
Context-Sensitive Auto-Completion for Searching
with Entities and Categories

Andreas Schmidt
Karlsruhe Institute of Technology &

University of Applied Sciences
Karlsruhe, Germany

andreas.schmidt@kit.edu

Johannes Hoffart
Max Planck Institute for Informatics

Saarbrücken, Germany
jhoffart@mpi-inf.mpg.de

Dragan Milchevski
Max Planck Institute for Informatics

Saarbrücken, Germany
dmilchev@mpi-inf.mpg.de

Gerhard Weikum
Max Planck Institute for Informatics

Saarbrücken, Germany
weikum@mpi-inf.mpg.de

ABSTRACT
When searching in a document collection by keywords, good
auto-completion suggestions can be derived from query logs
and corpus statistics. On the other hand, when querying
documents which have automatically been linked to enti-
ties and semantic categories, auto-completion has not been
investigated much. We have developed a semantic auto-
completion system, where suggestions for entities and cat-
egories are computed in real-time from the context of al-
ready entered entities or categories and from entity-level co-
occurrence statistics for the underlying corpus. Given the
huge size of the knowledge bases that underlie this setting, a
challenge is to compute the best suggestions fast enough for
interactive user experience. Our demonstration shows the
effectiveness of our method, and its interactive usability.

1. INTRODUCTION
Motivation. Searching in document collections by means

of entities and semantic categories allows users to specify
more precise search queries and improve retrieval effective-
ness (e.g., [3, 9, 7]). The underlying assets, large knowledge
bases (KBs) with entities organized in semantic types or
categories (e.g., DBpedia YAGO or Wikidata), as well as
methods for linking textual occurrences of entities to these
KBs [14] are sufficiently mature to make this endeavor prac-
tically viable.

As an example, consider the screenshots of the STICS
system [9] for news search, depicted in Figure 1. The user
merely needs to start typing a name, and the system auto-
matically suggests entities and categories that could be good
completions of the input prefix. After making her choice
(the politician Donald Trump in this case), the user may
then select an entire category as a search criterion (here,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17-21, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2911461

the Simpsons characters), again after merely typing a pre-
fix. The system will automatically match entities from that
category and return documents with co-occurrences of the
specified entities. Note that this interactive setting differs
from traditional entity search where users merely enter am-
biguous names and keywords [1].

Problem. Matching the user’s input prefix against names
of entities and categories (by prefix matching of individ-
ual tokens) often returns hundreds or thousands of auto-
completion candidates. So the ranking of these candidates
is crucial. A simple solution is to use the importance of enti-
ties as a criterion. However, the importance in the KB (e.g.,
derived from in-coming links in Wikipedia) is not necessar-
ily in line with the frequency or prominence of an entity in
the corpus. A good ranking thus needs to be adaptive to the
corpus. In addition, the ranking should reflect the incremen-
tal nature of the user’s input: after the first entity is cho-
sen, the suggestions for the second one should be sensitive
to this context. For example, after the user picked Donald
Trump, an input prefix like “Sim” should not exactly prior-
itize famous singers like Paul Simon or Nina Simone, who
are important but totally unrelated to Trump. Note that
this incremental interpretation of the user’s keystrokes and
make this problem quite different from the traditional tasks
of query segmentation (e.g., [8]) or entity linking for very
short texts (e.g., [6]).

Solution. This demo paper presents a system that pro-
vides auto-completion suggestions for entities and categories
in a corpus-adaptive and context-sensitive manner. Our so-
lution builds on ideas from prior work on auto-completion
(e.g., [4, 2]), but extends them to the underexplored realm of
knowledge-driven search with interactive speed and usabil-
ity. For corpus-adaptivity, the ranking of candidate entities
is based on the importance in the underlying document col-
lection, also taking into account the temporal dimension.
For context-sensitivity, our ranking considers the semantic
relatedness to other entities and categories already chosen
by the user for her input so far. As basis for our solution we
use the previously developed STICS [9], which ranks entity
and category suggestions independently of the given con-
text, purely based on statistics derived from the KB, not by
statistics gathered form the document collection. Our demo
is available online at http://stics.mpi-inf.mpg.de.

1097

http://dx.doi.org/10.1145/2911451.2911461
http://stics.mpi-inf.mpg.de

(a) Conventional Suggestion (b) Adaptive Suggestion

Figure 1: STICS news search with auto-completion suggestions for entities and categories.

2. KNOWLEDGE-DRIVEN SUGGESTIONS
The goal of the knowledge-driven auto-completion is to

suggest, for a given prefix and specified entites and cate-
gories, only entities and categories that lead to non-empty
results for the document collection being searched. Thus the
suggestions depend on the retrieval model. In our system we
retrieve documents that contain all specified entities and at
least one entity of each category. Additionally, suggestions
should be ranked so that entities and categories that are
salient with respect to the collection are available for quick
selection by the user.

Without any context, we should suggest entities and cat-
egories occurring frequently in the collection, this guide the
user to useful queries for the collection. As soon as context
is given in the form of entities or categories, there are mul-
tiple possibilities of what to suggest, and how to rank the
suggestions. Given a category, an intuitive strategy could be
to suggest categories that co-occurr in documents. However,
categories are only present indirectly in the document, via
the entity. Thus, we suggest categories that are associated
with entities co-occurring with entities of the given category,
in the same indirect manner.

More formally, the auto-completion should provide sug-
gestions based on the input data (E,C, p), where E is the
set of entities and C is the set of categories already specified
by the user (both might be empty), and p is the current pre-
fix that the user has already typed. An additional input is
the type relation from the KB, which associates each entity
with a set of categories (e.g. the entity Hillary Clinton

has the categories politician and lawyer). The output is
a tuple (E∗, C∗), containing two ordered lists of suggested
entities and categories. For the actual ranking, we distin-
guish two cases:

E and C are empty: Without any KB context, E∗

and C∗ simply contain all entities and categories ranked by
the global document frequency, where the frequency of a
category is counted whenever an entity of the given category
is present in a document. The more frequent an entity or
category, the higher in the list. Both lists are then filtered
by p to produce the final output.

E or C are non-empty: First the set of all context
entities Ec is formed as the union of all entities in E and
all entities in any category c ∈ C. E∗ is then populated
with all entities co-occuring with any e ∈ Ec, ranked by

the maximum relatedness score (see Section 3). E∗ is then
filtered by p.

C∗ is derived from E∗ by adding for all of the categories
of each e ∈ E∗. C∗ is ranked by the sum of the relatedness
scores of the contained entities, then filtered by p.

The filtering of entities and categories based on one or
more prefixes is done in the following way: On average, ev-
ery entity in the YAGO system is described by 2.7 words
(category: 3.8 words). To match the given prefix(es), a pre-
fix match between a single words describing the entity or
category is done. If more than one prefix is given, each pre-
fix must match at least one word from the description of the
entity or category. The “coverage” of the prefixes is used
as ranking criterium in a linear combination with the score
described above.

Our system also supports “time travel” search. In this
case, we are only interested in results appearing during an
interval of time or at a specific point in time. This can
easily be achieved by further filtering the set of documents
that should be considered in a query. Restricting the news
articles to consider automatically restricts the suggestions.

3. RELATEDNESS MEASURE
The relatedness between two or more entities is based on

the distance of their occurrences in documents. The first
step is to extract tuples of two or more entities occurring in
a window of words of predefined size (e.g. 50 words). This
is applied to all documents in the collection, and we derive
an aggregated relatedness measure as follows.

Per document, each extracted n-tuple has a weight w that
decreases with the maximum distance d between any two
entities in the tuple: w = log 1

d
. Across the entire collection,

these weights are summed up over all documents where the
n-tuple occurs.

4. INTERACTIVE PERFORMANCE
The auto-completion suggestions are always used in an

interactive manner, where response times of below 100ms
should be achieved. Consequently, a naive approach where
in a first step all documents satisfying the previusly entered
entities and categories are retrieved, then co-occurring enti-
ties are extracted from this document set, is far to expen-
sive. Thus we precompute the relatedness scores of all co-
occurring entities. The starting point for building a datas-
tructure supporting the suggestion lookup are the n-tuples

1098

(e1, e2, e3) := w1,2,3

(e1, e2) (e3, w1,2,3)
(e1, e3) (e2, w1,2,3)

(e2, e3) (e1, w1,2,3)

(e1, e3, e4) := w1,3,4

(e1, e3) (e4, w1,3,4)
(e1, e4) (e3, w1,3,4)

(e3, e4) (e1, w1,3,4)

(e1, e2) [(e3, w1,2,3)]
(e1, e3) [(e2, w1,2,3), (e4, w1,3,4)]

(e2, e3) [(e1, w1,2,3)]

(e1, e4) [(e3, w1,3,4)]

(e3, e4) [(e1, w1,3,4)]

merge

generate generate

Figure 2: Data structure for generating entity suggestions.

(ei1, ei3) a

b

y

z

.

.

.

[(e2,w1,2,3), (e4,w1,3,4), ...]

[(e2,w1,2,3), ...]

...

...

Figure 3: Splitting of entity-list along prefixes.

of entities extracted in Section 3. Consider for example the
triple (e1, e2, e3) with weight w1,2,3. The existence of this
triple states that there is at least one document in the col-
lection in which the entities e1, e2, and e3 occur.

Having a query with already specified entities e1 and e3,
we can suggest entity e2, as we know that there is at least
one document satisfying this query. Having another pre-
computed triple (e1, e3, e4) we can further suggest e4. The
construction of the suggestion-datastructure is shown based
on the two tuples (e1, e2, e3) and (e1, e3, e4) in Figure 2.

For every n-tuple (e1, ..., en) with weight w1,...,n, from the
relatedness measure, we generate a dictionary consisting of
n entries, where the key is formed by n− 1 entities and the
value is the entity which is missing in the key, together with
the weight w1,...,n of the origin n-tuple. This is done for all
tuples from the entity-indexing step. After that, the dictio-
naries are merged, so that the values become lists, consisting
of weighted entities.

To reduce the number of entities which must be filtered by
prefix we split the value-list by the prefixes of the entities.
Figure 3 shows the additional datastructure for key-entry
(e1, e3) which splits the entries by a one-character prefix.
The reason for (e2, w1,2,3) occurring twice is that the descrip-
tion of the entity consists of multiple words. The example
shows one word starting with ‘a’ and another one with ‘y’
(e. g. Yello Air Taxi). The length of the character prefix can
be varied to split entity lists that are too long into lists of
shorter length that meet the performance requirement.

5. IMPLEMENTATION
For the implementation we use a MySQL 5.6 database

with MyISAM tables. The core of the database are the
tables storing the entity co-occurrence tuples, which are
queried by dynamically created SQL statements. The struc-
ture of these table contains n− 1 columns for the entity-ids
(in ascending order) and two more columns for a related en-
tity and the weight of this relationship, which is computed
as explained in Section 3. On our demo dataset of more

than 3 million documents nearly all queries can be answered
in less than 100 ms. Some rare queries for one or two given
entities with very high frequency (like United_States) and
very short and popular prefixes (i.e. ’s’, ’c’) have runtime
durations which are in the order of a second. However, as
there are only a few thousand combinations like this, we gen-
erated another table which combines the critical entities and
the corresponding prefixes. This way, the time constraint of
100 ms can be achieved.

The temporal adaptivity is integrated by splitting the en-
tries in the co-occurence tables in slices of one month. This
way, queries with time constraints only have to consider the
entries satisfying the given time constraint.

6. DEMO SCENARIO

6.1 Dataset
As a demo dataset we use 3 million news articles from

about 300 different news feeds which we have collected since
mid 2013. In this dataset, about 57 million mentions have
been linked to the YAGO [15] using the AIDA [10] entity
linking system. YAGO contains 10 million entities, orga-
nized in over half a million categories organized in a taxon-
omy. For our data, about 600,000 distinct YAGO entities are
marked up in documents. On average, a document contains
28 mentions of 9.5 distinct entities.

6.2 Auto-Completion Suggestions
Corpus-adaptive suggestions help users to explore cor-

pora that they are – a priori - not familiar with. Consider a
user searching for news about Hillary Clinton. If the sug-
gestions were solely based on conventional ranking measures
from the KB, typing “Cl” might lead to Cleveland or Bill

Clinton. With our corpus-aware and time-adaptive sug-
gestions, Hillary Clinton is now first, as she is featured
prominently in news due to her presidential campaign.

Context-sensitive suggestions help to users to find en-
tities that are specifically relevant for the user’s current task.
Consider again the user interested in Hillary Clinton and
suppose the user subsequently types the prefix ’sa’. In 2013
the top three suggestions are Saudi Arabia and San Fran-

cisco, reflecting that she was still the Secretary of State.
This changed in 2015, as shown in Figure 4: now the top
suggestions are Bernie Sanders and Rick Santorum, also
candidates for the US presidential election.

Anecdotal examples for the improvements by corpus- and
context-adaptivity are shown in Table 1.

7. RELATED WORK
A related field of research is entity search (aka. expert

retrieval) [1], which, however, has a different computational
model: queries are keywords or phrases, and answers are
lists of entities. In our setting, the user input is a set of
entities and the search engine returns a set of documents.

Entity recommendation is another related topic (e.g., [5,
13, 11]). Here the task is to identify related entities in the
context of a user exploring a knowledge base or using a
search engine. These recommendations are meant to guide
the user; they are not intended to map the user’s input to
best fitting entities. In contrast, our focus is on interactive
auto-completion at real-time speed.

Context-sensitive auto-completion has been well studied
for keyword queries over web pages and text documents (e.g.

1099

(a) conventional Suggestion (b) Adaptive Suggestion

Figure 4: Improving query formulation by adaptive auto-completion suggestions.

Input Suggested entities Suggested categories

Prefix Context Conventional Adaptive Conventional Adaptive

“do”
e:
Hillary

Clinton

Copa do Brasil Donald Trump documents donor
Rio Grande do Sul Patti Solis Doyle legal documents doctor
Sport Club do Recife United States dollar documentaries L.A. dodgers owners

“co” c: president
cold war Nationalist congress Party dramatic composition country
columbia Indian National congress coding system countries in Europe
conservative African National congress physical condition communist states

“c”

c: president

e: Syria

c (programming) David Cameron English cricketers Central Asian countries
Croatia Bill Clinton dramatic composition Near Eastern countries
Church of England CNN championship Former British colonies

Table 1: Conventional vs. adaptive auto-completion suggestions for given Prefix, Entity (e), and Category (c).

[4, 2, 16]). Here, the context is given by previous queries,
where in our case the context is given in a single query itself
by multiple entities or categories.

Prior work on entity-level auto-completion includes the
STICS [9], SEMEX [12] and Broccoli [3] systems. STICS is
our baseline; its auto-completion is solely based on global
importance. SEMEX is solely based on string similarity be-
tween the user input and the entity suggestions; there is no
consideration of the relatedness between entities. Broccoli is
closest to our setting; its auto-completion works for entities,
categories, relations, and words or phrases. It is corpus-
aware, but does not consider the temporal dimension of how
importance and relatedness vary over time. Also, its con-
text model currently only uses co-occurrence counts based
on Wikipedia and Freebase.

8. REFERENCES
[1] K. Balog, M. Bron, and M. de Rijke. Query Modeling

for Entity Search Based on Terms, Categories, and
Examples. ACM Transactions on Information
Systems, 29(4), 2011.

[2] Z. Bar-Yossef and N. Kraus. Context-sensitive query
auto-completion. In WWW 2011, 2011.

[3] H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann.
Semantic full-text search with broccoli. In SIGIR
2014, 2014.

[4] H. Bast and I. Weber. Type less, find more: fast
autocompletion search with a succinct index. In
SIGIR 2006, 2006.

[5] B. Bi, H. Ma, B. P. Hsu, W. Chu, K. Wang, and
J. Cho. Learning to recommend related entities to
search users. In WSDM 2015, 2015.

[6] M. Cornolti, P. Ferragina, M. Ciaramita, H. Schütze,

and S. Rüd. The SMAPH system for query entity
recognition and disambiguation. In ERD 2014, 2014.

[7] J. Dalton, L. Dietz, and J. Allan. Entity query feature
expansion using knowledge base links. In SIGIR 2014,
2014.

[8] M. Hagen, M. Potthast, A. Beyer, and B. Stein.
Towards optimum query segmentation: in doubt
without. In CIKM 2012, 2012.

[9] J. Hoffart, D. Milchevski, and G. Weikum. STICS:
searching with strings, things, and cats. In SIGIR
2014, 2014.

[10] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau,
M. Pinkal, M. Spaniol, B. Taneva, S. Thater, and
G. Weikum. Robust Disambiguation of Named
Entities in Text. In EMNLP 2011, 2011.

[11] J. Lee, A. Fuxman, B. Zhao, and Y. Lv. Leveraging
knowledge bases for contextual entity exploration. In
KDD 2015, 2015.

[12] J. Osterhoff, J. Waitelonis, and H. Sack. Widen the
peepholes! entity-based auto-suggestion as a rich and
yet immediate starting point for exploratory search. In
GI 2012, 2012.

[13] R. Reinanda, E. Meij, and M. de Rijke. Mining,
ranking and recommending entity aspects. In SIGIR
2015, 2015.

[14] W. Shen, J. Wang, and J. Han. Entity Linking with a
Knowledge Base: Issues, Techniques, and Solutions.
IEEE Trans. Knowl. Data Eng., 27(2), 2015.

[15] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
core of semantic knowledge. In WWW 2007, 2007.

[16] S. Vargas, R. Blanco, and P. Mika. Term-by-term
query auto-completion for mobile search. In WSDM
2016, 2016.

1100

	Introduction
	Knowledge-Driven Suggestions
	Relatedness Measure
	Interactive Performance
	Implementation
	Demo Scenario
	Dataset
	Auto-Completion Suggestions

	Related Work
	References

