable-rate coding.
IEEE tinsactions on Information Theory,
24(5): 530-536, 1978.

J. Zobel and A. Moffat. Adding compression
to a full-text retrieval system. Software Prac-
tice and Experience, 25(8): 891-903, 1995.

Appendix: Complex Patterns

We present the types of phrase patterns supported by our
system. For each word of a pattern it allows to have not
only single letters in the pattern, but any set of characters
at each position, exactly or allowing errors, as follows:

range of characters (e.g. t[a-zlxt, where [a-z]
means any letter between a and 2);
arbitrary sets of characters (e.g. t Caeil xt meaning
the words taxt, text and tixt);
complements (e.g. t C-ablxt, where Nab means
any single character except a or b; t [-a-dlxt,
where -a-d means any single character except a,
b, c or d);
arbitrary characters (e.g. t,xt means any character
as the second character of the word);
case insensitive patterns (e.g. Text and text are
considered as the same words).

In addition to single strings of arbitrary size and
classes of characters described above the system supports
patterns combining exact matching of some of their parts
and approximate matching of other parts, unbounded
number of wild cards, arbitrary regular expressions, and
combinations, exactly or allowing errors, as follows:

unions (e.g. t(elai)xt means the words text and
taixt; t (e I ai) *xt means the words beginning with
t followed by e or ai zero or more times followed
by xt). In this case the word is seen as a regular
expression;
arbitrary number of repetitions (e.g. t(ab)*xt
means that ab will be considered zero or more
times). In this case the word is seen as a regu-
lar expression;
arbitrary number of characters in the middle of the
pattern (e.g. t&t, where # means any character
considered zero or more times). In this case the
word is not considered as a regular expression for
efficiency. Note that # is equivalent to + (e.g. t#xt
and t.*xt obtain the same matchings but the latter
is considered as a regular expression);

combining exact matching of some of their parts
and approximate matching of other parts (<te>xt,
with k = 1, meaning exact occurrence of te followed
by any occurrence of xt with 1 error);
matching with nonuniform costs (e.g. the cost of
insertions can be defined to be twice the cost of
deletions).

306

