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ABSTRACT 
We develop a probabilistic formulation giving rise to a formal ver-
sion of heuristic 𝑘 nearest-neighbor (kNN) collaborative filtering. 
Different independence assumptions in our scheme lead to user-
based, item-based, normalized and non-normalized variants that 
match in structure the traditional formulations, while showing 
equivalent empirical effectiveness. The probabilistic formulation 
provides a principled explanation why kNN is an effective recom-
mendation strategy, and identifies a key condition for this to be 
the case. Moreover, a natural explanation arises for the bias of 
kNN towards recommending popular items. Thereupon the kNN 
variants are shown to fall into two groups with similar trends in 
behavior, corresponding to two different notions of item popular-
ity. We show experiments where the comparative performance of 
the two groups of algorithms changes substantially, which sug-
gests that the performance measurements and comparison may 
heavily depend on statistical properties of the input data sample. 
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1 INTRODUCTION 
Nearest-neighbor algorithms (kNN) are probably the most popular 
and widely-known approach to collaborative filtering (CF) [1,16]. 
They can be said to be the first technique to be explicitly docu-
mented as a strategy to implement a proper recommender system 
as we understand it today [17]. kNN was further popularized for 
being the core approach in the pioneering large-scale deployment 

of recommendation technologies in e-commerce by Amazon [15]. 
They have been shown to have competitive empirical effective-
ness and are still widely used today. Newer CF approaches, nota-
bly ones based on matrix factorization [12], have been reported to 
outperform kNN in raw recommendation accuracy, yet neighbor-
based methods closely follow the former in this task. Furthermore, 
the kNN approach provides tradeoff advantages such as easier-to-
explain outputs to end-users, a straightforward easy-to-under-
stand formulation scheme, and ease of implementation [16]. 

A current limitation of the kNN scheme is its heuristic nature 
–heuristic is in fact a name by which they are often referred to [1]. 
The kNN formulation was borrowed from classification and re-
gression, but does not arise from a formal justification. Its use is 
supported by intuition (“users with similar behavior in the past 
should have similar behavior in the future“) and empirical effec-
tiveness, but the latter has not been explained in a principled way 
[14]. Furthermore, different variants of the kNN scheme have been 
used by different authors with often differing results, and there 
has not been a clear basis to decide upon which alternative is best 
or when, other than by practical comparative effectiveness [6]. 

In this paper we take on to develop a probabilistic formulation 
for nearest-neighbor recommendation. A probabilistic basis has 
obvious well-understood advantages for algorithm development, 
such as a design justification, a deeper understanding of the algo-
rithm behavior and properties, and enabling variations and exten-
sions of the scheme. The development we propose results in a for-
mulation that closely matches the structure of traditional heuristic 
kNN. As we shall see, different independence assumptions in our 
scheme lead to user-based, item-based, normalized and non-nor-
malized variants. We report experiments showing the probabilis-
tic version is roughly equivalent in performance to the corre-
sponding heuristic formulations. We further find the probabilistic 
basis enables explanations for some of the properties of the kNN 
approach, such as its effectiveness, the advantages of one variant 
over the other, and connections between kNN and popularity. 

The rest of the paper is organized as follows. We start recalling 
the basics and notation for the recommendation task and the kNN 
approach. Then in section 3 we develop the proposed probabilistic 
formulation. We analyze the connections between kNN and pop-
ularity in section 4, after which in section 5 we contrast the theo-
retical analysis with empirical observations on different datasets. 
We discuss related work in the section following that, after which 
we end with a brief summary and some conclusions. 

2 THE NEAREST NEIGHBOR COLLABORA-
TIVE FILTERING APROACH 

The recommendation task is widely known and needs little intro-
duction today [18]. In summary, a recommender system receives 
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as input data collected from observed user-item interactions, 
which can be abstracted to a set of user / item / timestamp records 
(for so-called implicit data directly obtained from natural user ac-
tivity), or user / item / rating value (for so-called explicit prefer-
ence feedback provided by users). Given this input, the recom-
mender system’s task is to predict unobserved user-item prefer-
ences, and thereupon deliver a set of ranked items (typically dif-
ferent for each user) that satisfy the needs of end-users. More de-
tailed descriptions and discussion of the recommendation problem 
can be found elsewhere (see e.g. [1] for a popular introduction). 

Following a common convention in recommender systems re-
search, we shall denote by 𝑟(𝑢, 𝑖) the observed rating by a user 𝑢 
for an item 𝑖, and by �̂�(𝑢, 𝑖) the system score (which may or may 
not aim to be literally a rating prediction) by which an item is se-
lected and ranked for recommendation to a user. We shall use the 
convention 𝑟(𝑢, 𝑖) = 0 to indicate 𝑟(𝑢, 𝑖) is unknown to the sys-
tem –note that by this we are implying 0 is not an allowed rating 
value; the reader may find this shall bring a slight simplification in 
notation along the way, with no generality loss. Finally, we shall 
use the symbols 𝒰 and ℐ to refer to, respectively, the set of users 
and the set of items involved in the recommendation problem. 

The recommendation task can be refined in different ways 
[10], most notably including a) predicting rating values as accu-
rately as possible, and b) delivering an item ranking that satisfies 
as much as possible the target users as viewed in an information 
retrieval perspective (i.e. returning as many relevant items as pos-
sible, as early as possible in the ranking). In this paper we take on 
the latter perspective, which is understood today to be more 
closely related to real recommendation scenarios [6]. 

The nearest-neighbor collaborative filtering strategy (also 
known as memory-based, or heuristic) is one among hundreds of 
solutions to the recommendation problem. It can be said to be the 
first proper approach envisioned for the task [17] and probably 
remains the most popular. It builds on the intuition that users with 
similar tastes in the past may enjoy similar choices in the future. 
The most common simple materialization of this principle has 
taken the following structure (see e.g. [16]): 

 �̂�(𝑢, 𝑖) = 𝐶 ∑ 𝑠𝑖𝑚(𝑢, 𝑣)𝑟(𝑣, 𝑖)

𝑣∈𝑁𝑘[𝑢]

 (1) 

where 𝑠𝑖𝑚(𝑢, 𝑣) is a similarity function that estimates how much 
the tastes of two users look alike, 𝑁𝑘[𝑢] is a neighborhood of 𝑘 
users who are most “suitable” for contributing to the aggregated 
advice for 𝑢, and 𝐶 is a normalizing constant. Neighborhood “suit-
ability” is commonly defined as being among the 𝑘 most similar 
users to 𝑢 in terms of 𝑠𝑖𝑚(𝑢, 𝑣), though neighbor selection is a 
modular problem open to alternative approaches aiming to im-
prove the resulting recommendations. 

By the partial symmetry of the item and user spaces it also 
makes sense to consider an item-based kNN variant based on the 
similarity between items: 

 �̂�(𝑢, 𝑖) = 𝐶 ∑ 𝑠𝑖𝑚(𝑖, 𝑗)𝑟(𝑢, 𝑗)

𝑗∈𝑁𝑘[𝑖]

 (2) 

The similarity functions can be defined in innumerous ways, 
the most popular being the cosine function and Pearson correla-
tion. For instance, the cosine similarity can be defined as: 

 𝑠𝑖𝑚(𝑢, 𝑣) =
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

√∑ 𝑟(𝑢, 𝑗)𝑗∈ℐ
2 √∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ

2

 (3) 

 
𝑠𝑖𝑚(𝑖, 𝑗) =

∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰

√∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰
2 √∑ 𝑟(𝑣, 𝑗)𝑣∈𝒰

2

 (4) 

From this basic scheme many variations arise for which, again, 
we refer the reader e.g. to the survey in [16] for a good starting 
point. For the sake of our research, the above straightforward ver-
sions are sufficiently well-behaved and appropriately simple as a 
frame of reference for our proposed development. 

A point of variation in the scheme will nonetheless get our at-
tention, namely the normalizing constant 𝐶. Most of the literature 
(including popular surveys [1,16]) reports taking 𝐶 =

1 ∑ |𝑠𝑖𝑚(𝑢, 𝑣)|𝑣∈𝑁𝑘[𝑢]∧𝑟(𝑢,𝑖)>0⁄  in order to make of equation 1 a 
weighted sum of ratings with weights adding to 1 (and analo-
gously for equation 2). However it has been recently found that 
𝐶 = 1 is generally more effective at the item ranking task (see e.g. 
[2,6,22]). In this paper we will propose a formal basis for both op-
tions, and we will find that each of them leads to quite different 
theoretical and empirical implications, which we shall formally 
characterize. 

3 PROBABILISTIC kNN 
We derive a probabilistic formulation from a formalization of the 
user-item interaction dynamics as a random process in a sampling 
space, as follows. Along with the 𝒰 and ℐ spaces, let us consider 
the set 𝒯 of all time instants where some user interacts with (con-
sumes, purchases, rates, choses, etc.) some item. Taking the time 
points in 𝒯  as (theoretically) fine-grained as needed (e.g. real 
numbers), we can assume there is only a user-item pair interaction 
at each 𝑡 ∈ 𝒯, that is, two users cannot access an item at the exact 
same time. This is just a condition that facilitates having well-de-
fined probability distributions, as we shall see. Actually, assigning 
an arbitrary unique ID to each interaction would do as well for our 
purposes –time is just a convenient and particularly meaningful 
one. We consider 𝒯 includes all interactions, both observed and 
non-observed by the system. We can also consider that 𝒯 includes 
both past and future interactions. It is not a problem for us to in-
troduce such an abstract construct, as it will just as well serve our 
theoretical purposes. We may also consider for a moment an ideal 
situation in which users have full omniscient knowledge of the 
whole item space and always choose items in full awareness of 
how much they would benefit (enjoy, gain, etc.) from each item, 
therefore choosing the item that maximizes their satisfaction at 
that time.  

We consider the user choices are not deterministic and may 
depend on the occasion, therefore it makes sense to describe them 
by a probability distribution over items (for each user) to represent 
this uncertainty. For this purpose, over the set 𝒯 we define two 
functions 𝑈: 𝒯 → 𝒰 and 𝐼: 𝒯 → ℐ. For a given 𝑡 ∈ 𝒯, 𝑈(𝑡), which 
we shall abbreviate as 𝑈𝑡 , is the user who had the interaction at 
time 𝑡, and 𝐼(𝑡), which we shall abbreviate as 𝐼𝑡, is the item that 
𝑈𝑡 interacted with. We can consider 𝑈 and 𝐼 as random variables 
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for which 𝑝(𝑈𝑡 = 𝑢) and 𝑝(𝐼𝑡 = 𝑖) are well-defined (categorical) 
probability distributions over 𝑢 ∈ 𝒰 and 𝑖 ∈ ℐ respectively. 

Now assume we have a target user 𝑢 for whom we are to pro-
duce a recommendation. Say 𝑡 ∈ 𝒯  is the next time 𝑢 will con-
sume some item (either spontaneously by his own initiative, or 
induced by the system delivering a recommendation, or by any 
other means). Defining 𝑡 this way means that 𝑈𝑡 = 𝑢. Upon this 
formal scheme, we may define the recommendation task as esti-
mating the probability for each item to be the one the user would 
choose at that time. That is, we wish to estimate 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢). 
If we can do that, an optimal recommendation for 𝑢 (which max-
imizes user satisfaction in expectation) is ranking items by de-
creasing value of this probability. In other words, we should take 
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) as the ranking function (ranking score) for rec-
ommendation, to optimize the chance to satisfy a user who 
browses our recommendation top-down. 

Upon this initial basis, we shall derive formulations of user-
based and item-based kNN by introducing a second user (or, re-
spectively, item) –the neighbor– as a second random variable over 
which we shall marginalize the ranking function, as we show next. 

3.1  User-Based kNN 
Let 𝑡′ < 𝑡 be a time when the target item 𝐼𝑡 (whichever that item 
happens to be) was interacted with by some other user 𝑣. Apply-
ing the law of total sum we can marginalize the objective function 
as follows: 

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) 

∼ ∑ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣)𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡)

𝑣∈𝒰

 (5) 
 

where we apply some independence assumptions: first, 
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∼ 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡)  considering that 
𝐼𝑡′ = 𝐼𝑡 does not provide much meaningful information in the ab-
sence of any further condition related to time 𝑡′ –the equality just 
states a condition as vague as the fact that some undefined user 
chose item 𝐼𝑡 at some undefined moment 𝑡′ in the past. Second, 
given that we do not have any direct evidence of the preference of 
the target user 𝑢 for target items 𝑖 (otherwise we would not con-
sider 𝑖 for recommendation to 𝑢), and assuming we do have some 
direct observation of other users 𝑣 interacting with 𝑖, we have re-
moved 𝑈𝑡 = 𝑢 from the conditional part of the first term in the 
summation: 

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢, 𝑈𝑡′ = 𝑣, 𝐼𝑡′ = 𝐼𝑡) ∼ 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡′ = 𝑣, 𝐼𝑡′ = 𝐼𝑡) 
= 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣, 𝐼𝑡′ = 𝐼𝑡) ∼ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣) (6) 

The second term in equation 5, 𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡), 
denotes the probability that 𝑣 has chosen sometime an item that 
𝑢 will also pick. It can be rewritten as: 

𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡) 

=
𝑝(𝑈𝑡′ = 𝑣, 𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡)

∑ 𝑝(𝑈𝑡′ = 𝑤, 𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡)𝑤∈𝒰
 (7) 

3.2 Estimation from Observed Data 
Now let us neglect the variations in user tastes over time. This is 
a very strong assumption, but one that basic non context-sensitive 
recommender systems make to generate their predictions: user be-
havior consistency over time.  

If we do that, then we may estimate the above distributions 
based on observed data as follows. Assume the observations we 
have are a set of recorded interactions between users and items. 
This can be represented as a sample of triples ℱ ⊂ 𝒰 × ℐ × 𝒯 so 
that (𝑢, 𝑖, 𝑡) ∈ ℱ means that 𝑢 has been observed consuming 𝑖 at 
time 𝑡 . We denote by 𝑟(𝑢, 𝑖) = |{(𝑢, 𝑖, 𝑡) ∈ ℱ}|  the number of 
times 𝑢 has been observed to pick 𝑖. As a frequency, 𝑟(𝑢, 𝑖) fol-
lows a multinomial distribution resulting from the categorical 
probability that the user will pick the item in question at any given 
time, that is, in expected value: 

 𝑟(𝑢, 𝑖) ∑ 𝑟(𝑢, 𝑗)

𝑗∈ℐ

⁄ ∼ 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) (8) 

which provides an estimate for the distribution in equation 6.  
This scheme, and the derivations we will develop hereupon, 

can be generalized to 𝑟(𝑢, 𝑖)  denoting explicit numeric ratings 
also, to the extent that it is reasonable to assume that rating values 
reflect (are a monotonically increasing function of, or more 
strictly, are proportional to) the expected frequency with which a 
user would pick an item. To that extent, we will henceforth occa-
sionally (and intentionally) refer to 𝑟(𝑢, 𝑖) as a “rating”. 

As for equation 7, the chances that 𝑣 and 𝑢 pick the same item 
at any two (arbitrary) different points in time can be estimated by 
the number of times this was observed to occur in our sample ℱ: 

𝑝(𝑈𝑡′ = 𝑣, 𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡) = ∑ 𝑝(𝑈𝑡′ = 𝑣, 𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡 = 𝑗)

𝑗∈ℐ

 

∼
1

|ℱ|2
∑|{(𝑡1, 𝑡2) ∈ 𝒯2|(𝑢, 𝑗, 𝑡1) ∈ ℱ ∧ (𝑣, 𝑗, 𝑡2) ∈ ℱ}|

𝑗∈ℐ

 

=
1

|ℱ|2
∑|{𝑡1 ∈ 𝒯|(𝑢, 𝑗, 𝑡1) ∈ ℱ}||{𝑡2 ∈ 𝒯|(𝑣, 𝑗, 𝑡2) ∈ ℱ}|

𝑗∈ℐ

 

=
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

(∑ ∑ 𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰 )
2 (9) 

Substituting equation 9 into 7 we get: 

𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡) ∼
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

∑ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰
 (10) 

And finally, replacing equations 8 and 10 into 5 we have: 

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) 

∼
1

∑ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰
∑

∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ
𝑟(𝑣, 𝑖)

𝑣∈𝒰

 

∝ ∑
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

∑ 𝑟(𝑢, 𝑗)𝑗∈ℐ ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ
𝑟(𝑣, 𝑖)

𝑣∈𝒰
𝑣≠𝑢

 (11) 
 

where we have intentionally added ∑ 𝑟(𝑢, 𝑗)𝑗∈ℐ  in the denomina-
tor (as it is a constant for a fixed target user 𝑢, thus preserving the 
ranking) to make our point next. We also add the (redundant) con-
dition 𝑣 ≠ 𝑢 because we should have 𝑟(𝑢, 𝑖) = 0, i.e. no previous 
recorded interaction for any 𝑖 we may consider as recommenda-
tion for 𝑢. 

As we now can see, equation 11 defines a user-based kNN rec-
ommender where the similarity function looks quite like a cosine 
(as in equation 3), only using the 𝐿1 norm instead of 𝐿2 in the co-
sine similarity. We have thus just shown that the ranking function 
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of a common user-based kNN algorithm can be described as the 
computation of a probability. The specific variant matches the 
heuristic kNN scheme defined by equations 1 plus 3 with 𝐶 = 1, 
that is, no normalization [2,6,22]. 

We may now want to restrict the set of users 𝑣 to a subset of 
neighbors, or not –this would just be an ad-hoc refinement of the 
probabilistic scheme. In our experiments, similarly to heuristic 
kNN, we shall consider neighbor selection based on the highest 
values of the weights in the rating sum in equation 11, which cor-
respond to 𝑝(𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡|𝑈𝑡′ = 𝑣), for each target user 𝑢.  

Moreover, we found in our experiments that smoothing the 
probability estimates slightly improves empirical results.  
Specifically we tested Dirichlet smoothing [25] on the equation 11 
weights as estimates of 𝑝(𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡|𝑈𝑡′ = 𝑣) , using 
∑ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰 / ∑ ∑ 𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰  ∝  𝑝(𝑈𝑡 = 𝑢, 𝐼𝑡′ =

𝐼𝑡) as a Dirichlet prior estimate. 

3.3 Normalized Variant 
In equation 5, nothing prevents us from restricting the sum over 
users to essentially any condition on 𝑣, as far as the sum over 𝑣 
adds to one. In particular we can take the condition that 𝑣 has 
been seen interacting with 𝑖 in the system: 

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) 

∼ ∑ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣, 𝑟(𝑣, 𝑖) > 0)                                                 

                                 𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡 , 𝑟(𝑣, 𝑖) > 0)𝑣∈𝒰

 

With this variation, it is easy to see that equation 11 remains 
almost the same but, quite importantly, a constant 𝐶 appears: 

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∼ 𝐶 ∑
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

∑ 𝑟(𝑢, 𝑗)𝑗∈ℐ ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ
𝑟(𝑣, 𝑖)

𝑣∈𝒰

 

with 𝐶 = 1 ∑ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰:𝑟(𝑤,𝑖)>0⁄ . This is a normalized 
variant since the numerators of the weights in the sum of ratings 
𝑟(𝑣, 𝑖) above now sum to 1, similar in structure to the heuristic nor-
malized kNN [1,16] (except for ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ  in the denominator be-
ing left out of the normalization). Neighbor selection and smoothing 
can be introduced in a similar way as in the non-normalized variant. 

3.4 Item-Based kNN 
The analysis of user-based kNN can be developed in an item-ori-
ented version as well. For this purpose, we marginalize 
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) by neighbor items 𝑗, and we apply analogous de-
velopments to the ones detailed in section 3.2 for the user-based 
variant, only we start by inverting the target user and item in the 
initial ranking function:  

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∝𝑢 𝑝(𝐼𝑡 = 𝑖)𝑝(𝑈𝑡 = 𝑢|𝐼𝑡 = 𝑖) 

~ 𝑝(𝐼𝑡 = 𝑖) ∑ 𝑝(𝐼𝑡′ = 𝑗|𝐼𝑡 = 𝑖, 𝑈𝑡′ = 𝑈𝑡)                       

           𝑝(𝑈𝑡 = 𝑢|𝐼𝑡 = 𝑖, 𝐼𝑡′ = 𝑗, 𝑈𝑡′ = 𝑈𝑡)𝑗∈ℐ

 
 

(12) 

Now similarly to the user-based version, we consider the inde-
pendence assumption between target user and item for lack of ob-
servations:  

𝑝(𝑈𝑡 = 𝑢|𝐼𝑡 = 𝑖, 𝐼𝑡′ = 𝑗, 𝑈𝑡′ = 𝑈𝑡) ~ 𝑝(𝑈𝑡′ = 𝑢|𝐼𝑡′ = 𝑗) 

We rewrite again the conditional pairwise item dependence as: 

𝑝(𝐼𝑡′ = 𝑗|𝐼𝑡 = 𝑖, 𝑈𝑡′ = 𝑈𝑡) =
𝑝(𝐼𝑡′ = 𝑗, 𝐼𝑡 = 𝑖, 𝑈𝑡′ = 𝑈𝑡)

∑ 𝑝(𝐼𝑡′ = 𝑘, 𝐼𝑡 = 𝑖, 𝑈𝑡′ = 𝑈𝑡)𝑘∈ℐ
 

Applying equivalent model estimations on observed data, we get: 

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) 

∝ (∑ 𝑟(𝑣, 𝑖)

𝑣∈𝒰

) ∑
∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰

∑ ∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑘)𝑣∈𝒰𝑘∈ℐ
·

𝑟(𝑢, 𝑗)

∑ 𝑟(𝑣, 𝑗)𝑣∈𝒰𝑗∈ℐ
𝑗≠𝑖

 

∝ 𝐶 ∑
∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰

∑ 𝑟(𝑣, 𝑗)𝑣∈𝒰
𝑟(𝑢, 𝑗)

𝑗∈ℐ
𝑗≠𝑖

 

with 𝐶 = ∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰 ∑ ∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰𝑗∈ℐ⁄ . 
Comparing this to equations 2 plus 4, we see we have obtained 

a formulation that has analogies to the heuristic item-based kNN. 
One difference is that the ∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰  term is missing in the de-
nominator here, and what is more, it is present in the numerator 
through 𝐶. We see on the other hand that the denominator in 𝐶 
somewhat balances this (for instance if ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ  were constant 
on 𝑣, then 𝐶 would be constant on 𝑖). 

On the other hand, as in user-based, we may consider the nor-
malized version by conditioning on the observation of some inter-
action between the target user 𝑢 and the neighbors 𝑗, which re-
sults in a refinement of the normalizing constant: 𝐶 =
∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰 ∑ ∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰𝑗∈ℐ:𝑟(𝑢,𝑗)>0⁄ . And neighborhoods 
and smoothing can be analogously introduced. 

4 POPULARITY BIASES 
Aiming to analyze the generic trends within the kNN formula-
tions, we examine what course these algorithms follow when us-
ers’ tastes (respectively item trends in the item-based variants) are 
pairwise independent. 

4.1 User-Based Bias 
In the user-based variant, user independence means 
𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡)  ∼  𝑝(𝑈𝑡′ = 𝑣)  for all 𝑣  and 𝑢 , 
whereby equation 5 becomes: 

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∼ ∑ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣)𝑝(𝑈𝑡′ = 𝑣)

𝑣∈𝒰

 

= 𝑝(𝐼𝑡′ = 𝑖) ∼
∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰

∑ ∑ 𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰
∝ ∑ 𝑟(𝑣, 𝑖)

𝑣∈𝒰

 
 

(13) 

Thus by this independence assumption the ranking function 
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) is estimated as proportional to the number (or the 
sum) of ratings of 𝑖, that is, the item’s popularity. We also see that 
under this assumption we are approximating (𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢)  ∼

𝑝(𝐼𝑡′ = 𝑖), i.e. the probability that a random user picks the item 𝑖, 
which is a natural understanding of the notion of item popularity. 

This means that whereas user-based kNN takes an exact de-
composition of 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) by the law of total probability, 
popularity (as per equation 5) represents an inexact approxima-
tion to 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) by an additional independence assump-
tion. To the extent that in some case we actually had 
𝑝(𝑈𝑡′|𝑈𝑡, 𝐼𝑡′ = 𝐼𝑡) ∼ 𝑝(𝑈𝑡′), popularity would start becoming a 
fair estimate for 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢). In other words, kNN degrades 
to popularity-based recommendation when user tastes are inde-
pendent from each other. In the absence of any particular pairwise 
bias in 𝑝(𝑈𝑡′|𝑈𝑡, 𝐼𝑡′ = 𝐼𝑡), user-based kNN simply ranks items by 
the number of ratings they have (or their sum). 
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If on the contrary user tastes are not pairwise independent, we 
have 𝑝(𝑈𝑡′|𝑈𝑡, 𝐼𝑡′ = 𝐼𝑡) ≠ 𝑝(𝑈𝑡′) , and equation 13 becomes a 
worse and worse approximation of equation 5 as the conditional 
distribution diverges from the user prior. In such situations kNN, 
as a more exact development of 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢), should perform 
better than popularity, as the formal inaccuracy in the probabilis-
tic development can be expected to translate into corresponding 
errors in the predictions thereupon. 

Formal imprecisions are however not the only source of predic-
tion inaccuracies. Another fundamental one is the approximate es-
timation of distributions from observed data. To this respect, pop-
ularity only uses the estimate 𝑝(𝐼𝑡′ = 𝑖) ∝ ∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰  as per 
equation 8, whereas kNN introduces, in addition, the estimations 
𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡 = 𝑣) ∝ 𝑟(𝑣, 𝑖)  by equation 8 and 𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 =

𝑢, 𝐼𝑡′ = 𝐼𝑡) ∝ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ  by equation 10. If the estimates 
applied in kNN happen to be less reliable than the ones in popular-
ity, then the estimation inaccuracy could outdo the formal accuracy 
to the point that kNN may perform worse than popularity. This 
might happen, as we shall see, in data sparsity situations, to which 
kNN appears to be more vulnerable than popularity. This is to be 
expected, since the estimation of popularity is one-dimensional (in-
volving a single random variable 𝑖), whereas the estimates of kNN 
are two-dimensional (involving two variables 𝑣 and 𝑖,  𝑢 and 𝑣, re-
spectively), and therefore more vulnerable to sparsity. 

In sum, the probabilistic formulation thus shows why there is 
some degree of structural relation between kNN and popularity, 
and identifies a key factor (user dependence) for kNN to be (more) 
effective (than popularity). 

4.2 Normalized Variant Bias 
The pairwise user independence in the normalized version would 
mean 𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡, 𝑟(𝑣, 𝑖) > 0)  ∼  𝑝(𝑈𝑡′ = 𝑣| 
𝑟(𝑣, 𝑖) > 0), which for this variant yields: 

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) 

∼ ∑ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣, 𝑟(𝑣, 𝑖) > 0)𝑝(𝑈𝑡′ = 𝑣|𝑟(𝑣, 𝑖) > 0)

𝑣∈𝒰

 

= ∑ 𝑝(𝐼𝑡′ = 𝑖, 𝑈𝑡′ = 𝑣|𝑟(𝑣, 𝑖) > 0)

𝑣∈𝒰

 

∼ ∑ 𝑟(𝑣, 𝑖)

𝑣∈𝒰

∑ ∑ 𝑟(𝑣, 𝑗)

𝑗∈ℐ 𝑣∈𝒰
𝑟(𝑣,𝑖)>0

⁄  

If ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ  are not too different for the set of raters 𝑣  of 
each item 𝑖 (i.e. each item has a similar mix of highly an moderately 
active users), then ∑ ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ 𝑣∈𝒰:𝑟(𝑣,𝑖)>0  is approximately pro-
portional to the number of users who interacted with 𝑖 , and 
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) is then similar to the average rating of item 𝑖. 

We thus remarkably see that the normalized user-based kNN 
becomes not similar to the sum of rating values of the target item, 
but to its average rating. This hints a potentially fundamental dif-
ference in the behavior of the normalized and non-normalized var-
iants which can show up when the distribution of the sum and the 
average of item ratings diverge. 

1 http://grouplens.org/datasets/movielens/1m 
2 http://www.netflixprize.com 

4.3 Item-Based Bias 
If we assume pairwise item independence, i.e. 
𝑝(𝐼𝑡|𝐼𝑡′ , 𝑈𝑡′ = 𝑈𝑡) ∼ 𝑝(𝐼𝑡) then equation 12 becomes: 

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∼ ∑ 𝑝(𝐼𝑡 = 𝑖)𝑝(𝐼𝑡′ = 𝑗|𝑈𝑡′ = 𝑢)

𝑗∈ℐ

= 𝑝(𝐼𝑡 = 𝑖) 

That is, item-based  kNN becomes ranking by popularity, thus 
showing a similar popularity bias as in the user-based variant: 
item-based kNN degrades to popularity when the divergence of 
the inter-item distribution from the item prior is weak. 

It is easy to see that the normalized item-based variant is 
equally related to popularity, and not to the average rating as its 
normalized user-based counterpart. This is because 
𝑝(𝐼𝑡 = 𝑖|𝑟(𝑢, 𝑗) > 0)  ∼  𝑝(𝐼𝑡 = 𝑖) , while 𝑝(𝐼𝑡′ = 𝑗|𝑈𝑡′ = 𝑢, 
𝑟(𝑢, 𝑗) > 0) simply adds to 1 over 𝑗. 

5 EMPIRICAL OBSERVATION 
In order to test and quantify empirically the trends and theoretical 
analysis derived in the previous sections, we run a series of exper-
iments on publicly available data. For this purpose we use data 
from the movie and music domains provided in the MovieLens 
1M,1 Netflix,2 and Last.fm 1K3 datasets. We show in Table 1 the 
volumetric details of the three datasets.  

MovieLens is perhaps the most widely used dataset in the rec-
ommender systems research literature. It includes ratings for 
movies in a 1-5 scale by users of the MovieLens application. The 
Netflix dataset contains data of similar nature collected from Net-
flix subscriptors, and was released in 2006 in the Netflix Prize con-
test. The Last.fm dataset was collected by O. Celma [5] and in-
cludes records of music tracks played by users on Last.fm. The 
recorded data for each play action includes the user ID, track, art-
ist and timestamp. For our experiments we just aggregate this data 
into user / artist / playcount triplets.  

5.1 General Performance 
The first question we aim to check is whether the probabilistic 
kNN formulations are as effective as the traditional versions. For 
this purpose we implement the probabilistic user-based (PUB), 
normalized user-based (nPUB), and item-based variants (PIB, 
nPIB) developed along the previous sections. We take the imple-
mentations of the heuristic kNN algorithms, as described by equa-
tions 1-4,  provided in the RankSys4 public library, including user-

3 http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html 
4 http://ranksys.org 

Table 1: Dataset characteristics. 

 Nr. users Nr. items Nr. ratings 
MovieLens 1M 6,040 3,706 1,000,209 
Netflix 480,189 17,770 100,480,507 
Last.fm 992 174,091 898,073 

Table 2: Neighborhood size 𝒌 in the kNN configuration on 
each dataset ( 𝒌 = ∞  indicates all items are taken as 
neighbors). 

 HUB PUB HIB PIB nHUB nPUB nHIB nPIB 
MovieLens 1M 50 50 100 100 10 20 10 40 
Netflix 100 100 100 50 10 10 10 100 
Last.fm 100 500 ∞ ∞ 10 10 10 ∞ 
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based (HUB), item-based (HIB), and normalized (nHUB, nHIB) var-
iants as well. We shall show here the results with the overall most 
effective configuration of the heuristic variants, which uses the 
cosine similarity. We select the best neighborhood 𝑘 for each kNN 
variant (in terms of P@10) by grid search starting with steps of 10 
in the 10-100 interval, then steps of 100 in 100-1,000, and so forth. 
For all the normalized variants, we set a minimum number of 5 
neighbor ratings for an item to be recommended to a target user. 
Table 2 shows the neighborhood size settings for each kNN vari-
ant on each dataset. We found Dirichlet smoothing [25] slightly 
improves the probabilistic algorithms on Netflix and MovieLens, 
with 𝜇 = 100 on MovieLens and 𝜇 = 200 on Netflix for PUB and 
nPUB; and 𝜇 = 200 on MovieLens, 𝜇 = 20,000 on Netflix for PIB 
and nPIB. We preprocess the rating values for all purposes by sub-
tracting a relevance threshold (3 in MovieLens and Netflix, and 0 
for Last.fm playcounts) and truncating the difference at zero. 

As a frame of reference, we include trivial baseline recommen-
dations: popularity-based (POP), average (AVG) and random 
(RND). In the datasets that consider rating values representing dis-
like (namely MovieLens and Netflix), we consider popularity de-
fined as the sum of “positive” ratings (i.e. rating values above the 
relevance threshold), which provides a more effective and sensible 
recommendation than the total number of ratings (we obtain sim-
ilar results with the number –instead of the sum– of positive rat-
ings). For the average rating to work as a recommendation, one 
needs to smooth it, otherwise the top average values are taken up 
by items with very few ratings, which make for very poor recom-
mendations. We have observed that a simple additive smoothing 
[25] is effective enough. Equivalently, in the results we report 
here, we simply require the items to have a minimum of 5 ratings 
to be recommended by average rating.  

As a top-performing reference, we also include a matrix fac-
torization approach (MF) proposed in [12] and implemented in 
RankSys, informally tuning the parameter values based on previ-
ously reported configurations [12,22] and our own experience 
with well-behaving values for this algorithm, finally taking 𝑘 =

20 factors, 𝛼 = 1, and 𝜆 = 0.1, with 20 iterations on MovieLens 
and Last.fm, and 50 iterations on Netflix. 

We test the effectiveness of the algorithms by splitting the rating 
data into training and test sets. Training ratings are given as input 
data for the recommendation algorithms, whereas positive ratings 
in the test set are taken as positive relevance judgments in the com-
putation of the metrics. Test rating values indicating dislike (values 
below the relevance threshold) are taken as non-relevant judg-
ments, and so are unrated items (as the equivalent of unjudged doc-
uments in IR tasks). In all three datasets we randomly sample 20% 
of the data for testing, and leave the remaining 80% for training.  

Fig. 1 shows the results on the MovieLens dataset in terms of 
precision and nDCG. We can see that the probabilistic and heuris-
tic non-normalized versions perform comparably well. PUB and 
PIB show slightly better results than their heuristic counterparts, 
but the differences are not statistically significant in this experi-
ment. We also see that the normalized variants do not perform as 
well as the non-normalized ones. This goes along with the lower 
performance of average rating compared to popularity. Even 
though we are not aware of an explicit comparison and discussion 
on this point in the literature, we can assert that normalized kNN 
variants were devised for the rating value prediction task, to be 
evaluated with error metrics such as RMSE [10]. And this can ac-
count for their inferior performance at item ranking, a different 
task from the one they were originally designed for.  

Matrix factorization shows to be the best system, confirming 
prior accounts that superior accuracy can be achieved by matrix fac-
torization approaches [12]. But this is so by a rather small difference 
with respect to the best performing kNN algorithms. We also con-
firm the non-negligible effectiveness of recommendation by plain 
popularity reported in prior work [6], which in this experiment is as 
much as about half as effective as the best performing algorithm.  

 a) Netflix b) Last.fm 

 
Figure 2: Comparative performance in the Netflix and 
Last.fm datasets. We use similar color codes as used in Fig. 
1. All the pairwise comparisons are statistically significant 
(Student’s two-tailed t-test at 𝒑 < 𝟎. 𝟎𝟎𝟏). 
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Figure 1: Comparative performance in the MovieLens 1M 
dataset. The metric value bars for heuristic and 
probabilistic versions of each variant are shown next to 
each other for ease of comparison. We use a darker color for 
the probabilistic versions, and a streaked color pattern for 
the algorithms other than kNN. The differences between 
the probabilistic and heuristic versions of non-normalized 
variants (PUB > HUB, PIB > HIB) are not statistically 
significant. All other pairwise comparisons are significant 
(Student’s two-tailed t-test at 𝒑 < 𝟎. 𝟎𝟎𝟏). 
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Complementing the MovieLens results, Fig. 2 shows similar 
trends on the two other datasets. For the sake of space we just show 
the nDCG results there (precision is very much in line with these). 
The comparison between the heuristic and probabilistic versions 
sometimes favors one and sometimes the other, by small differ-
ences, thus showing an overall equivalent empirical effectiveness. 
The generally better performance of the probabilistic version in the 
normalized variants on Netflix and MovieLens is partly achieved 
by the Dirichlet smoothing, though it brought no improvement on 
Last.fm. We lowered the minimum neighbor requirement to 2 for 
nHIB on Last.fm as it was suffering from too low coverage by the 
extremely long-tailed rating distribution over items. All in all, the 
normalized variants remain (with the exception of nHUB on 
Last.fm) systematically inferior to the non-normalized ones.  

5.2 Popularity Biases 
In order to check to what extent kNN looks alike or deviates from 
popularity, we visualize in Fig. 3 how much of each item popularity 
range is recommended in the top 10 of the ranking for each algo-
rithm. The trends we show and discuss next are similar in the other 
two datasets. The details of the scatterplot display are described in 
the figure legend. To avoid the distorting effect of neighbor selec-
tion and show the biases more clearly, the plots are computed for 
the kNN algorithms taking all users (or items) as neighbors. 

We see how HUB and PUB display a clear bias towards recom-
mending popular items, confirming the trend formally analyzed in 
section 4. The bias may seem a trifle cleaner in the probabilistic 
version, as its structural connection to popularity is more direct. 
As context, the average popularity in the whole dataset is 261, and 
the global average rating is 3.581. The bias is clearly weaker in the 
normalized variants, which lean instead towards the average rat-
ing. We can see that the non-normalized variants also have a bias 

towards high average ratings, and even the normalized kNN have 
an, albeit weak, slight popularity bias. We can cast these as indi-
rect biases, due to the correlation that actually exists in the dataset 
between the number of positive ratings and the average rating 
value. We show this in Fig. 7a, where we see that the average rat-
ing of the most popular items is very high. It has been hypothe-
sized that this can be attributed to the propensity of people to rate 
items they like rather than ones they do not [4,19,20]. 

It is also interesting to see that the MF algorithm has a clear 
bias towards popular and highly rated items. This may hint that 
to some extent our analysis and findings on kNN could be gener-
alized to other collaborative filtering approaches. 

Finally, Fig. 4 confirms our theoretical findings regarding the 
popularity bias in item-based kNN, which in the non-normalized 
version is as strong as in the user-based counterpart. We also find 
a striking structural difference between the formal normalized 
item-based kNN and its heuristic counterpart. We confirm that –
contrarily to the normalized user-based algorithm– the probabilis-
tic item-based algorithms are indeed biased to popularity quite as 
much with or without normalization, while the normalization in 
nHIB completely does away with the popularity trend. This may 
also account for the somewhat worse performance of the heuristic 
normalized item-based variant we see in Fig. 1 and 2. The poor re-
sults of nHIB illustrate a weakness of heuristic compared to more 
principled approaches. Heuristics rely more heavily on trial, error 
and chance, and their success is hence harder to ensure beforehand. 

5.3 A Second Look at Biases 
Awareness of popularity biases in the data consumed by recom-
mender systems and their evaluation has risen in the field in re-
cent years. Researchers and practitioners have noticed the biases 
and are posing questions about it [3,4,8,13,19,20].  

   HUB    PUB    nHUB    nPUB    MF 
  𝜇 = 2794     𝜌 = 0.590 

 

  𝜇 = 2786     𝜌 = 0.597 

 

  𝜇 = 920     𝜌 = 0.150 

 

  𝜇 = 1776     𝜌 = 0.378 

 

  𝜇 = 1594     𝜌 = 0.886 

 
     𝜇 = 4.344     𝜌 = 0.118 

 

     𝜇 = 4.334     𝜌 = 0.118 

 

     𝜇 = 4.500     𝜌 = 0.120 

 

     𝜇 = 4.334     𝜌 = 0.122 

 

     𝜇 = 4.071     𝜌 = 0.247 

 
Figure 3: Popularity biases in recommendation algorithms on MovieLens 1M. Each point in the scatterplots corresponds to 
an item in the dataset; the 𝒙 axis indicates its sum of positive ratings (top), and its average rating value (bottom); and the 𝒚 
axis indicates the number of users to whom the item is recommended in the top 10 by each algorithm. As further indication 
of the corresponding bias, on top of each plot we indicate a) as 𝝁 the global popularity –rounded to integers– (top) or rating 
value (bottom), averaged over the whole top 10 cutoff of each algorithm for all users, and b) the global Pearson correlation 𝝆 
between the 𝒙 and 𝒚 values. All kNN algorithms are shown here with 𝒌 = ∞. 
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We may say nonetheless that the effects of the popularity bi-
ases on offline experiments have not been thoroughly researched 
and understood yet. It is therefore legitimate to wonder whether 
a biased evaluation might be suffering from some sort of distortion 
on the comparison of biased algorithms. The factors that can be 
identified to generate popularity biases include discovery distri-
butions (bias in the means by which items reach users –or vice-
versa), bias towards rating liked items (user behavior bias), and 
ultimately the actual user tastes (user preference bias), [4,19]. As 
a step in the direction of shedding light on this question, we set 
up to carry out an experiment with data missing at random where 
we remove the first two (artificial) sources of biases, isolating the 
true preference distribution as the only bias in the data.  

For this purpose, we randomly sampled music tracks from a 
large database, Deezer,5 containing over 30 million songs at the 
time of this experiment. Using this list of songs, we set up a survey 
on CrowdFlower6 where we asked a number of users to rate 100 
songs each, sampled uniformly at random from our set in such a 
way that each music track got around 100 ratings. The resulting 
dataset7 includes 103,584 ratings by 1,054 users on 1,084 tracks. 

A unique property of this dataset compared to all others avail-
able today is the absence of biases in the exposition of users to 
items. The discovery of items and the decision to rate them is 
forced rather than free. Even though the total number of ratings 
of each item is generated from a uniform distribution, the number 
of positive ratings is not uniform, as we show in Fig. 5, where we 
also see the rather flat distribution of the total number of ratings, 
in contrast to MovieLens (which is representative of the typical 
highly skewed distribution of the number of ratings over items in 
common datasets). In this dataset the kNN variants work best tak-
ing all neighbors (i.e. 𝑘 = ∞) except 𝑘 = 200 for nHIB. We use no 

5 https://www.deezer.com 
6 https://www.crowdflower.com 

Dirichlet smoothing and require no minimum number of neigh-
bors in the normalized version, as we found these adjustments do 
not perceptibly improve the results on this dataset. We configure 
MF with 𝑘 = 5, 𝛼 = 10, 𝜆 = 500, 20 iterations. To smooth the 
variance due to the smaller size of this dataset we average the met-
rics over 10 repetitions of the experiment (namely, of the random 
rating split, with 5-fold cross-validations each). 

Fig. 6 shows the results. We see that the difference between all 
algorithms gets considerably reduced, including the random rec-
ommendation which performs at about 1/3 as well as the best rec-
ommender. This can be explained by the absence of bias in the total 
number of ratings over items. Yet the bias in the number of positive 
ratings (albeit less pronounced than in typical datasets) enables a 
better than random performance by popularity recommendation.  

We also see that in these conditions popularity becomes a diffi-
cult baseline to overcome. We believe this may be due to the low 
“local” density of positive ratings. The total rating density of about 
10% is higher than it is in all the other datasets we have reported 
results for (4.5% in MovieLens, 1.2% in Netflix, 0.5% in Last.fm), but 

7 The dataset is publicly available at http://ir.ii.uam.es/cm100k. 

    HIB     nHIB 
    𝜇 = 2266

 

    𝜇 = 3

 
    PIB     nPIB 

    𝜇 = 2787

 

    𝜇 = 2742

 
Figure 4: Popularity bias in item-based kNN on MovieLens 
1M. The 𝒙  and 𝒚  axes and the 𝝁  average have the same 
meaning as in Fig. 3.  
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Figure 6: Comparative performance on the crowdsourced da-
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it is lower both in terms of positive preferences per user (∼28 on 
average vs. e.g. ∼95 in MovieLens) and per item (∼27 vs. ∼155 in 
MovieLens), and the resulting low pairwise overlapping between 
users and between items, further intensified by the uniform rating 
distribution. Still, we see several interesting phenomena. First, rec-
ommendation based on the average rating catches up in perfor-
mance with the popularity-based recommendation. This makes 
sense, since in a uniform rating distribution, the number of positive 
ratings strongly correlates with the average rating value, as we see 
in Figure 7b. Yet it is quite a salient finding that in the absence of a 
bias in the number of ratings, the average rating is as effective as 
popularity, or more, in achieving decent recommendations.  

On the other hand, following this trend, and quite remarkably, 
the normalized kNN variants, which we showed to go theoreti-
cally along with the average rating, now match or even slightly 
outperform their non-normalized counterparts. Fig. 8 further ex-
plains the good performance of the normalized algorithms: the 
normalized user-based versions retain a stronger popularity bias 
than they do on the biased datasets in section 5.2. In the absence 
of an item selection bias in the input data, popularity and average 
rating become almost equivalent signals, as we can see in Fig. 7b, 
and the normalized versions seem to more fully capture the re-
maining item popularity distribution as a meaningful and effective 
signal. We omit the plots for the item-based versions, but the pat-
tern is similar to what we observed in MovieLens: the probabilistic 
variant retains its popularity bias in the normalized version, not 
so in the heuristic variant. 

This qualitative disagreement in the comparative effectiveness 
of normalized vs. non-normalized variants with respect to the re-
sults we previously obtained in section 5.2 strike us as a hint that 
we should revise the observed results in offline experiments with 
the common biased datasets. The contrast in observations raises 
the question whether the low results of normalized kNN in com-
mon datasets is due to a truly poor performance, or to the bias in 
observations. The only definitive way to know for sure would be 
to obtain the missing relevance information in those datasets.  

6 RELATED WORK 
Many collaborative filtering methods have been proposed that 
build on a probabilistic basis [9,11] –and even on probabilistic IR 
models [21,23,24]–, but to the best of our knowledge none has 

been proposed that explains or results in the structure of a kNN  
scheme through a fully probabilistic development.  

Notably for our purpose nonetheless, Deshpande and Karypis 
[7] explored the use of conditional probabilities between users and 
items in the role of the similarity function in kNN, but this was 
otherwise an isolated probabilistic piece in a heuristic scheme for 
the rest of the formulation. Later on Aiolli [2] also tested condi-
tional probability in place of cosine in a heuristic scheme, and 
hinted at the structural connection between the cosine similarity 
and conditional probabilities. More recently in this line, Valcarce 
et al. [21] apply more sophisticated probabilistic IR models to rank 
and select neighbors, but then follow on into a cosine-based rank-
ing function similar to equations 1-4. Random walk models [9] and 
Markov chains have also been used to build solutions upon prob-
abilistic inspiration, though they have been generally developed 
into a mix of formal and heuristic aspects (e.g. by a heuristic com-
putation of the transition probabilities). 

The concentration and popularity bias of collaborative filtering 
is a well-known issue that several researchers have pointed at and 
addressed in the field. To name a few, Fleder and Hosanagar [8] 
research the recursive dimension of the concentration biases of rec-
ommendations in their feedback loop. Cremonesi et al. [6] were to 
the best of our knowledge the first to report and discuss on the 
decent performance achieved by plain popularity-based recom-
mendation. They proposed a simple trick to avoid it, consisting in 
excluding most popular items from the evaluation. Realizing the 
popularity biases that are commonly present in rating data streams, 
Steck [19,20] suggests biases are likely to lurk in the evaluation re-
sults drawn upon such conditions, and proposes new metrics aim-
ing to cope with the biases, as well as modifications in collaborative 
filtering methods in the same direction. Bellogín et al. [3] similarly 
analyze the strong popularity biases that surface in IR evaluation 

   HUB     nHUB 
    𝜇 = 74     

 

    𝜇 = 74     

 
    PUB     nPUB 

    𝜇 = 73     

 

    𝜇 = 70     

 
Figure 8: Popularity bias in user-based kNN on the 
crowdsourced dataset. The 𝒙 and 𝒚 axes and the 𝝁 average 
have the same meaning as in Fig. 3 and 4. As context, the 
global average popularity in this dataset is 26. 
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Figure 7: Average rating vs. popularity in MovieLens 1M 
(left), and the crowdsourced data (right). Each point in the 
scatterplot represents an item in dataset, the 𝒙 axis is the 
average rating of the item, and the 𝒚 value is the sum of 
positive rating values (popularity) of the item.  
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methodologies when applied to recommendation. In prior work [4] 
we also addressed the question whether popularity reflects or con-
tradicts the true distribution of user preference, and aimed to iden-
tify key factors that may determine the answer. Also recently, 
Jannach et al. [13] present a thorough study of concentration biases 
with respect to both the number of ratings and the average rating 
values. The reported study has a primary empirical orientation, 
testing and comparing different algorithms and configuration de-
tails, and proposing some bias-mitigating ideas.  

Our work very much shares the concerns of such studies, 
which we address in a complementary direction: that of seeking 
theoretical explanations for the empirically observed and de-
scribed phenomena, aiming to glimpse fundamental causes be-
neath them. We focus for this purpose on a narrower, specific rec-
ommender system approach, the kNN scheme. 

7 CONCLUSIONS 
We have proposed a fully probabilistic yet intuitive formalization 
for the nearest-neighbor collaborative filtering approach. The pro-
posed formulation shows equivalent empirical effectiveness to the 
traditional heuristic formulations, and thus can serve to analyze 
properties of the kNN scheme on a more principled ground. 

The probabilistic basis provides an explanation of the effective-
ness of kNN at the same time that it relates the algorithm to pop-
ularity distributions, thus helping understand this well-known 
bias. The effectiveness of kNN relies on the pairwise statistical de-
pendence between user behaviors, and can be expected to be most 
effective to the extent that the pairwise conditional distributions 
deviate from the prior collective behavior. Conversely, the more a 
user’s tastes are as similar to any user as they are to the next, the 
more kNN behaves like a plain majority-based recommendation. 

We further show that the theoretical characterizations align 
the algorithm variants along two fundamentally different trends: 
popularity and average rating. We report experiments showing 
that the comparison between algorithm variants (and normalized 
vs. non-normalized in particular) can change depending on statis-
tical properties of the input data and the biases in the implicit or 
explicit item sampling in the data. 

Our results suggest that further research would be needed to de-
termine to what extent popularity biases are a helpful signal to pro-
duce effective recommendations, or a confounder that may distort 
offline results. Even a simple question as which of popularity and 
the average rating is a better signal would deserve further analysis 
at both the empirical and formal levels –further conclusions might 
be drawn on the corresponding kNN variants they are a trend 
within. The formal analysis of kNN we present here aims to be a 
step in this direction. Further research in this line might perhaps 
lead towards more generalized findings that are not exclusive of 
kNN but may be shared by collaborative filtering approaches. 
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