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ABSTRACT
Due to the fast query speed and low storage cost, hashing
based approximate nearest neighbor search methods have
attracted much attention recently. Many state of the art
methods are based on eigenvalue decomposition. In these
approaches, the information caught in different dimensions
is unbalanced and generally most of the information is con-
tained in the top eigenvectors. We demonstrate that this
leads to an unexpected phenomenon that longer hashing
code does not necessarily yield better performance. In this
work, we introduce a random subspace strategy to address
this limitation. At first, a small fraction of the whole feature
space is randomly sampled to train the hashing algorithms
each time and only the top eigenvectors are kept to generate
one piece of short code. This process will be repeated sev-
eral times and then the obtained many pieces of short codes
are concatenated into one piece of long code. Theoretical
analysis and experiments on two benchmarks confirm the
effectiveness of the proposed strategy for hashing.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Algorithms, Experimentation, Measurement

Keywords
Image Retrieval, Random Subspace, Binary Codes, Ham-
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1. INTRODUCTION
With the rapid development of Internet, large scale visu-

al databases with high dimensionality are everywhere on the
Web. These huge databases pose significant challenges to vi-
sual search since the linear exhaustive search is really time
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consuming. To address this issue, many hashing based meth-
ods for approximation nearest neighbor (ANN) search have
been proposed recently [6, 1, 7, 2, 3]. In these approaches,
hash functions are learned to map the nearby points in the
original space into similar binary codes. Searching with bi-
nary codes will be very fast because the Hamming distance
between them can be efficiently calculated in the modern
CPU.

As one main branch of the existing hashing methods, the
eigenvalue decomposition based approaches [8, 7, 2, 9] have
attracted much attention. Spectral Hashing (SH) [8] treat-
s the hashing problem as spectral embedding problem and
calculates the bits by thresholding a subset of eigenvectors
of the graph Laplacian. Anchor Graph Hashing (AGH) [7]
follows the same idea of SH but utilizes anchor graph to ob-
tain tractable low-rank adjacency matrices. PCAH [2] sim-
ply generates linear hash functions with PCA projections,
which are the eigenvectors of the data covariance matrix.

For these eigenvalue decomposition based methods, typi-
cally the variances of different projected dimensions are dif-
ferent and thus the information caught by different dimen-
sions is unbalanced. In general, the top eigenvectors carry
most of the information (variance) while the remainders are
usually less informative or even noisy. This will result in
an unexpected phenomenon that longer hashing codes do
not necessarily yield better performance. As highlighted in
Figure 1, when the code length exceeds 8, increasing num-
ber of bits leads to poorer mean average precision (MAP)
performance on MNIST with both PCAH and AGH. Some
recent work such as Iterative Quantization (ITQ) [2] have
been proposed to overcome this problem, but there still lack
of theoretical guarantee that longer codes will give better
result than that of the shorter ones. Furthermore, the di-
mensionality of visual data is generally very high and this is
the main difficulty widely encountered in many eigenvalue
decomposition based methods, e.g., the time complexity of
PCA is O(nd2 + d3) where n is the size of training set and
d is the dimensionality of the data.

In this work, we attempt to leverage the random subspace
strategy to deal with these problems mentioned above for
binary codes learning. We aim to concatenate many pieces
of short codes generated with the eigenvalue decomposition
based method into one piece of long code with the expec-
tation that the longer code will be “stronger”. However, it
is clear that if the many pieces of short codes are identi-
cal, the obtained long code won’t catch more information
and will yield the same retrieval result as the short code.
Inspired from random decision forests [4], we adopt the ran-
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Figure 1: Mean Average Precision (MAP) of PCAH
and AGH with various bits on MNIST.

dom subspace technique to generate diverse short codes. In
particular, each time we randomly sample a low dimension-
al subspace of the training data to feed the base hashing
learner, e.g. PCAH or AGH, and only the top eigenvec-
tors are kept to generate one piece of short code for all the
data. The subspace dimensionality is smaller than in the
original feature space, while the number of training object-
s remains the same. This process will be repeated several
times and then the obtained many pieces of short codes are
concatenated into one piece of long code. We can theoreti-
cally prove that the longer codes tend to have a better result
than the shorter ones under such a strategy. Since only a
subspace of the original feature space is employed each time
and the whole processes can be completed in parallel with
independent computation units, our strategy is beneficial
to computation complexity. Extensive experiments on two
large scale datasets demonstrate that the proposed method-
s can significantly outperform the state of the art hashing
methods.

2. PROPOSED STRATEGY FOR HASHING
This section gives details and theoretical analysis about

the proposed random subspace strategy for hash function
learning. Let X = {x1, x2, · · · , xn} denote a set of n data
points, where xi ∈ R

d is the ith data point. We denote X =
[x1, x2, · · · , xn] ∈ R

d×n as the data matrix. The binary code
matrix of these points is H = [h1, h2, · · · , hr] ∈ {−1, 1}n×r ,
where r is the code length. Hashing code for one point is a
row of H and denoted as code(xi).

2.1 Random Subspace for Hashing
The Random Subspace Method (RSM) is a combining

technique proposed by Ho [4] for classification tasks. Many
weak classifiers are conducted in random subspaces of the
data feature space and combined by simple majority vot-
ing in the final decision. The most well known application
of RSM is the Random Decision Forests [4]. In the past
decades, RSM has already been proved to be an efficient
way to improve the performance of weak classifiers.

For the eigenvalue decomposition based hashing method-
s, the amount of information (variance) caught in different
eigenvectors differs significantly and the most discrimina-
tive information is often contained in the top eigenvectors.
The short codes generated with only the top eigenvectors
often give better ranking performance than the longer ones
in these methods. In spite of this, the data representation
capability of short codes is limited, and the most recently
proposed hashing methods [3, 2] often use relatively longer
code to achieve better performance.

Algorithm 1 Random Subspace for Hashing

Input: A base hashing learner, a training set X =
{x1, x2, · · · , xn}, the number of sampled features p, the
number of piece of short codes K, the code size of short
code t.

Output: n hashing codes of K×t bits as well as K×t hash
functions.

1: Generate K replicates {X (i)}Ki=1. Each replicate X (i)

contains p features randomly selected from the whole d
dimensional feature space.

2: for i = 1, · · · , K do

3: Train t hash functions h
(i)
1 , h

(i)
2 , · · · , h(i)

t with X (i).
4: Coding: for j = 1, · · · , n, do
5: code(i)(xj) ←− [h

(i)
1 (xj), h

(i)
2 (xj), · · · , h(i)

t (xj)]
6: end for
7: Concatenate the K pieces of short codes {code(i)}Ki=1 of

each sample into one piece of (K × t) bits binary code

[code(1), code(2), · · · , code(K)].

In this paper, we introduce the random subspace strategy
designed for classification problems to binary codes learn-
ing. In the first step, a base hashing learner, e.g. PCAH or
AGH, is applied to generate short binary codes, i.e., only the
top eigenvectors are employed. In order to generate differ-
ent pieces of short codes, we randomly select p < d features
from the d-dimensional training set X each time, and this
modified training set X (i) is fed to the base hashing learn-
er. With this process repeated several times, we can obtain
multiple pieces of short but discriminative binary codes for
each data. Then we concatenate these short codes into a
piece of long code, which can be proved to be equivalent to
the combination (voting) step in RSM. The proposed strat-
egy for hashing can be summarized as in Algorithm 1. To
the best of our knowledge, it is the first time that random
subspace strategy is introduced to binary codes learning.

Since only a subspace of the original feature space is em-
ployed each time, the time complexity will be less than the
base hashing learners. In addition, an important benefit of
random subspace strategy for hashing is that it is inherently
favorable to parallel computing. With this benefit, although
the learning process has to be repeated K times, they can
be completed in parallel with K computation units.

2.2 Theoretical Analysis
The essence of hashing is to find a set of binary codes

for items in the database so that two similar points in the
original space will have a small Hamming distance in the
Hamming space, while two dissimilar points will have a large
Hamming distance. The Hamming distance d(x, y) between
code(x) and code(y) can be directly converted to a similarity
measure s(x, y) in Hamming space:

s(x, y) =
r − d(x, y)

r
(1)

where r is the length of code, d(x, y) ∈ [0, r], s(x, y) ∈ [0, 1],
and smaller Hamming distance corresponds to larger similar-
ity. From this perspective, we can consider that the essence
of hashing is to find a set of binary codes for the data so
that the similarities evaluated with these codes can match
the ground truth. Here we denote the ground truth similar-
ity between sample x and y as f(x, y) ∈ [0, 1].
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Lemma 1: Concatenating K pieces of short codes of t bits
into one piece of K × t bits long code, then the similarity
between two samples evaluated with the long code is the mean
of those evaluated with the K pieces of short codes.
Proof: Let’s denote the Hamming distance and similarity
between two samples evaluated with different short codes as
di(x, y) and si(x, y), where i = 1, 2, · · · ,K. Denote those
evaluated with the long code (obtained by concatenating
short codes) as dl(x, y) and sl(x, y). With Eq.(1) we have

sl(x, y) =
K × t− dl(x, y)

K × t

=
1

K

(
K × t−∑K

i=1 di(x, y)

t

)

=
1

K

(
K∑
i=1

(
t− di(x, y)

t

))

=
1

K

K∑
i=1

si(x, y)

Theorem 1: With Algorithm 1, the similarity between two
samples evaluated with the long code (obtained by concate-
nating short codes) tend to be closer to the ground truth than
that evaluated with the short code.
Proof: As shown in Lemma 1, the aggregated similarity e-
valuated with long code is:

sl(x, y) = E[si(x, y)] (2)

With simple algebra

E[f(x, y)− si(x, y)]
2 = f2(x, y)− 2f(x, y)E[si(x, y)]

+E[s2i (x, y)]
(3)

Since E[Z2] ≥ (E[Z])2, we have

E[s2i (x, y)] ≥ (E[si(x, y)])
2 (4)

Eq.(3) can derive

E[f(x, y)− si(x, y)]
2 ≥ (f(x, y)−E[si(x, y)])

2 (5)

Plugging in Eq.(2), we arrive

(f(x, y)− sl(x, y))
2 ≤ E[f(x, y)− si(x, y)]

2 (6)

From Eq.(6) we can get some insights on how the longer
code improve the ranking performance. How much improve-
ment we can get depends on how unequal the Eq.(4) is. The
effect of diversity is clear. If si(x, y) does not change too
much with different i the two sides will be nearly equal,
and the random subspace strategy will not help. The more
highly variable the si(x, y) are, the more improvement ag-
gregation may produce. But sl is always superior to si in
theory.

2.3 Connection with LSH
Locality Sensitive Hashing (LSH) [6, 1] generates a batch

of random projections to embed the data into Hamming s-
pace. Owing to the inner randomness, LSH based methods
have nice theoretical properties. In [6], the authors have
proved that two similar samples will be embedded into close
codes with high probability and this probability will increase
as the code size increases. Actually, as pointed out in [2],
LSH is guaranteed to yield exact Euclidean neighbors in the
limit of infinitely many bits.
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Figure 2: (a) is the Precision-Recall curve on M-
NIST dataset for 64 bits. (b) is the corresponding
Precision curve. (Best viewed in color)

For the random subspace method, abundant theoretical
studies have been established for classification tasks [4]. Ac-
cording to Hoeffding inequality [5], when the base classi-
fiers are mutually independent, the generalization error of
the final decision reduces exponentially to the ensemble size
(number of the base classifiers), and ultimately approaches
to zero as the ensemble size approaches to infinity. Similar
theory can be applied in our approach, but here the gener-
alization error is the deviation to the true similarity and the
ensemble size is the the length of code. As we have proved
in Theorem 1, longer codes will result in smaller deviation
to the true similarity, which is the same as in LSH.

From another point of view, if we treat one piece of short
code in our method as a “super”bit, our method can be seen
as a special case of LSH. The difference is that in LSH the
hash functions are randomly generated but in our method
we introduce randomness via randomly sampling the feature
space and every “super” bit here is learned with considera-
tion of the data.

3. EXPERIMENTS
To verify the random subspace strategy for hashing, we

take two state of the art hashing algorithm as base hash-
ing learners, i.e. PCAH and AGH. Their random subspace
schemes are denoted as RPCAH and RAGH.

Comparison experiments are conducted on two widely used
benchmarks: MNIST1 andGIST-1M2. MNIST consists of
70K 28× 28 grey scale handwritten digit images. GIST-1M
contains 1 million GIST descriptors extracted from random
images. Each descriptor is of 960 dimensions. For both
dataset, we randomly select 1,000 data points as queries
and use the remaining as gallery database and also training
set. For MNIST, because all of the images are labeled, the
ground truth is defined as semantic neighbors based on the
digit labels. For GIST-1M, a returned point is considered
as a true neighbor if it lies in the top 2 percentile points
closest to a query. We adopt the Hamming ranking method
to evaluate the performance.

To validate the effectiveness of our methods, we compare
them with several state-of-the-art hashing methods includ-
ing LSH [1], PCAH [2], AGH [7], ITQ [2] and Spherical
Hashing (SPH) [3]. For the proposed RPCAH and RAGH,
we randomly sample 70 percents of the whole feature space
to learn 16 bits each time (i.e. p = 70% × d and t = 16).

1http://yann.lecun.com/exdb/mnist/
2http://corpus-texmex.irisa.fr/
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Table 1: The Hamming ranking performance of different algorithms with different code length on MNSIT
and GIST-1M. Mean Average Precision (MAP) is reported. The best results are highlighted in bold.

Methods
MNIST GIST-1M

32-bits 64-bits 96-bits 128-bits 32-bits 64-bits 96-bits 128-bits

LSH 0.2473 0.2528 0.3033 0.3472 0.0903 0.1480 0.1774 0.1853
ITQ 0.4489 0.4659 0.4722 0.4777 0.1878 0.2188 0.2307 0.2383
SPH 0.3177 0.3606 0.3795 0.3854 0.1544 0.2137 0.2447 0.2635
PCAH 0.2512 0.2181 0.2015 0.1905 0.1088 0.0914 0.0791 0.0718
RPCAH 0.3817 0.4282 0.4289 0.4536 0.1951 0.2480 0.2736 0.2890
AGH 0.4215 0.3476 0.3131 0.2945 0.1346 0.1455 0.1464 0.1460
RAGH 0.5349 0.5808 0.5991 0.6044 0.1652 0.1838 0.1904 0.2050
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Figure 3: (a) is the Precision-Recall curve on GIST-
1M dataset for 64 bits. (b) is the corresponding
Precision curve. (Best viewed in color)

The MAP scores of RPCAH, RAGH and other baselines
are shown in Table 1. From which we can find that when
the code size is small data-dependent methods like SPH and
ITQ are generally better than LSH. However, as the code
size increases, the MAP scores of eigenvalue decomposition
based methods like PCAH and AGH decrease. In contrast,
LSH results in a better performance as the code size increas-
es. At 128 bits, the MAP score of LSH is superior to PCAH
and AGH on both two datasets. This is due to the theo-
retical convergence guarantee of LSH. We also observe that
our RPCAH and RAGH achieve a great improvement than
their base methods PCAH and AGH for all code sizes on
both two datasets. Besides, the performance of both RPC-
AH and RAGH increases as the code size increases. The
improvement from 32 bits to 64 bits is prominent, and be-
comes stable when the code size exceeds 96 bits. This verifies
the claims we made in the previous section, and is a major
characteristic of our methods.

Figure 2(a)(b) and Figure 3(a)(b) show the Precision curves
and Precision Recall curves on 64 bits with different methods
on MNIST and GIST-1M, respectively. From the results we
can also see that our proposed methods have remarkable im-
provement than the state of art methods. In Figure 2(a), the
precision decreases in all methods as the number of retrieved
points increases, but our methods decrease more slowly. In
Figure 2(b) RAGH has a precision of 74% when the recall
is 0.4, and the most competitive method is ITQ which only
arrives at 50%. In Figure 3(b) RPCAH has a precision of
24% as the recall is 0.4 while the most competitive SPH only
arrives at 21%.

We also study the sensitiveness of parameters p and t of
RPCAH and RAGH. Due to the space limit, we only report
the results on MNIST. The performance variations with dif-
ferent parameters are shown in Figure 4. From these results
we observe that the proposed strategy is not sensitive to the

sampling rate (p/d) as it is in a reasonable scope. This al-
lows us to sample a small fraction (e.g. 40%) of the whole
feature space to train the hash functions every time, which
can accelerate the whole training process.
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Figure 4: Parameter Sensitivity Analysis

4. CONCLUSION
We proposed a random subspace scheme for binary codes

learning. The key idea was concatenating many pieces of
diverse short codes generated via random subspace strategy
into one piece of long code. Extensive experiments on real
datasets demonstrated the effectiveness of our approach.
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