
Term-ordered Query Evaluation versus Document-ordered Query
Evaluation for Large Document Databases

Marcin Kaszkiel Justin Zobel

Department of Computer Science, RMIT, GPO Box 2476V, Melbourne 3001, Australia

{marcinjz}@cs.rmit.edu.au

Abstract There are two main families of technique for
eficient processing of ranked queries on large text collec-
tions: document-ordered processing and term-ordered pro-
cessing. In this note we compare these techniques experi-
mentally. We show that they have similar costs for short
queries, but that for long queries document-ordered pro-
cessing is much more costly. Overall, we conclude that
term-ordered processing, with the refinements of limited ac-
cumulators and hierarchical index structuring, is the more
eficient mechanism.

Techniques for evaluation of ranked queries on large text
collections are well developed. In a typical ranked system
each document in the collection is heuristically assigned a
score representing its similarity to the query, and the docu-
ments with the highest scores are returned to the user. The
most efficient of the current systems are based on inverted
files; query evaluation involves fetching of inverted files,
processing them to determine similarity values, then fetch-
ing of the top-scoring documents. Typically the number of
documents fetched is small, whereas a high proportion of
documents in the collection will have a non-zero similarity.

These evaluation techniques are used in many appli-
cations, ranging from the short queries posed to Internet
search engines, typically of two to five words, to extended
queries posed by searching experts and long queries gener-
ated by techniques such as query expansion and relevance
feedback. These techniques can provide better effective-
ness than straightforward ranking, but involve many more
query terms and are thus lead to increases in query evalu-
ation costs.

There are two principal techniques for evaluation of
ranked queries: term-ordered (TO) processing and docu-
ment-ordered (DO) processing. Both are based on inverted
files [2, 71, a data structure containing, for each term, a
sorted inverted list of the identifiers of the documents in
which the term appears and the frequency of the term in
each document.

We compare TO and DO processing experimentally. In
TO processing, the inverted list of each term is processed
in full before the next is considered. For each document
d in which each term appears, a partial similarity value
is computed from the inverted list. Each partial similar-
ity value is added to an accumulator corresponding to d.
When processing of the inverted lists is complete, the ac-

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or
fee. SIGIR’98, Melbourne, Australia @ 1998 ACM l-58113-015-5
8/98 $5.00.

cumulators are sequentially processed to normalise them
with regard to document length and to identify the high-
est normalised scores. This style of processing is used, for
example, in SMART [4] and MG (61.

A variant on TO processing is to limit the number of ac-
cumulators, to say 2% of the total number of documents,
and to structure the lists hierarchically [2]. In this TO’
or “skipping” style of processing, rare terms are consid-
ered first, and are free to add accumulators, up to the
limit, as new document identifiers are observed. When the
accumulator limit is reached no further accumulators can
be added, and only a fraction of the information in the
subsequent inverted lists is used; the hierarchically struc-
turing allows this information to be skipped, significantly
reducing CPU time (for list and accumulator processing)
and memory requirements (for accumulators). Reducing
the limit on the number of accumulators simultaneously
reduces both memory requirements and processing time,
but also reduces the ability of the mechanism to identify
relevant documents, that is, reduces its effectiveness.

Another variant of TO processing is to reorder lists by
in-document frequency, so that larger partial similarities
are to the front of each inverted list. We do not experiment
with frequency-sorting here (as it is incompatible with the
broader aims of our research, into passage ranking), but it
allows significant gains over TO’ processing [3].

In DO processing, the inverted lists for all the query
terms are processed simultaneously, in document order. At
each stage the least document identifier d in any list is
found, all information about d is consumed from the front
of all lists in which d is referenced, a similarity value is
computed for d, and processing proceeds to the next least
document. Only a small number of intermediate results-
final similarity values-are required.

Thus DO processing has the advantage of not requiring
memory space for accumulators, but has several potential
disadvantages. First, either enough buffer space must be
allocated to hold all inverted lists simultaneously or query
evaluation times will rise because several disk accesses are
required to fetch each inverted list; in contrast, with TO
processing it is feasible to fetch the whole of all but the
longest lists, because lists are fetched in turn. Second, as
query length increases the cost of identifying the list with
the least document identifier will gradually dominate, as
this cost is O(n log n) in the number of query terms, while
all other costs are asymptotically constant or linear. Third,
with DO processing it is not possible to use optimisations
such as skipping.

Turtle and Flood’s analysis of the performance of rank-
ing algorithms in limited memory suggests that DO is more
efficient than TO [5]. However, the model of processing
used in this analysis is based on simplifying assumptions
that are not valid; in particular, these assumptions imply
that the processing costs are linear in the volume of in-
verted index information required (which is false for DO)

343

Number of terms

Figure 1: Elapsed time for each processing method on TREC disks 2 and 4.

- DO

--- TO (skip)

Number of terms

Figure 2: Elapsed time for each processing method on TREC disks 2 and 4, after division into short documents.

and that seek and latency times can be neglected. will reduce effectiveness but increase query throughput.
Using the MG prototype text database system we have

compared TO, TO’, and DO processing experimentally.
In our first group of experiments we used TREC disks 2
and 4 [I], of about 530,000 documents, and queries 251-
300. To simulate queries of varying length we generated l-
word queries by taking the first word of each query, 2-word
queries by taking the first two words, and so on. We then
measured memory requirements, speed, and effectiveness.

Overall, we conclude that TO’ processing using limited
accumulators and skipping is effective and efficient, and is
the preferred query evaluation mechanism for large docu-
ment databases.

References

We found that all three methods have similar effective-
ness. TO processing required about 2.1 Mb of memory; DO
required up to 1.2 Mb; and TO’ required up to 0.3 Mb. In
the case of DO inverted lists were prefetched and buffered,
a strategy that increases memory requirements but signif-
icantly reduces evaluation time. Elapsed evaluation time
is shown in Figure 1. As can be seen, TO’ processing is
always the most efficient method, and the cost of DO rises
rapidly as query length increases.

PI D. Harman. Overview of the second text retrieval con-
ference (TREC-2). Information Processing and Man-
agement, 31(3):271-289, 1995.

PI A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Transactions on Information
Systems, 14(4):349-379, October 1996.

[31

We also compared TO, TO’, and DO processing over
a larger collection, formed by dividing the documents on
TREC disks 2 and 4 into fragments of 50-500 words each,
giving almost 8,000,OOO documents. Where possible these
divisions were made at a sentence or paragraph boundary.
Evaluation time is shown in Figure 2. For short queries DO
processing is more efficient; for other queries TO’ process-
ing is clearly preferable. Both strategies used up to 3 Mb
of memory, compared to 30 Mb for TO processing.

M. Persin, J. Zobel, and R. Sacks-Davis. Filtered docu-
ment retrieval with frequency-sorted inclexes. J. Amer-
ican Society of Information Science, 47(10):749-764,
1996.

PI G. Salton. Automatic Text Processing: The tmnsfor-
mation, analysis, and retrieval of information by com-
puter. Addison-Wesley, 1989.

[51 H. Turtle and J. Flood. Query evaluation: Strategies
and optimizations. Information Processing and Man-
agement, 31(6):831-850, 1995.

Both methods can have their memory requirements
smoothly reduced in response to system load, in the case
of DO by reducing the size of buffers for storing inverted
lists and in the case of TO’ by reducing the number of ac-
cumulators. For DO, tight memory constraints will cause
the system to thrash. For TO’, tight memory constraints

161 I. Witten, A. Moffat, and T. Bell. Managin? Gzgabytes:
Compressing and indexing documents and amages. Vau
Nostrand Reinhold, 1994.

[71 J. Zobel, A. Moffat, and K. Ramamohanarao. In-
verted files versus signature files for text indexing. ACM
!&ansactions On Database Systems. To appear.

344

