
Instant Search - A Hands-on Tutorial

Ganesh Venkataraman, Abhimanyu Lad, Viet Ha-Thuc, Dhruv Arya
LinkedIn Corporation

Mountain View, CA, USA
{ghvenkat,alad,vhathuc,darya}@linkedin.com

MOTIVATION
Instant search has become a common part of the search ex-
perience in most popular search engines and social network-
ing websites. The goal is to provide instant feedback to the
user in terms of query completions (“instant suggestions”)
or directly provide search results (“instant results”) as the
user is typing their query. The need for instant search has
been further amplified by the proliferation of mobile devices
and services like Siri and Google Now that aim to address
the user’s information need as quickly as possible. Exam-
ples of instant results include web queries like “weather san
jose” (which directly provides the current temperature), so-
cial network queries like searching for someone’s name on
Facebook or LinkedIn (which directly provide the people
matching the query). In each of these cases, instant search
constitutes a superior user experience, as opposed to making
the user complete their query before the system returns a
list of results on the traditional search engine results page
(SERP).

We consider instant search experience to be a combination
of instant results and instant suggestions, with the goal of
satisfying the user’s information need as quickly as possible
with minimal effort on the part of the user. We first present
the challenges involved in putting together an instant search
solution at scale, followed by a survey of IR and NLP tech-
niques that can be used to address them. We will also con-
duct a hands-on session aimed at putting together an end-to-
end instant search system using open source tools and pub-
licly available data sets. These tools include typeahead.js
from Twitter for the frontend and Lucene/elasticsearch for
the backend. We present techniques for prefix-based re-
trieval as well as injecting custom ranking functions into
elasticsearch. For the search index, we will use the dataset
made available by Stackoverflow [2].

This tutorial is aimed at both researchers interested in
knowing about retrieval techniques used for instant search
as well as practitioners interested in deploying an instant
search system at scale. The authors have worked exten-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17 - 21, 2016, Pisa, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2914806

sively on building and scaling LinkedIn’s instant search ex-
perience. To the best of our knowledge, this is the first
tutorial that covers both theoretical and practical aspects of
instant search.

Keywords
Information Retrieval; Instant Search; Query Understanding

1. OBJECTIVES
Over the years search has become more focused on get-

ting results as you type. Instant search has become a com-
mon part of the user experience in nearly all popular search
engines, including web search engines (like Google), verti-
calized search engines (like Kayak) as well as social search
engines (like Facebook, LinkedIn). The two broad categories
of instant search include:

1. Instant Results (Figure 1). Here the actual result is
provided while the query is being typed out.

2. Instant Suggestions (Figure 2). Here the user is
guided to complete the query and the results will be
presented after the suggestion is clicked.

For the rest of this proposal, instant search refers to both
the above aspects unless otherwise stated. From an infor-
mation need perspective, it is useful to think about queries
as belonging to two categories:

1. Navigational search. Here the user has a single en-
tity in mind and there exists a single document which
would satisfy their information need. Classic exam-
ple of navigational query in social networks is name
search.

2. Exploratory search. Here multiple results can sat-
isfy the information need. Example: “software engi-
neer new york” could have several good results.

The general approach for navigational search is to provide
the result right away – most often in a typeahead dropdown
box. As illustrated in Figure 1, this means providing the
current temperature for San Jose, or presenting the people
search results for the query “sh”. For exploratory queries
where the need can be met by multiple documents, the goal
is not to provide results in the typeahead box, but instead
guide the user in framing their query before they end up on
the search engine results page (SERP).

For a great instant search experience, we will need the
following aspects to work in tandem:

1211

(a) Example from Google search

(b) Example from LinkedIn

Figure 1: Instant result experience

Figure 2: Instant suggestions

1. Frontend (client side) and decoration of search results

2. Offline data analysis

3. Offline indexing

4. Online retrieval within strict latency limits

5. Online Ranking within strict latency limits

6. Spell correction

7. Query suggestions

This tutorial is aimed at going over the theoretical and prac-
tical aspects of all the above issues. Our tutorial would
be useful for both academics interested in expanding their
knowledge as well as practitioners keen on putting together
a working solution. We will make all our code available on
GitHub and leverage the following tools - typeahead.js [4]
from Twitter, Elasticsearch [1]/Lucene [14] for backend. We
will use the Stackoverflow user-generated data [2] to con-
struct the index and build an instant search experience on
this dataset.

2. RELEVANCE TO INFORMATION
RETRIEVAL AND RELATED WORK

Instant search is increasingly becoming an important part
of the search experience. While there has been decades of re-
search effort spent on optimizing the traditional “SERP” ex-
perience, building a scalable instant search experience poses
its own unique set of challenges in terms of indexing, re-
trieval, and ranking. We believe the information retrieval

researchers and practitioners would greatly benefit from an
overview of these challenges, potential solutions and alter-
natives, as well as the various trade offs involved.

Our goal in this tutorial is to provide an overview of the
challenges involved, the various pieces of technology and rel-
evance components that need to work together, and then
walk the audience through the process of building a scalable
system end-to-end. To the best of our knowledge, such
a tutorial has not been presented before in the in-
formation retrieval community. That said, there’s prior
research that attempts to address various challenges posed
by instant search – although in a piecemeal manner.

2.1 Related Work
In the area of indexing and retrieval, Bast et al. [9] pro-

posed a block-based index to improve retrieval speed by re-
ducing random accesses to posting lists. But this does not
address the problem of efficiently finding candidate comple-
tions of the partially typed query. Li et al. [16] describe a
trie based approach to represent prefixes, with posting lists
at the leaf nodes. While such an approach works well for
query autocomplete systems with few million entries, it’s
much harder to scale further without additional retrieval
techniques like early termination [7, 21, 22].

Early termination is a retrieval technique that avoids ex-
haustively scoring all matching documents; this is achieved
by reorganizing the index such that documents with high
prior probability of relevance (generally referred to as“static
rank”) appear first. Commonly used scores include within-
document term frequencies [18], or some notion of document
quality or popularity [10, 17]. Needless to say, the effec-
tiveness of early termination hinges on the choice of “static
rank”, which in turn is highly dependent on the problem
domain.

Fuzzy search is an area of research that aims to build
retrieval systems that are tolerant to minor spelling errors
or variations. While full word spelling correction is a well-
studied problem [15, 13, 6], fixing spelling errors in partial
queries as the user is typing is a relatively new area of re-
search [11, 12].

In the area of personalized query suggestions, Bar-Yossef
et al. [8] propose an approach that biases query completions
towards previous queries in the same session. But this does
not address single-query sessions, which are very common
in navigational search use cases. Weber et al. [20] focused
on how query likelihoods differ by demographics. Milad [19]
provides a machine learning framework that can combine
demographic and user features for generating personalized
query completions.

In terms of open source technologies, there are several
JavaScript libraries for implementing client side autocom-
plete, e.g. typeahead.js [4] and Bootstrap [3]. For the search
backend, Apache Lucene [14] is a search engine library with
support for full text search via a fairly expressive query lan-
guage, extensible scoring, and high performance indexing.
Elastic Search [1] is a search server based on Lucene that
provides the ability to quickly build scalable search engines.
It provides a distributed, multitenant-capable search engine
with a HTTP web interface.

In this tutorial, we aim to bring together the best ideas
from prior research and leverage open source technologies to
put together a working end to end instant search experience
over a publicly available dataset.

1212

3. FORMAT AND DETAILED SCHEDULE
All code and scripts needed will be made available on

GitHub

1. Quick hitter – End-to-end instant search experience
using Python and typeahead.js (20 min)

• This will serve as an ice-breaker.

• We will show how easy it is to put together a basic
autocomplete service within 40 lines of python.

• The time will also be used to make sure the de-
veloper environment is set up.

2. Literature and tools survey. Cover various aspects of
instant search referenced in Section 2.1. These include:

• Performance and Retrieval (30 min).

– Using indexing techniques like early termina-
tion and static rank to retrieve and rank fewer
documents while maintaining recall.

– Using FST or Trie based retrieval. Theory
covering aspects of Lucene FST [5].

– Prefix indexing based retrieval.

– Trade offs between prefix indexing and FST.

• Tolerance to Errors. We will cover various aspects
of fixing common spelling errors in autocomplete
(20 min).

• Relevance (20 min).

– Ranking autocomplete suggestions using ses-
sion data.

– Personalizing suggestions.

– Using custom scoring function inside Lucene.

3. Walking through a real example (90 min)

(a) Overview and an End-to-End Prototype (15 min)

• Understanding and familiarizing ourselves with
the dataset

– Essential fields

– Tokenization needs

• Understanding the tools (elasticsearch [1], python
etc.)

• Given a particular open data set and a schema,
create an search index using elasticsearch [1].
Sample curl queries would be provided to test
if the index is working (specific queries with
expected results)

(b) Designing Prefix Index (30 min)

• Retrieval and Ranking. Given an open data
set.

– Decide which fields to index and create
an index which can handle prefixes

– Send sample prefix query and get results

• Decide fields to index for retrieval (Analyzers,
N-Grams etc.)

• Decide fields to be used for ranking

(c) Building front end (15 min)

• Integrate front end components to build end-
to-end experience

• Use typeahead.js [4] to query the backend
built using tools built in previous sections

(d) Ranking and Query Rewriting (30 min)
This will be the creative section of the tutorial
where attendees have the opportunity to extent
what had been built in the last one hour towards
their own custom search experience. Examples
would be provided. Sample problems handled:

• Blending results between different query types
like mixing query suggestions and results for
the same prefix. Example: query like“ha”can
have a mix of results like “Tag: hadoop” (sug-
gesting to search via tag “hadoop”) as well as
instant results like the question“How to learn
Hadoop”.

• Integrating metadata into ranking (like num-
ber of upvotes for a Q&A site)

4. PRESENTER INFORMATION
Ganesh Venkataraman currently leads jobs relevance

at LinkedIn. His contributions at LinkedIn include, leading
end to end re-architecture of job search, machine learned
ranking for people search typeahead, introducing machine
learned ranking towards skills search at LinkedIn. He co-
authored a paper on personalized ranking which won the
best paper award at the IEEE Big Data Conference 2015.
He holds a Ph.D. from Texas A&M in Electrical & Com-
puter Engineering where he was the recipient of the Dean’s
graduate merit scholarship.

Abhimanyu Lad Abhimanyu (Abhi) Lad leads query
understanding efforts at LinkedIn. His contributions include
major improvements to query intent prediction, query sug-
gestions, spelling correction, name search and leading a ma-
jor re-architecture of LinkedIn people search stack. He holds
a Ph.D. in Language and Information Technologies from
Carnegie Mellon University, where he was the recipient of
the Yahoo! Ph.D. Fellowship. He has several publications
in the field of information retrieval and machine learning
with over 130 citations.

Viet Ha-Thuc leads machine learning efforts for improv-
ing search quality at LinkedIn. He has played a key role
in designing and implementing machine learned ranking for
personalized search and federation across several verticals at
LinkedIn. His work on LinkedIn search has been published
at conferences such as CIKM, Big Data and WWW. One of
the publications received the Best Application Paper Award
at 2015 IEEE Big Data. Prior to LinkedIn, he was a scientist
in the Content Understanding group at Yahoo! Labs, where
he developed a machine learning system for extracting rel-
evant entities and concepts in text documents. The system
was deployed to annotate every email and news article in
the Yahoo! ecosystem. He received a Ph.D. in Computer
Science from the University of Iowa in 2011.

Dhruv Arya currently leads job search quality at LinkedIn.
His goal is to apply machine learning and data mining ap-
proaches to build talent matching algorithms that connect
job seekers to the most relevant jobs. Apart from this, he has
made key contributions to query understanding and rewrit-
ing, whole page optimization, as well as personalized fed-
erated search, which was presented at CIKM 2015. He re-
ceived a Master’s degree in Computer Science from Univer-
sity of Pennsylvania in 2013.

1213

5. REFERENCES
[1] Elasticsearch documentation,

https://www.elastic.co/guide/index.html.

[2] Stackoverflow creative commons data dump,
http://blog.stackoverflow.com/2009/06/stack-
overflow-creative-commons-data-dump/.

[3] Twitter bootstrap library. http://getbootstrap.com.

[4] typeahead.js library.
https://twitter.github.io/typeahead.js.

[5] Using finite state transducers in lucene,
http://blog.mikemccandless.com/2010/12/using-finite-
state-transducers-in.html.

[6] F. Ahmad and G. Kondrak. Learning a spelling error
model from search query logs. In Proceedings of the
conference on Human Language Technology and
Empirical Methods in Natural Language Processing,
pages 955–962. Association for Computational
Linguistics, 2005.

[7] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space
ranking with effective early termination. In
Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 35–42. ACM, 2001.

[8] Z. Bar-Yossef and N. Kraus. Context-sensitive query
auto-completion. In Proceedings of the 20th
international conference on World wide web, pages
107–116. ACM, 2011.

[9] H. Bast and I. Weber. Type less, find more: fast
autocompletion search with a succinct index. In
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 364–371. ACM, 2006.

[10] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine, 1998. In Proceedings
of the Seventh World Wide Web Conference, 2007.

[11] S. Chaudhuri and R. Kaushik. Extending
autocompletion to tolerate errors. In Proceedings of
the 2009 ACM SIGMOD International Conference on
Management of data, pages 707–718. ACM, 2009.

[12] H. Duan and B.-J. P. Hsu. Online spelling correction
for query completion. In Proceedings of the 20th
international conference on World wide web, pages
117–126. ACM, 2011.

[13] J. Gao, X. Li, D. Micol, C. Quirk, and X. Sun. A large
scale ranker-based system for search query spelling
correction. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages
358–366. Association for Computational Linguistics,
2010.

[14] E. Hatcher and O. Gospodnetic. Lucene in action.
2004.

[15] M. D. Kernighan, K. W. Church, and W. A. Gale. A
spelling correction program based on a noisy channel
model. In Proceedings of the 13th conference on
Computational linguistics-Volume 2, pages 205–210.
Association for Computational Linguistics, 1990.

[16] G. Li, J. Wang, C. Li, and J. Feng. Supporting
efficient top-k queries in type-ahead search. In
Proceedings of the 35th international ACM SIGIR
conference on Research and development in
information retrieval, pages 355–364. ACM, 2012.

[17] X. Long and T. Suel. Optimized query execution in
large search engines with global page ordering. In
Proceedings of the 29th international conference on
Very large data bases-Volume 29, pages 129–140.
VLDB Endowment, 2003.

[18] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered
document retrieval with frequency-sorted indexes.
JASIS, 47(10):749–764, 1996.

[19] M. Shokouhi and K. Radinsky. Time-sensitive query
auto-completion. In Proceedings of the 35th
international ACM SIGIR conference on Research and
development in information retrieval, pages 601–610.
ACM, 2012.

[20] I. Weber and C. Castillo. The demographics of web
search. In Proceedings of the 33rd international ACM
SIGIR conference on Research and development in
information retrieval, pages 523–530. ACM, 2010.

[21] H. Yan, S. Shi, F. Zhang, T. Suel, and J.-R. Wen.
Efficient term proximity search with term-pair
indexes. In Proceedings of the 19th ACM international
conference on Information and knowledge
management, pages 1229–1238. ACM, 2010.

[22] F. Zhang, S. Shi, H. Yan, and J.-R. Wen. Revisiting
globally sorted indexes for efficient document retrieval.
In Proceedings of the third ACM international
conference on Web search and data mining, pages
371–380. ACM, 2010.

1214

