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ABSTRACT
In recent work, conditional Markov chain models (CMM)
have been used to extract information from semi-structured
text (one example is the Conditional Random Field [10]).
Applications range from finding the author and title in re-
search papers to finding the phone number and street ad-
dress in a web page. The CMM framework combines a priori
knowledge encoded as features with a set of labeled train-
ing data to learn an efficient extraction process. We will
show that similar problems can be solved more effectively by
learning a discriminative context free grammar from train-
ing data. The grammar has several distinct advantages: long
range, even global, constraints can be used to disambiguate
entity labels; training data is used more efficiently; and a
set of new more powerful features can be introduced. The
grammar based approach also results in semantic informa-
tion (encoded in the form of a parse tree) which could be
used for IR applications like question answering. The spe-
cific problem we consider is of extracting personal contact,
or address, information from unstructured sources such as
documents and emails. While linear-chain CMMs perform
reasonably well on this task, we show that a statistical pars-
ing approach results in a 50% reduction in error rate. This
system also has the advantage of being interactive, similar to
the system described in [9]. In cases where there are multi-
ple errors, a single user correction can be propagated to cor-
rect multiple errors automatically. Using a discriminatively
trained grammar, 93.71% of all tokens are labeled correctly
(compared to 88.43% for a CMM) and 72.87% of records
have all tokens labeled correctly (compared to 45.29% for
the CMM).

Categories and Subject Descriptors
H.4.0 [Information Systems and Applications]: [Gen-
eral]; H.3.3 [Information Storage and Retrieval]: [Infor-
mation search and retrieval]; H.3.5 [Information Storage
and Retrieval]: [online information services]
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1. INTRODUCTION
In this paper, we consider the problem of automatically

populating forms and databases with information that is
available in an electronic but unstructured format. While
there has been a rapid growth of online and other com-
puter accessible information, little of this information has
been schematized and entered into databases so that it can
be searched, integrated and reused. For example, a recent
study shows that as part of the process of gathering and
managing information, currently 70 million workers, or 59%
of working adults in the U.S., complete forms on a regular
basis as part of their job responsibilities.

One common example is the entry of customer informa-
tion into an online customer relation management system.
In many cases customer information is already available in
an unstructured form on web sites and in email. The chal-
lenge is in converting this semi-structured information into
the regularized or schematized form required by a database
system. There are many related examples including the im-
portation of bibliography references from research papers
and extraction of resume information from job applications.
For the applications considered in this paper, the source of
the semi-structured information is “raw text”. The same
approach can be extended to work with semi-structured in-
formation derived from scanned documents (image based
information) or voice recordings (audio based information).

Contact information appears routinely in the signature of
emails, on web pages, and on fax cover sheets. The form
of this information varies quite a bit; from a simple name
and phone number to a complex multi-line block containing
addresses, multiple phone numbers, emails, and web pages.
Effective search and reuse of this information requires field
extraction such as LastName, FirstName, StreetAd-

dress, City, State, PostalCode, HomePhoneNumber

etc. One way of doing this is to consider the text block as
a sequence of words/tokens, and assign labels (fields of the
database) to each of these tokens (see Figure 1). All the
tokens corresponding to a particular label are then entered
into the corresponding field of the database. In this simple

330



FirstName LastName AddrLine AddrLine AddrLine City State Zip

John Doe 100 Main Street Seattle WA 98195

Figure 1: Assigning labels to unstructured text

way a token classification algorithm can be used to perform
schematization. Common approaches for classification in-
clude maximum entropy models and Markov models.

We present a classification algorithm based on discrim-
inatively trained context free grammars (CFG) that sig-
nificantly outperforms prior approaches. Besides achieving
substantially higher accuracy rates, we show that a CFG
based approach is better able to incorporate expert knowl-
edge (such as the structure of the database or form), less
likely to be overtrained, and is more robust to variations in
the tokenization algorithm.

2. PREVIOUS WORK
Free-form contact information such as that found on web

pages, emails and documents typically does not follow a rigid
format, even though it often follows some conventions. The
lack of a rigid format makes it hard to build a non-statistical
system to recognize and extract various fields from this semi-
structured data. Such a non-statistical system might be
built for example by using regular expressions and lexicon
lists to recognize fields. One such system is described in
[20]. This system looks for individual fields such as phone
numbers by matching regular expressions, and recognizing
other fields by the presence of keywords such as “Fax”, “Re-
searcher”, etc., and by their relative position within the
block (for example, it looks in the beginning for a name).
However, because of spelling (or optical character recogni-
tion) errors and incomplete lexicon lists, even the best of de-
terministic systems are relatively inflexible, and hence break
rather easily. Further, there is no obvious way for these sys-
tems to incorporate and propagate user input or to estimate
confidences in the labels. For these reasons, it makes sense
to consider a statistical approach to the problem of extract-
ing information from semi-structured sources.

A simple statistical approach might be to use a Näıve
Bayes classifier to classify (label) each word individually.
However such classifiers have difficulties using features which
are not independent. Maximum entropy classifiers ([15])
can use arbitrarily complex, possibly dependent features,
and tend to significantly outperform Näıve Bayes classifiers
when there is sufficient data. However, a common weak-
ness of both these approaches is that each word is classified
independently of all others. Because of this, dependencies
between labels cannot be used for classification purposes.
To see that label dependencies can help improve recogni-
tion, consider the problem of assigning labels to the word
sequence “GREWTER JONES”. The correct label sequence
is FirstName LastName. Because GREWTER is an un-
usual name, classifying it in isolation is difficult. But since
JONES is very likely to be a LastName, this can be used
to infer that GREWTER is probably a FirstName. Thus,
a Markov dependency between the labels can be used to
disambiguate the first token.

Markov models explicitly capture the dependencies be-
tween the labels. A Hidden Markov Model (HMM) [17]

models the labels as the states of a Markov chain, with each
token a probabilistic function of the corresponding label. A
first order Markov chain models dependencies between the
labels corresponding to adjacent tokens. While it is possi-
ble to use higher order Markov models, they are typically
not used in practice because such models require much more
data (as there are more parameters to estimate), and require
more computational resources for learning and inference. A
drawback of HMM based approaches is that the features
used must be independent, and hence complex features (of
more than one token) cannot be used. Some papers explor-
ing these approaches include [1, 2, 4, 3, 18, 19].

A Conditional Markov Model (CMM) ([10, 5, 21]) is a dis-
criminative model that is a generalization of both maximum
entropy models and HMMs. Formally, they are undirected
graphical models used to compute the joint score (sometimes
as a conditional probability) of a set of nodes designated as
hidden nodes given the values of the remaining nodes (des-
ignated as observed nodes). The observed nodes correspond
to the tokens, while the hidden nodes correspond to the (un-
known) labels corresponding to the tokens. As in the case of
HMMs, the hidden nodes are sequentially ordered, with one
link between successive hidden nodes. While a HMM model
is generative, the conditional Markov model is discrimina-
tive. The conditional Markov model defines the joint score
of the hidden nodes given the observed nodes. This pro-
vides the flexibility to use complex features which can be
a function of any or all of the observed nodes, rather than
just the observed node corresponding to the hidden node.
Like the Maximum Entropy models the conditional Markov
model uses complex features. Like the HMM the CMM can
model dependencies between labels. In principle a CMMs
can model third or fourth order dependencies between la-
bels though most published papers use first order models
because of data and computational restrictions.

Variants of conditional Markov models include Conditional
Random Fields (CRFs) [10], voted perceptron models [5],
and max-margin Markov models [21]. CRFs are the most
mature and have shown to perform extremely well on infor-
mation extraction tasks ([14, 16, 15, 13, 19]). A CRF model
is used in [9] to label tokens corresponding to contact blocks,
to achieve significantly better results than prior approaches
to this problem.

3. GOING BEYOND CHAIN-MODELS
While CMMs can be very effective, there are clear limita-

tions that arise from the “Markov” assumption. For exam-
ple, a single “unexpected” state/label can throw the model
off. Further, these models are incapable of encoding some
types of complex relationships and constraints. For exam-
ple, in a contact block, it may be quite reasonable to expect
only one city name. However, since a Markov model can only
encode constraints between adjacent labels, constraints on
labels that are separated by a distance of more than one can-
not be easily encoded without an explosion in the number
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of states (possible values of labels), which then complicates
learning and decoding.

Fred Jones Boston College
10 Main St. 10 Main St.
Cambridge, MA 02146 Cambridge MA 02146
(425) 994-8021 (425) 994-8021

Figure 2: Disambiguation of Phone Numbers

Modeling non-local constraints is very useful, for exam-
ple, in the disambiguation of business phone numbers and
personal phone numbers. To see this, consider the two con-
tact blocks shown in Figure 2. In the first case, it is nat-
ural to label the phone number as a HomePhoneNumber.
In the second case, it is more natural to label the phone
number as a BusinessPhoneNumber. Humans tend to use
the labels/tokens near the beginning to distinguish the two.
Therefore, the label of the last token depends on the label of
the first token. There is no simple way of encoding this very
long-range dependence with any practical Markov model.

A grammar based model allows us to “escape the linear
tyranny of these n-gram models and HMM tagging models”
([11]). A context-free grammar allows specification of more
complex structure with long-range dependencies, while still
allowing for relatively efficient labeling and learning from
labeled data. One possible way to encode the long-range
dependence required for the above example might be to use
a grammar which contains different productions for business
contacts, and personal contacts. The presence of the pro-
ductions BizContact → BizName Address BizPhone

and PersonalContact → Name Address HomePhone

would allow the system to infer that the phone number in
the first block is more likely to be a HomePhone while the
phone number in the second is more likely to be a Busi-

nessPhone. The correct/optimal parse of the blocks au-
tomatically takes the long-range dependencies into account
naturally and efficiently.

As another example imagine a system which has a detailed
database of city and zip code relationships. Given a badly
misspelled city name, there may be many potential explana-
tions (such as a first name or company name). If the address
block contains an unambiguous zip code, this might provide
the information necessary to realize that “Noo Yick” is ac-
tually the city “New York”. This becomes especially impor-
tant if there is some ambiguity with regards to the tokens
themselves (which might occur for example if the tokens are
outputs of a speech recognition system, or a image based
system). Therefore, if the name of the city is misspelled, or
incorrectly recognized, we can use the presence of an unam-
biguous zip code to make better predictions about the city.
In a simple linear-chain Markov model, if the state appears
between the city and the zip, the dependence between the
zip and the city is lost.

Labeling using CMMs has been used as an approximation
to, and as an intermediate step in, many important shal-
low parsing problems including NP-chunking. While CMMs
achieve reasonably good accuracy, the accuracy provided by
a full blown statistical parser is often higher. The main ad-
vantage of a CMM is computational speed and simplicity.
We argue that it is more natural to model a contact block
using a CFG than a CMM. This is because a contact block
is more than just a sequence of words. There is clearly some

hierarchical structure to the block. For example, the bigram
FirstName LastName can be recognized as a Name as can
LastName, FirstName. Similarly, a Address can be of
the form StreetAddress, City State Zip and also of the
form StreetAddress. It intuitively makes sense that these
different forms occur (with different probabilities) indepen-
dently of their context. While this is clearly an approxima-
tion to the reality, it is perhaps a better approximation than
the Markov assumption underlying chain-models.

The grammatical parser accepts a sequence of tokens, and
returns the optimal (lowest cost or highest probability) parse
tree corresponding to the tokens. Figure 3 shows a parse
tree for the sequence of tokens shown in Figure 1. The
leaves of the parse tree are the tokens. Each leaf has ex-
actly one parent, and parents of the leaves are the labels of
the leaves. Therefore, going from a parse tree to the label
sequence is very straightforward. Note that the parse tree
represents a hierarchical structure beyond the labels. This
hierarchy is not artificially imposed, but rather occurs nat-
urally. Just like a language model, the substructure Name

and Address can be arranged in different orders : both
Name Address and Address Name are valid examples of a
contact block. The reuse of components allows the grammar
based approach to more efficiently generalize from limited
data than than a linear-chain based model. This hierarchi-
cal structure is also useful when populating forms with more
than one field corresponding to a single label. For example,
a contact could have multiple addresses. The hierarchical
structure allows a sequence of tokens to be aggregated into
a single address, so that different addresses could be entered
into different fields.

4. DISCRIMINATIVE CONTEXT-FREE
GRAMMARS

A context free grammar (CFG) consists of a set of ter-

minals
˘

wk
¯V

k=1
, a set of nonterminals

˘

N j
¯n

j=1
, a desig-

nated start symbol N1, and a set of rules or productions
˘

Ri : N ji → ζi
¯r

i=1
where ζi is a sequence of terminals and

nonterminals. We associate a score S(Ri) with each rule
Ri. A parse tree is a tree whose leaves are labeled by ter-
minals and interior nodes are labeled by nonterminals. Fur-
ther if a node N ji is the label of an interior node, then
the child nodes are the terminals/nonterminals in ζi where
Ri : N ji → ζj . The score of a parse tree T is given by
P

{Ri:N
ji→ζi}∈T

S
`

N ji → ζi
´

. A parse tree for a sequence

w1w2 . . . wm is a parse tree whose leaves are w1w2 . . . wm.
Given the scores associated with all the rules, and a given
sequence of terminals w1w2 . . . wm, the CKY algorithm can
compute the highest scoring parse tree in time O(m3 · r),
which is reasonably efficient when m is relatively small.

Generative models such as probabilistic CFGs can be de-
scribed using this formulation by taking S(Ri) to be the
logarithm of the probability P (Ri) associated with the rule.
If the probability P (Ri) is a log-linear model and N ji can
be derived from the sequence wawa+1 . . . wb (also denoted

N ji
∗

⇒ wawa+1 . . . wb), then P (Ri) can be written as

1

Z(λ(Ri),a,b,Ri)

exp
F

X

k=1

λk(Ri)fk(wa, wa+1, . . . , wb, Ri)

{fk}
F

k=1 is the set of features and λ(Ri) is a vector of pa-
rameters representing feature weights (possibly chosen by

332



Contact

Name

Address

LocationStreetAddress

FirstName LastName AddrLine AddrLine AddrLine City State Zip

John Doe 100 Main Street Seattle WA 98195

Figure 3: An example parse of a contact block

training). Z(λ,a,b,Nj→ζj) is called the partition function and

is chosen to ensure that the probabilities add up to 1.
In order to learn an accurate generative model, a lot of

effort has to be spent learning the distribution of the gener-
ated leaf sequences. Since the set of possible leaf sequences
are very large, this requires a large amount of training data.
However, in the applications of interest, the leaves are typ-
ically fixed, and we are only interested in the conditional
distribution of the rest of the parse tree given the leaves.
Therefore, if we set out to only learn the conditional dis-
tribution (or scores) of the parse trees given the leaves, we
can potentially manage with considerably less data (and less
computational effort).

A similar observation has been made in the machine learn-
ing community. Many of the modern approaches for classifi-
cation are discriminative (e.g. Support Vector Machines [6]
and AdaBoost [8]). These techniques typically generalize
better than generative techniques because they only model
the boundary between classes (which is closely related to the
conditional distribution of the class label), rather than the
joint distribution of class label and observation.

A generative grammar defines a language, and associates
probabilities with each sentence in the language. In con-
trast a discriminative grammar only associates scores with
the different parses of a particular sequence of terminals.
Computationally there is little difference between the gen-
erative and discriminative model - the complexity for finding
the optimal parse tree (the inference problem) is identical in
both cases. For our generative model, the scores associated
with the rule Ri : N ji → ζi is given by

S(Ri) =
F

X

k=1

λk(Ri)fk(w1w2 . . . wm, a, b, Ri)

when applied to the sequence wawa+1 . . . wb. Note that in
this case the features can depend on all the tokens, not just
the subsequence of tokens spanned by N ji . The discrimina-
tive model allows for a richer collection of features as we do
not require independence between the features. Since a dis-
criminative model can always use the set of features that a
generative model can, there is always a discriminative model
which performs at least well as the best generative model.
In many experiments, discriminative models tend to outper-
form generative models[5, 6, 9, 10, 14].

4.1 Constructing a grammar
As we mentioned before, the hierarchical structure of con-

tact blocks is not arbitrary. It is fairly natural to combine
a FirstName and a LastName to come up with a Name.
This leads to the rule Name → FirstName LastName.
Other productions for Name include

• Name → LastName, FirstName

• Name → FirstName MiddleName LastName

• Name → FirstName NickName LastName

We can build on Name by modeling titles and suffixes us-
ing productions FullName → Name, FullName → Ti-

tle Name Suffix. We can construct other rules based on
commonly occurring idioms. For example, we might have
Location → City State Zip. Such a grammar can be
constructed by an “expert” after examining a number of
examples.

Alternatively an automatic grammar induction technique
may be used. In our case, we used a combination of the two.
Based on a database of 1487 labeled examples of contact
records drawn from a diverse collection of sources, we had a
program extract commonly occurring “idioms” or patterns.
A human expert then sifted through the generated patterns
to decide which made sense and which did not. Most of
the rules generated by the program, especially those which
occurred with high frequency, made sense to the human ex-
pert. The human expert also took some other considerations
into account, such as the requirement that the productions
were to be binary (though the productions were automati-
cally binarized by another program). Another requirement
was imposed by training requirements mentioned in Section
4.4.

4.2 Selecting features
The features selected included easily definable functions

like word count, regular expressions matching token text
(like ContainsNewLine, ContainsHyphen, ContainsDig-

its, PhoneNumLike), tests for inclusion in lists of standard
lexicons (for example, US first names, US last names, com-
monly occurring job titles, state names, street suffixes), etc.
These features are mostly binary, and are definable with
minimal effort. They are similar to those used by the CRF
model described in [9]. However in the CRF model, and in
all CMMs, the features can only relate the sequence of ob-
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Contact

Name

Address

LocationStreetAddress

FirstName LastName AddrLine AddrLine AddrLine City State Zip

Figure 4: The reduced parse tree of the parse tree shown in Figure 3

servations wi, the current state st, the previous state st−1),
and the current time t (i.e. fj(st, st−1, w1, w1, . . . , wm, t)).

In contrast the discriminative grammar admits additional
features of the form fk(w1, w1, . . . , wm, a, b, c, N ji → ζi),
where N ji spans wawa+1 . . . wb. In principle, these features
are much more powerful because they can analyze the se-
quence of words associated with the current non-terminal.
For example, consider the sequence of tokens Mavis Wood

Products. If the first and second tokens are on a line by
themselves, then Wood is more likely to be interpreted as
a LastName. However, if all three are on the same line,
then they are more likely to be interpreted as part of the
company name. Therefore, a feature AllOnTheSameLine

(which when applied to any sequence of words returns 1 if
they are on the same line) can help the CFG disambiguate
between these cases. This type of feature cannot be included
in a conditional Markov model.

4.3 Generating Labeled Data
The standard way of training a CFG is to use a cor-

pus annotated with tree structure, such as the Penn Tree-
bank[12]. Given such a corpus, algorithms based on counting
can be used to determine the probabilities (parameters) of
the model. However, annotating the corpora with the tree-
structure is typically done manually which is time consum-
ing and expensive in terms of human effort. The only train-
ing data required for training the Markov models are the
sequences of words and the corresponding label sequences.
In this section we show that we can automatically generate
the parse tree required for training the grammars from just
the label sequences for a certain class of grammars.

Given a parse tree T for a sequence w1w2 . . . wm, let the
reduced parse tree T ′ be the tree obtained by deleting all the
leaves of T . Figure 4 shows the reduced parse tree obtained
from Figure 3. In this reduced parse tree, the label sequence
`1`2 . . . `m corresponds to the leaves. We can think of this
reduced tree as the parse tree of the sequence `1`2 . . . `m

over a different grammar in which the labels are the termi-
nals. This new grammar is easily obtained from the original
grammar by simply discarding all rules in which a label oc-
curs on the LHS. If G′ is the reduced grammar, then we can
use G′ to parse any sequence of labels. Note that G′ can
parse a sequence `1`2 . . . `m if and only if there is a sequence
of words w1w2 . . . wm with `i being the label of wi. We say
that G is label-unambiguous if G′ is unambiguous (i.e., for
any sequence `1`2 . . . `m, there is at most one parse tree for
this sequence in G′). To generate a parse tree for a label un-
ambiguous grammar, given the label, we use the following
two step method.

1. Generate a (reduced) parse tree for the label sequence
using the reduced grammar G′.

2. Glue on the edges of the form `i → wi to the leaves of
the reduced tree.

It is very easy to see that given any sequence of words
w1 . . . wm, and their corresponding labels `1 . . . `m, this method
gives us the unique parse tree for w1 . . . wm which is compat-
ible with the label sequence `1 . . . `m (if one exists). There-
fore, this method allows to generate a collection of parse
trees given a collection of labeled sequences.

Doing this has at least two advantages. First, it allows for
an apples-to-apples comparison with the CRF based meth-
ods since it requires no additional human effort to generate
the parse trees (i.e., both models can work of exactly the
same input). Secondly, it ensures that changes in grammar
do not require human effort to generate new parse trees.

There is a natural extension of this algorithm to handle
the case of grammars that are not label-unambiguous. If
the grammar is not label-unambiguous, then there could be
more than one tree corresponding to a particular labeled ex-
ample. We could then pick an arbitrary tree, or possibly a
tree that optimizes some other criterion. We could even use
an EM-style algorithm to learn a probabilistic grammar for
the reduced grammar. We experimented with some gram-
mars which have a moderate amounts of label-ambiguity. In
this case, we simply picked a tree with the smallest height.
In our experiments, we did not observe any performance
degradation by moderate amounts of ambiguity.

4.4 Training
The goal of training is to find the parameters λ that max-

imize some optimization criterion, which is typically taken
to be the maximum likelihood criterion for generative mod-
els. A discriminative model assigns scores to each parse, and
these scores need not necessarily be thought of as probabili-
ties. A good set of parameters maximizes the “margin” be-
tween correct parses and incorrect parses. One way of doing
this is using the technique of [21]. However, we use a simpler
algorithm to train our discriminative grammar. This algo-
rithm is a variant of the perceptron algorithm and is based
on the algorithm for training Markov models proposed by
Collins in [5]. Suppose that T is the collection of training
data

˘

(wi, `a, T a)|1 ≤ i ≤ m
¯

, where wi = wi
1w

i
2 . . . wi

ni
is

the collection of words, `i = `i
1`

i
2 . . . `i

ni
is the correspond-

ing labels, and T i is the parse tree. For each rule R in the
grammar, we seek a setting of the parameters λ(R) so that
the resulting score is maximized for the correct parse T i of
wi for 0 ≤ i ≤ m. Our algorithm for training is shown in
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for r← 1 . . . numRounds do

for i← 1 . . .m do

T ← optimal parse of wi with current parameters
if T 6= T i

then

for each rule R used in T but not in T i do

if feature fj is active in wi then

λj(R)← λj(R) − 1;
endif

endfor

for each rule R used in T j but not in T do

if feature fj is active in wi
then

λj(R)← λj(R) + 1;
endif

endfor

endif

endfor

endfor

Figure 5: The Perceptron Training Algorithm

Figure 5. Convergence results for the perceptron algorithm
appear in [7, 5] when the data is separable. In [5] some gen-
eralization results for the inseparable case are also given to
justify the application of the algorithm.

4.5 Correction Propagation
Kristjansson et. al introduced the notion of correction

propagation for interactive form filling tasks [9]. In this sce-
nario the user pastes unstructured data into the form filling
system and observes the results. Errors are then quickly
corrected using a drag and drop interface. After each cor-
rection the remaining observations can be relabeled so as to
yield the labeling of lowest cost constrained to match the
corrected field (i.e. the corrections can be propagated). For
inputs containing multiple labeling errors correction prop-
agation can save significant effort. Any score minimization
framework such as a CMM or CFG can implement correc-
tion propagation. The main value of correction propagation
can be observed on examples with two or more errors. In
the ideal case, a single user correction should be sufficient
to accurately label all the tokens correctly.

Suppose that the user has indicated that the token wi

actually has label `i. The CKY algorithm can be modi-
fied to produce the best parse consistent with this label.
Such a constraint can actually accelerate parsing, since the
search space is reduced from the set of all parses to the set
of all parses in which wi has label `i. CKY returns the
optimal constrained parse in the case where all alternative
non-terminals are removed from the cell associated with wi.

5. EXPERIMENTAL RESULTS
For our experiments, we used 1487 contact records for

training and 400 contact records for testing. The data was
collected from web pages and email, and was hand-labeled
with 24 labels (FirstName, MiddleName, LastName,

NickName, Suffix, Title, JobTitle, CompanyName,

Department, AddressLine, City, State, Country, Postal-

Code, HomePhone, Fax, CompanyPhone, DirectCom-

panyPhone, MobilePhone, Pager, Email, InstantMes-

sage, WebPage). Only the labels for these examples was
generated by hand. The complete parse tree for these ex-
amples were generated as described in the previous section.

5.1 Features
Each example token sequence was analyzed with a set

of ad hoc features. Approximately 100 simple regular ex-
pression features were used, including IsCapitalized, All-

Caps, IsDigit, Numeric, ContainsDash, EndsInPeriod,

ConstainsAtSign, etc. In addition there are 9 lexicon
lists including: LastNames, FirstNames, States, Cities,

Countries, JobTitles, CompanyNameComponents, Ti-

tles, StreetNameComponents.
Using these basic features as input, one addition high level

feature is added: the output of a token classifier. The to-
kens in the sequence are labeled using a boosted collection
of decision trees [8]. Each tree is of depth 3 and there are
a total of 42 trees in the final classifier. The token classi-
fication performance of this algorithm is surprisingly high.
Often it is within a few percent of the best Markov model.

5.2 The Collins Model
For these experiments we compare with the voted percep-

tron conditional Markov model due to Collins [5]. The form
of the Collins model is very similar to the more well known
CRF (the decoding algorithms are identical). While exper-
iments show that the two systems are quite competitive,
the implementation of the learning algorithm for the Collins
model is much simpler. Our results using the Collins model
are very similar to earlier results obtained by Kristjansson
et. al on a similar problem [9].

The boosted classifier is used as an input feature both
for the Collins model and the CFG model. The boosted
classifier achieves quite a reasonable level of performance by
itself. When the boosted classifier was run on the data set
corresponding to the results shown in Table 1, it achieved a
word error rate of 13.49% and a record error rate of 65.86%.
We have noticed that using the boosted classifier as an in-
put feature speeds convergence of the learning by orders
of magnitude. Our conjecture is that the boosted classifier
frees the structural models from modeling the local evidence
and allows them to focus on learning dependencies.

In addition the CFG model is given access to a set of re-
gion features which cannot be included in Collins model (as
described above). There are a total of 80 regions features,
including features such as ContainsNewLine and Begin-

sOnNaturalBoundary which test for natural end of field
markers like new lines and commas. Other region features
are extensions of the above mentioned token based regular
expression and lexicon features to sequences of tokens.

5.3 Performance Metrics
There are a number of ways of comparing the quality of

different labeling techniques. The most obvious is to ex-
amine the word labeling error rate. While this might be
the most appropriate criterion for a batch setting, there are
other appropriate criteria for interactive settings. In the in-
teractive context, it is important to minimize the number of
actions required of the user. Every time even one word of
the record is incorrectly labeled, the user is forced to correct
the labeling. Therefore, the percentage of records in which
all labels are correctly assigned is perhaps a better metric.
Both types or results are summarize in Table 1. Interest-
ingly the Collins model has a fairly high word accuracy rate
while performing poorly on record accuracy.

In cases where there is more than one mislabeled token
in the record, it is possible to propagate the correction that
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the user enters for one of the mislabeled tokens to correct
other tokens as well. The last row of Table 1 shows the per-
centage of records containing at least two mislabeled tokens
that were completely corrected with just one user action. In
summary, the CFG approach labels more than 70% of the
records completely correctly. For those records where there
are more than 2 errors, the CFG corrects the entire record
with a single word correction 50% of the time. This perfor-
mance is significantly better than the best results obtained
with a Markov model.

A number of experiments were performed to determine
the relationship between training set size and testing error.
Both the CMM and CFG were trained with different sized
training sets. We experimented with training sets of size
10%, 20%, 30%, 40%, 50% 60% and 70% of our base train-
ing set. For each case we picked 5 random samples of the
prescribed size and trained both the CMM and the gram-
mar on this reduced training set. In every case, we observed
that the grammar outperformed the Collins model and Fig-
ures 6 and 7 show the improvement of word error rate and
the record error rate of the grammar over the CRF. It can
be seen that there is some variability in the improvement,
but the variability decreases with increase in the size of the
training set. Because of the strong prior available to the
grammar (the rules of the grammar), the grammar is able
to better generalize even when there is just a little training
data. The CMM is not able to do quite so well when the
training size is small and hence the grammar shows a large
improvement in word error rates over the CRF for small
training sizes. However, even when there is a large amount
of data, the grammar shows a large improvement over the
CMM.

The CFG is also better able to propagate user corrections.
As shown in Table 1, the CMM can use a single user correc-
tion to fix all errors in about 15% of the cases where there
are at least two mislabeled tokens. In contrast, the CFG
can propagate the user correction to fix over 50% of these
cases.

6. CONCLUSIONS
This paper marries the powerful tools of statistical natu-

ral language processing to the analysis of non-natural lan-
guage text. Experiments demonstrated that a discrimina-
tively trained context free grammar can more accurately ex-
tract contact information than a similar conditional Markov
model.

There are several advantages provided by the CFG sys-
tem. The CFG, because its model is hierarchically struc-
tured, can generalize from less training data. What is learned
about BusinessPhoneNumber can be shared with what is
learned about HomePhoneNumber, since both are mod-
eled as PhoneNumber. The CFG also allows for a rich
collection of features which can measure properties of a se-
quence of tokens. The feature AllOnOneLine is a very
powerful clue that an entire sequence of tokens has the same
label (e.g. a title in a paper, or a street address). Another
advantage is that the CFG can propagate long range label
dependencies efficiently. This allows decisions regarding the
first tokens in an input to effect the decisions made regard-
ing the last tokens. This propagation can be quite complex
and multi-faceted.

The effects of these advantages are many. For example a
grammar based approach also allows for selective retraining
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Figure 6: Record error-rate reduction using a
discriminatively-trained grammar over a CMM
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Figure 7: Word error-rate reduction using a
discriminatively-trained grammar over a CMM
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Performance Metric Collins Grammar % Improvement

Word Error Rate 11.57% 6.29% 45.63%
Record Error Rate 54.71% 27.13% 50.41%

Percentage of records with at least 2 mislabeled tokens 32.34% 21.31% 34.09%
Record Error Rate of 2-error records with 1 user action 84.20% 46.38% 36.31%

Table 1: CMM/Grammar comparison

of just certain rules to fit data from a different source. For
example, Canadian contacts are reasonably similar to US
contacts, but have different rules for postal codes and street
addresses. In addition a grammatical model can encode a
stronger set of constraints (e.g. there should be exactly one
city, exactly one name, etc. ). Grammars are much more
robust to tokenization effects, since the two tokens which
result from a word which which is split erroneously can be
analyzed together by the grammar’s sequence features

The application domain for discriminatively trained con-
text free grammars is quite broad. It should be possible
to analyze a wide variety of semi-structured forms such as
resumes, tax documents, SEC filings, and research papers.
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