
A Probabilistic Reformulation of Memory-Based Collaborative
Filtering – Implications on Popularity Biases

Rocío Cañamares
Universidad Autónoma de Madrid

C/ Fco. Tomás y Valiente 11, Madrid, Spain
rocio.cannamares@uam.es

Pablo Castells
Universidad Autónoma de Madrid

C/ Fco. Tomás y Valiente 11, Madrid, Spain
pablo.castells@uam.es

ABSTRACT
We develop a probabilistic formulation giving rise to a formal ver-
sion of heuristic 𝑘 nearest-neighbor (kNN) collaborative filtering.
Different independence assumptions in our scheme lead to user-
based, item-based, normalized and non-normalized variants that
match in structure the traditional formulations, while showing
equivalent empirical effectiveness. The probabilistic formulation
provides a principled explanation why kNN is an effective recom-
mendation strategy, and identifies a key condition for this to be
the case. Moreover, a natural explanation arises for the bias of
kNN towards recommending popular items. Thereupon the kNN
variants are shown to fall into two groups with similar trends in
behavior, corresponding to two different notions of item popular-
ity. We show experiments where the comparative performance of
the two groups of algorithms changes substantially, which sug-
gests that the performance measurements and comparison may
heavily depend on statistical properties of the input data sample.

CCS CONCEPTS
• Information systems → Recommender Systems; Collabora-
tive Filtering; Probabilistic Retrieval Models; Evaluation of Re-
trieval Results

KEYWORDS
Recommender systems; collaborative filtering; probabilistic mod-
els; popularity; algorithmic bias; evaluation

ACM Reference format:

R. Cañamares and P. Castells. 2007 A Probabilistic Reformulation of
Memory-Based Collaborative Filtering – Implications on Popularity Biases.
In Proc. of International ACM SIGIR Conference on Research and Development
in Information Retrieval, Tokyo, Japan, August 2017 (SIGIR 2017), 10 pages.

1 INTRODUCTION
Nearest-neighbor algorithms (kNN) are probably the most popular
and widely-known approach to collaborative filtering (CF) [1,16].
They can be said to be the first technique to be explicitly docu-
mented as a strategy to implement a proper recommender system
as we understand it today [17]. kNN was further popularized for
being the core approach in the pioneering large-scale deployment

of recommendation technologies in e-commerce by Amazon [15].
They have been shown to have competitive empirical effective-
ness and are still widely used today. Newer CF approaches, nota-
bly ones based on matrix factorization [12], have been reported to
outperform kNN in raw recommendation accuracy, yet neighbor-
based methods closely follow the former in this task. Furthermore,
the kNN approach provides tradeoff advantages such as easier-to-
explain outputs to end-users, a straightforward easy-to-under-
stand formulation scheme, and ease of implementation [16].

A current limitation of the kNN scheme is its heuristic nature
–heuristic is in fact a name by which they are often referred to [1].
The kNN formulation was borrowed from classification and re-
gression, but does not arise from a formal justification. Its use is
supported by intuition (“users with similar behavior in the past
should have similar behavior in the future“) and empirical effec-
tiveness, but the latter has not been explained in a principled way
[14]. Furthermore, different variants of the kNN scheme have been
used by different authors with often differing results, and there
has not been a clear basis to decide upon which alternative is best
or when, other than by practical comparative effectiveness [6].

In this paper we take on to develop a probabilistic formulation
for nearest-neighbor recommendation. A probabilistic basis has
obvious well-understood advantages for algorithm development,
such as a design justification, a deeper understanding of the algo-
rithm behavior and properties, and enabling variations and exten-
sions of the scheme. The development we propose results in a for-
mulation that closely matches the structure of traditional heuristic
kNN. As we shall see, different independence assumptions in our
scheme lead to user-based, item-based, normalized and non-nor-
malized variants. We report experiments showing the probabilis-
tic version is roughly equivalent in performance to the corre-
sponding heuristic formulations. We further find the probabilistic
basis enables explanations for some of the properties of the kNN
approach, such as its effectiveness, the advantages of one variant
over the other, and connections between kNN and popularity.

The rest of the paper is organized as follows. We start recalling
the basics and notation for the recommendation task and the kNN
approach. Then in section 3 we develop the proposed probabilistic
formulation. We analyze the connections between kNN and pop-
ularity in section 4, after which in section 5 we contrast the theo-
retical analysis with empirical observations on different datasets.
We discuss related work in the section following that, after which
we end with a brief summary and some conclusions.

2 THE NEAREST NEIGHBOR COLLABORA-
TIVE FILTERING APROACH

The recommendation task is widely known and needs little intro-
duction today [18]. In summary, a recommender system receives

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

SIGIR '17, August 7-11, 2017, Shinjuku, Tokyo, Japan
© 2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5022-8/17/08…$15.00
http://dx.doi.org/10.1145/3077136.3080836

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

215

as input data collected from observed user-item interactions,
which can be abstracted to a set of user / item / timestamp records
(for so-called implicit data directly obtained from natural user ac-
tivity), or user / item / rating value (for so-called explicit prefer-
ence feedback provided by users). Given this input, the recom-
mender system’s task is to predict unobserved user-item prefer-
ences, and thereupon deliver a set of ranked items (typically dif-
ferent for each user) that satisfy the needs of end-users. More de-
tailed descriptions and discussion of the recommendation problem
can be found elsewhere (see e.g. [1] for a popular introduction).

Following a common convention in recommender systems re-
search, we shall denote by 𝑟(𝑢, 𝑖) the observed rating by a user 𝑢
for an item 𝑖, and by �̂�(𝑢, 𝑖) the system score (which may or may
not aim to be literally a rating prediction) by which an item is se-
lected and ranked for recommendation to a user. We shall use the
convention 𝑟(𝑢, 𝑖) = 0 to indicate 𝑟(𝑢, 𝑖) is unknown to the sys-
tem –note that by this we are implying 0 is not an allowed rating
value; the reader may find this shall bring a slight simplification in
notation along the way, with no generality loss. Finally, we shall
use the symbols 𝒰 and ℐ to refer to, respectively, the set of users
and the set of items involved in the recommendation problem.

The recommendation task can be refined in different ways
[10], most notably including a) predicting rating values as accu-
rately as possible, and b) delivering an item ranking that satisfies
as much as possible the target users as viewed in an information
retrieval perspective (i.e. returning as many relevant items as pos-
sible, as early as possible in the ranking). In this paper we take on
the latter perspective, which is understood today to be more
closely related to real recommendation scenarios [6].

The nearest-neighbor collaborative filtering strategy (also
known as memory-based, or heuristic) is one among hundreds of
solutions to the recommendation problem. It can be said to be the
first proper approach envisioned for the task [17] and probably
remains the most popular. It builds on the intuition that users with
similar tastes in the past may enjoy similar choices in the future.
The most common simple materialization of this principle has
taken the following structure (see e.g. [16]):

 �̂�(𝑢, 𝑖) = 𝐶 ∑ 𝑠𝑖𝑚(𝑢, 𝑣)𝑟(𝑣, 𝑖)

𝑣∈𝑁𝑘[𝑢]

 (1)

where 𝑠𝑖𝑚(𝑢, 𝑣) is a similarity function that estimates how much
the tastes of two users look alike, 𝑁𝑘[𝑢] is a neighborhood of 𝑘
users who are most “suitable” for contributing to the aggregated
advice for 𝑢, and 𝐶 is a normalizing constant. Neighborhood “suit-
ability” is commonly defined as being among the 𝑘 most similar
users to 𝑢 in terms of 𝑠𝑖𝑚(𝑢, 𝑣), though neighbor selection is a
modular problem open to alternative approaches aiming to im-
prove the resulting recommendations.

By the partial symmetry of the item and user spaces it also
makes sense to consider an item-based kNN variant based on the
similarity between items:

 �̂�(𝑢, 𝑖) = 𝐶 ∑ 𝑠𝑖𝑚(𝑖, 𝑗)𝑟(𝑢, 𝑗)

𝑗∈𝑁𝑘[𝑖]

 (2)

The similarity functions can be defined in innumerous ways,
the most popular being the cosine function and Pearson correla-
tion. For instance, the cosine similarity can be defined as:

 𝑠𝑖𝑚(𝑢, 𝑣) =
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

√∑ 𝑟(𝑢, 𝑗)𝑗∈ℐ
2 √∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ

2

 (3)

𝑠𝑖𝑚(𝑖, 𝑗) =

∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰

√∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰
2 √∑ 𝑟(𝑣, 𝑗)𝑣∈𝒰

2

 (4)

From this basic scheme many variations arise for which, again,
we refer the reader e.g. to the survey in [16] for a good starting
point. For the sake of our research, the above straightforward ver-
sions are sufficiently well-behaved and appropriately simple as a
frame of reference for our proposed development.

A point of variation in the scheme will nonetheless get our at-
tention, namely the normalizing constant 𝐶. Most of the literature
(including popular surveys [1,16]) reports taking 𝐶 =

1 ∑ |𝑠𝑖𝑚(𝑢, 𝑣)|𝑣∈𝑁𝑘[𝑢]∧𝑟(𝑢,𝑖)>0⁄ in order to make of equation 1 a
weighted sum of ratings with weights adding to 1 (and analo-
gously for equation 2). However it has been recently found that
𝐶 = 1 is generally more effective at the item ranking task (see e.g.
[2,6,22]). In this paper we will propose a formal basis for both op-
tions, and we will find that each of them leads to quite different
theoretical and empirical implications, which we shall formally
characterize.

3 PROBABILISTIC kNN
We derive a probabilistic formulation from a formalization of the
user-item interaction dynamics as a random process in a sampling
space, as follows. Along with the 𝒰 and ℐ spaces, let us consider
the set 𝒯 of all time instants where some user interacts with (con-
sumes, purchases, rates, choses, etc.) some item. Taking the time
points in 𝒯 as (theoretically) fine-grained as needed (e.g. real
numbers), we can assume there is only a user-item pair interaction
at each 𝑡 ∈ 𝒯, that is, two users cannot access an item at the exact
same time. This is just a condition that facilitates having well-de-
fined probability distributions, as we shall see. Actually, assigning
an arbitrary unique ID to each interaction would do as well for our
purposes –time is just a convenient and particularly meaningful
one. We consider 𝒯 includes all interactions, both observed and
non-observed by the system. We can also consider that 𝒯 includes
both past and future interactions. It is not a problem for us to in-
troduce such an abstract construct, as it will just as well serve our
theoretical purposes. We may also consider for a moment an ideal
situation in which users have full omniscient knowledge of the
whole item space and always choose items in full awareness of
how much they would benefit (enjoy, gain, etc.) from each item,
therefore choosing the item that maximizes their satisfaction at
that time.

We consider the user choices are not deterministic and may
depend on the occasion, therefore it makes sense to describe them
by a probability distribution over items (for each user) to represent
this uncertainty. For this purpose, over the set 𝒯 we define two
functions 𝑈: 𝒯 → 𝒰 and 𝐼: 𝒯 → ℐ. For a given 𝑡 ∈ 𝒯, 𝑈(𝑡), which
we shall abbreviate as 𝑈𝑡 , is the user who had the interaction at
time 𝑡, and 𝐼(𝑡), which we shall abbreviate as 𝐼𝑡, is the item that
𝑈𝑡 interacted with. We can consider 𝑈 and 𝐼 as random variables

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

216

for which 𝑝(𝑈𝑡 = 𝑢) and 𝑝(𝐼𝑡 = 𝑖) are well-defined (categorical)
probability distributions over 𝑢 ∈ 𝒰 and 𝑖 ∈ ℐ respectively.

Now assume we have a target user 𝑢 for whom we are to pro-
duce a recommendation. Say 𝑡 ∈ 𝒯 is the next time 𝑢 will con-
sume some item (either spontaneously by his own initiative, or
induced by the system delivering a recommendation, or by any
other means). Defining 𝑡 this way means that 𝑈𝑡 = 𝑢. Upon this
formal scheme, we may define the recommendation task as esti-
mating the probability for each item to be the one the user would
choose at that time. That is, we wish to estimate 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢).
If we can do that, an optimal recommendation for 𝑢 (which max-
imizes user satisfaction in expectation) is ranking items by de-
creasing value of this probability. In other words, we should take
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) as the ranking function (ranking score) for rec-
ommendation, to optimize the chance to satisfy a user who
browses our recommendation top-down.

Upon this initial basis, we shall derive formulations of user-
based and item-based kNN by introducing a second user (or, re-
spectively, item) –the neighbor– as a second random variable over
which we shall marginalize the ranking function, as we show next.

3.1 User-Based kNN
Let 𝑡′ < 𝑡 be a time when the target item 𝐼𝑡 (whichever that item
happens to be) was interacted with by some other user 𝑣. Apply-
ing the law of total sum we can marginalize the objective function
as follows:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢)

∼ ∑ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣)𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡)

𝑣∈𝒰

 (5)

where we apply some independence assumptions: first,
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∼ 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡) considering that
𝐼𝑡′ = 𝐼𝑡 does not provide much meaningful information in the ab-
sence of any further condition related to time 𝑡′ –the equality just
states a condition as vague as the fact that some undefined user
chose item 𝐼𝑡 at some undefined moment 𝑡′ in the past. Second,
given that we do not have any direct evidence of the preference of
the target user 𝑢 for target items 𝑖 (otherwise we would not con-
sider 𝑖 for recommendation to 𝑢), and assuming we do have some
direct observation of other users 𝑣 interacting with 𝑖, we have re-
moved 𝑈𝑡 = 𝑢 from the conditional part of the first term in the
summation:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢, 𝑈𝑡′ = 𝑣, 𝐼𝑡′ = 𝐼𝑡) ∼ 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡′ = 𝑣, 𝐼𝑡′ = 𝐼𝑡)
= 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣, 𝐼𝑡′ = 𝐼𝑡) ∼ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣) (6)

The second term in equation 5, 𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡),
denotes the probability that 𝑣 has chosen sometime an item that
𝑢 will also pick. It can be rewritten as:

𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡)

=
𝑝(𝑈𝑡′ = 𝑣, 𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡)

∑ 𝑝(𝑈𝑡′ = 𝑤, 𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡)𝑤∈𝒰
 (7)

3.2 Estimation from Observed Data
Now let us neglect the variations in user tastes over time. This is
a very strong assumption, but one that basic non context-sensitive
recommender systems make to generate their predictions: user be-
havior consistency over time.

If we do that, then we may estimate the above distributions
based on observed data as follows. Assume the observations we
have are a set of recorded interactions between users and items.
This can be represented as a sample of triples ℱ ⊂ 𝒰 × ℐ × 𝒯 so
that (𝑢, 𝑖, 𝑡) ∈ ℱ means that 𝑢 has been observed consuming 𝑖 at
time 𝑡 . We denote by 𝑟(𝑢, 𝑖) = |{(𝑢, 𝑖, 𝑡) ∈ ℱ}| the number of
times 𝑢 has been observed to pick 𝑖. As a frequency, 𝑟(𝑢, 𝑖) fol-
lows a multinomial distribution resulting from the categorical
probability that the user will pick the item in question at any given
time, that is, in expected value:

 𝑟(𝑢, 𝑖) ∑ 𝑟(𝑢, 𝑗)

𝑗∈ℐ

⁄ ∼ 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) (8)

which provides an estimate for the distribution in equation 6.
This scheme, and the derivations we will develop hereupon,

can be generalized to 𝑟(𝑢, 𝑖) denoting explicit numeric ratings
also, to the extent that it is reasonable to assume that rating values
reflect (are a monotonically increasing function of, or more
strictly, are proportional to) the expected frequency with which a
user would pick an item. To that extent, we will henceforth occa-
sionally (and intentionally) refer to 𝑟(𝑢, 𝑖) as a “rating”.

As for equation 7, the chances that 𝑣 and 𝑢 pick the same item
at any two (arbitrary) different points in time can be estimated by
the number of times this was observed to occur in our sample ℱ:

𝑝(𝑈𝑡′ = 𝑣, 𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡) = ∑ 𝑝(𝑈𝑡′ = 𝑣, 𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡 = 𝑗)

𝑗∈ℐ

∼
1

|ℱ|2
∑|{(𝑡1, 𝑡2) ∈ 𝒯2|(𝑢, 𝑗, 𝑡1) ∈ ℱ ∧ (𝑣, 𝑗, 𝑡2) ∈ ℱ}|

𝑗∈ℐ

=
1

|ℱ|2
∑|{𝑡1 ∈ 𝒯|(𝑢, 𝑗, 𝑡1) ∈ ℱ}||{𝑡2 ∈ 𝒯|(𝑣, 𝑗, 𝑡2) ∈ ℱ}|

𝑗∈ℐ

=
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

(∑ ∑ 𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰)
2 (9)

Substituting equation 9 into 7 we get:

𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡) ∼
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

∑ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰
 (10)

And finally, replacing equations 8 and 10 into 5 we have:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢)

∼
1

∑ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰
∑

∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ
𝑟(𝑣, 𝑖)

𝑣∈𝒰

∝ ∑
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

∑ 𝑟(𝑢, 𝑗)𝑗∈ℐ ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ
𝑟(𝑣, 𝑖)

𝑣∈𝒰
𝑣≠𝑢

 (11)

where we have intentionally added ∑ 𝑟(𝑢, 𝑗)𝑗∈ℐ in the denomina-
tor (as it is a constant for a fixed target user 𝑢, thus preserving the
ranking) to make our point next. We also add the (redundant) con-
dition 𝑣 ≠ 𝑢 because we should have 𝑟(𝑢, 𝑖) = 0, i.e. no previous
recorded interaction for any 𝑖 we may consider as recommenda-
tion for 𝑢.

As we now can see, equation 11 defines a user-based kNN rec-
ommender where the similarity function looks quite like a cosine
(as in equation 3), only using the 𝐿1 norm instead of 𝐿2 in the co-
sine similarity. We have thus just shown that the ranking function

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

217

of a common user-based kNN algorithm can be described as the
computation of a probability. The specific variant matches the
heuristic kNN scheme defined by equations 1 plus 3 with 𝐶 = 1,
that is, no normalization [2,6,22].

We may now want to restrict the set of users 𝑣 to a subset of
neighbors, or not –this would just be an ad-hoc refinement of the
probabilistic scheme. In our experiments, similarly to heuristic
kNN, we shall consider neighbor selection based on the highest
values of the weights in the rating sum in equation 11, which cor-
respond to 𝑝(𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡|𝑈𝑡′ = 𝑣), for each target user 𝑢.

Moreover, we found in our experiments that smoothing the
probability estimates slightly improves empirical results.
Specifically we tested Dirichlet smoothing [25] on the equation 11
weights as estimates of 𝑝(𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡|𝑈𝑡′ = 𝑣) , using
∑ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰 / ∑ ∑ 𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰 ∝ 𝑝(𝑈𝑡 = 𝑢, 𝐼𝑡′ =

𝐼𝑡) as a Dirichlet prior estimate.

3.3 Normalized Variant
In equation 5, nothing prevents us from restricting the sum over
users to essentially any condition on 𝑣, as far as the sum over 𝑣
adds to one. In particular we can take the condition that 𝑣 has
been seen interacting with 𝑖 in the system:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢)

∼ ∑ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣, 𝑟(𝑣, 𝑖) > 0)

 𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡 , 𝑟(𝑣, 𝑖) > 0)𝑣∈𝒰

With this variation, it is easy to see that equation 11 remains
almost the same but, quite importantly, a constant 𝐶 appears:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∼ 𝐶 ∑
∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ

∑ 𝑟(𝑢, 𝑗)𝑗∈ℐ ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ
𝑟(𝑣, 𝑖)

𝑣∈𝒰

with 𝐶 = 1 ∑ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰:𝑟(𝑤,𝑖)>0⁄ . This is a normalized
variant since the numerators of the weights in the sum of ratings
𝑟(𝑣, 𝑖) above now sum to 1, similar in structure to the heuristic nor-
malized kNN [1,16] (except for ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ in the denominator be-
ing left out of the normalization). Neighbor selection and smoothing
can be introduced in a similar way as in the non-normalized variant.

3.4 Item-Based kNN
The analysis of user-based kNN can be developed in an item-ori-
ented version as well. For this purpose, we marginalize
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) by neighbor items 𝑗, and we apply analogous de-
velopments to the ones detailed in section 3.2 for the user-based
variant, only we start by inverting the target user and item in the
initial ranking function:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∝𝑢 𝑝(𝐼𝑡 = 𝑖)𝑝(𝑈𝑡 = 𝑢|𝐼𝑡 = 𝑖)

~ 𝑝(𝐼𝑡 = 𝑖) ∑ 𝑝(𝐼𝑡′ = 𝑗|𝐼𝑡 = 𝑖, 𝑈𝑡′ = 𝑈𝑡)

 𝑝(𝑈𝑡 = 𝑢|𝐼𝑡 = 𝑖, 𝐼𝑡′ = 𝑗, 𝑈𝑡′ = 𝑈𝑡)𝑗∈ℐ

(12)

Now similarly to the user-based version, we consider the inde-
pendence assumption between target user and item for lack of ob-
servations:

𝑝(𝑈𝑡 = 𝑢|𝐼𝑡 = 𝑖, 𝐼𝑡′ = 𝑗, 𝑈𝑡′ = 𝑈𝑡) ~ 𝑝(𝑈𝑡′ = 𝑢|𝐼𝑡′ = 𝑗)

We rewrite again the conditional pairwise item dependence as:

𝑝(𝐼𝑡′ = 𝑗|𝐼𝑡 = 𝑖, 𝑈𝑡′ = 𝑈𝑡) =
𝑝(𝐼𝑡′ = 𝑗, 𝐼𝑡 = 𝑖, 𝑈𝑡′ = 𝑈𝑡)

∑ 𝑝(𝐼𝑡′ = 𝑘, 𝐼𝑡 = 𝑖, 𝑈𝑡′ = 𝑈𝑡)𝑘∈ℐ

Applying equivalent model estimations on observed data, we get:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢)

∝ (∑ 𝑟(𝑣, 𝑖)

𝑣∈𝒰

) ∑
∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰

∑ ∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑘)𝑣∈𝒰𝑘∈ℐ
·

𝑟(𝑢, 𝑗)

∑ 𝑟(𝑣, 𝑗)𝑣∈𝒰𝑗∈ℐ
𝑗≠𝑖

∝ 𝐶 ∑
∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰

∑ 𝑟(𝑣, 𝑗)𝑣∈𝒰
𝑟(𝑢, 𝑗)

𝑗∈ℐ
𝑗≠𝑖

with 𝐶 = ∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰 ∑ ∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰𝑗∈ℐ⁄ .
Comparing this to equations 2 plus 4, we see we have obtained

a formulation that has analogies to the heuristic item-based kNN.
One difference is that the ∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰 term is missing in the de-
nominator here, and what is more, it is present in the numerator
through 𝐶. We see on the other hand that the denominator in 𝐶
somewhat balances this (for instance if ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ were constant
on 𝑣, then 𝐶 would be constant on 𝑖).

On the other hand, as in user-based, we may consider the nor-
malized version by conditioning on the observation of some inter-
action between the target user 𝑢 and the neighbors 𝑗, which re-
sults in a refinement of the normalizing constant: 𝐶 =
∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰 ∑ ∑ 𝑟(𝑣, 𝑖)𝑟(𝑣, 𝑗)𝑣∈𝒰𝑗∈ℐ:𝑟(𝑢,𝑗)>0⁄ . And neighborhoods
and smoothing can be analogously introduced.

4 POPULARITY BIASES
Aiming to analyze the generic trends within the kNN formula-
tions, we examine what course these algorithms follow when us-
ers’ tastes (respectively item trends in the item-based variants) are
pairwise independent.

4.1 User-Based Bias
In the user-based variant, user independence means
𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡) ∼ 𝑝(𝑈𝑡′ = 𝑣) for all 𝑣 and 𝑢 ,
whereby equation 5 becomes:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∼ ∑ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣)𝑝(𝑈𝑡′ = 𝑣)

𝑣∈𝒰

= 𝑝(𝐼𝑡′ = 𝑖) ∼
∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰

∑ ∑ 𝑟(𝑤, 𝑗)𝑗∈ℐ𝑤∈𝒰
∝ ∑ 𝑟(𝑣, 𝑖)

𝑣∈𝒰

(13)

Thus by this independence assumption the ranking function
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) is estimated as proportional to the number (or the
sum) of ratings of 𝑖, that is, the item’s popularity. We also see that
under this assumption we are approximating (𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∼

𝑝(𝐼𝑡′ = 𝑖), i.e. the probability that a random user picks the item 𝑖,
which is a natural understanding of the notion of item popularity.

This means that whereas user-based kNN takes an exact de-
composition of 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) by the law of total probability,
popularity (as per equation 5) represents an inexact approxima-
tion to 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) by an additional independence assump-
tion. To the extent that in some case we actually had
𝑝(𝑈𝑡′|𝑈𝑡, 𝐼𝑡′ = 𝐼𝑡) ∼ 𝑝(𝑈𝑡′), popularity would start becoming a
fair estimate for 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢). In other words, kNN degrades
to popularity-based recommendation when user tastes are inde-
pendent from each other. In the absence of any particular pairwise
bias in 𝑝(𝑈𝑡′|𝑈𝑡, 𝐼𝑡′ = 𝐼𝑡), user-based kNN simply ranks items by
the number of ratings they have (or their sum).

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

218

If on the contrary user tastes are not pairwise independent, we
have 𝑝(𝑈𝑡′|𝑈𝑡, 𝐼𝑡′ = 𝐼𝑡) ≠ 𝑝(𝑈𝑡′) , and equation 13 becomes a
worse and worse approximation of equation 5 as the conditional
distribution diverges from the user prior. In such situations kNN,
as a more exact development of 𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢), should perform
better than popularity, as the formal inaccuracy in the probabilis-
tic development can be expected to translate into corresponding
errors in the predictions thereupon.

Formal imprecisions are however not the only source of predic-
tion inaccuracies. Another fundamental one is the approximate es-
timation of distributions from observed data. To this respect, pop-
ularity only uses the estimate 𝑝(𝐼𝑡′ = 𝑖) ∝ ∑ 𝑟(𝑣, 𝑖)𝑣∈𝒰 as per
equation 8, whereas kNN introduces, in addition, the estimations
𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡 = 𝑣) ∝ 𝑟(𝑣, 𝑖) by equation 8 and 𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 =

𝑢, 𝐼𝑡′ = 𝐼𝑡) ∝ ∑ 𝑟(𝑢, 𝑗)𝑟(𝑣, 𝑗)𝑗∈ℐ by equation 10. If the estimates
applied in kNN happen to be less reliable than the ones in popular-
ity, then the estimation inaccuracy could outdo the formal accuracy
to the point that kNN may perform worse than popularity. This
might happen, as we shall see, in data sparsity situations, to which
kNN appears to be more vulnerable than popularity. This is to be
expected, since the estimation of popularity is one-dimensional (in-
volving a single random variable 𝑖), whereas the estimates of kNN
are two-dimensional (involving two variables 𝑣 and 𝑖, 𝑢 and 𝑣, re-
spectively), and therefore more vulnerable to sparsity.

In sum, the probabilistic formulation thus shows why there is
some degree of structural relation between kNN and popularity,
and identifies a key factor (user dependence) for kNN to be (more)
effective (than popularity).

4.2 Normalized Variant Bias
The pairwise user independence in the normalized version would
mean 𝑝(𝑈𝑡′ = 𝑣|𝑈𝑡 = 𝑢, 𝐼𝑡′ = 𝐼𝑡, 𝑟(𝑣, 𝑖) > 0) ∼ 𝑝(𝑈𝑡′ = 𝑣|
𝑟(𝑣, 𝑖) > 0), which for this variant yields:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢)

∼ ∑ 𝑝(𝐼𝑡′ = 𝑖|𝑈𝑡′ = 𝑣, 𝑟(𝑣, 𝑖) > 0)𝑝(𝑈𝑡′ = 𝑣|𝑟(𝑣, 𝑖) > 0)

𝑣∈𝒰

= ∑ 𝑝(𝐼𝑡′ = 𝑖, 𝑈𝑡′ = 𝑣|𝑟(𝑣, 𝑖) > 0)

𝑣∈𝒰

∼ ∑ 𝑟(𝑣, 𝑖)

𝑣∈𝒰

∑ ∑ 𝑟(𝑣, 𝑗)

𝑗∈ℐ 𝑣∈𝒰
𝑟(𝑣,𝑖)>0

⁄

If ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ are not too different for the set of raters 𝑣 of
each item 𝑖 (i.e. each item has a similar mix of highly an moderately
active users), then ∑ ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ 𝑣∈𝒰:𝑟(𝑣,𝑖)>0 is approximately pro-
portional to the number of users who interacted with 𝑖 , and
𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) is then similar to the average rating of item 𝑖.

We thus remarkably see that the normalized user-based kNN
becomes not similar to the sum of rating values of the target item,
but to its average rating. This hints a potentially fundamental dif-
ference in the behavior of the normalized and non-normalized var-
iants which can show up when the distribution of the sum and the
average of item ratings diverge.

1 http://grouplens.org/datasets/movielens/1m
2 http://www.netflixprize.com

4.3 Item-Based Bias
If we assume pairwise item independence, i.e.
𝑝(𝐼𝑡|𝐼𝑡′ , 𝑈𝑡′ = 𝑈𝑡) ∼ 𝑝(𝐼𝑡) then equation 12 becomes:

𝑝(𝐼𝑡 = 𝑖|𝑈𝑡 = 𝑢) ∼ ∑ 𝑝(𝐼𝑡 = 𝑖)𝑝(𝐼𝑡′ = 𝑗|𝑈𝑡′ = 𝑢)

𝑗∈ℐ

= 𝑝(𝐼𝑡 = 𝑖)

That is, item-based kNN becomes ranking by popularity, thus
showing a similar popularity bias as in the user-based variant:
item-based kNN degrades to popularity when the divergence of
the inter-item distribution from the item prior is weak.

It is easy to see that the normalized item-based variant is
equally related to popularity, and not to the average rating as its
normalized user-based counterpart. This is because
𝑝(𝐼𝑡 = 𝑖|𝑟(𝑢, 𝑗) > 0) ∼ 𝑝(𝐼𝑡 = 𝑖) , while 𝑝(𝐼𝑡′ = 𝑗|𝑈𝑡′ = 𝑢,
𝑟(𝑢, 𝑗) > 0) simply adds to 1 over 𝑗.

5 EMPIRICAL OBSERVATION
In order to test and quantify empirically the trends and theoretical
analysis derived in the previous sections, we run a series of exper-
iments on publicly available data. For this purpose we use data
from the movie and music domains provided in the MovieLens
1M,1 Netflix,2 and Last.fm 1K3 datasets. We show in Table 1 the
volumetric details of the three datasets.

MovieLens is perhaps the most widely used dataset in the rec-
ommender systems research literature. It includes ratings for
movies in a 1-5 scale by users of the MovieLens application. The
Netflix dataset contains data of similar nature collected from Net-
flix subscriptors, and was released in 2006 in the Netflix Prize con-
test. The Last.fm dataset was collected by O. Celma [5] and in-
cludes records of music tracks played by users on Last.fm. The
recorded data for each play action includes the user ID, track, art-
ist and timestamp. For our experiments we just aggregate this data
into user / artist / playcount triplets.

5.1 General Performance
The first question we aim to check is whether the probabilistic
kNN formulations are as effective as the traditional versions. For
this purpose we implement the probabilistic user-based (PUB),
normalized user-based (nPUB), and item-based variants (PIB,
nPIB) developed along the previous sections. We take the imple-
mentations of the heuristic kNN algorithms, as described by equa-
tions 1-4, provided in the RankSys4 public library, including user-

3 http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
4 http://ranksys.org

Table 1: Dataset characteristics.

 Nr. users Nr. items Nr. ratings
MovieLens 1M 6,040 3,706 1,000,209
Netflix 480,189 17,770 100,480,507
Last.fm 992 174,091 898,073

Table 2: Neighborhood size 𝒌 in the kNN configuration on
each dataset (𝒌 = ∞ indicates all items are taken as
neighbors).

 HUB PUB HIB PIB nHUB nPUB nHIB nPIB
MovieLens 1M 50 50 100 100 10 20 10 40
Netflix 100 100 100 50 10 10 10 100
Last.fm 100 500 ∞ ∞ 10 10 10 ∞

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

219

based (HUB), item-based (HIB), and normalized (nHUB, nHIB) var-
iants as well. We shall show here the results with the overall most
effective configuration of the heuristic variants, which uses the
cosine similarity. We select the best neighborhood 𝑘 for each kNN
variant (in terms of P@10) by grid search starting with steps of 10
in the 10-100 interval, then steps of 100 in 100-1,000, and so forth.
For all the normalized variants, we set a minimum number of 5
neighbor ratings for an item to be recommended to a target user.
Table 2 shows the neighborhood size settings for each kNN vari-
ant on each dataset. We found Dirichlet smoothing [25] slightly
improves the probabilistic algorithms on Netflix and MovieLens,
with 𝜇 = 100 on MovieLens and 𝜇 = 200 on Netflix for PUB and
nPUB; and 𝜇 = 200 on MovieLens, 𝜇 = 20,000 on Netflix for PIB
and nPIB. We preprocess the rating values for all purposes by sub-
tracting a relevance threshold (3 in MovieLens and Netflix, and 0
for Last.fm playcounts) and truncating the difference at zero.

As a frame of reference, we include trivial baseline recommen-
dations: popularity-based (POP), average (AVG) and random
(RND). In the datasets that consider rating values representing dis-
like (namely MovieLens and Netflix), we consider popularity de-
fined as the sum of “positive” ratings (i.e. rating values above the
relevance threshold), which provides a more effective and sensible
recommendation than the total number of ratings (we obtain sim-
ilar results with the number –instead of the sum– of positive rat-
ings). For the average rating to work as a recommendation, one
needs to smooth it, otherwise the top average values are taken up
by items with very few ratings, which make for very poor recom-
mendations. We have observed that a simple additive smoothing
[25] is effective enough. Equivalently, in the results we report
here, we simply require the items to have a minimum of 5 ratings
to be recommended by average rating.

As a top-performing reference, we also include a matrix fac-
torization approach (MF) proposed in [12] and implemented in
RankSys, informally tuning the parameter values based on previ-
ously reported configurations [12,22] and our own experience
with well-behaving values for this algorithm, finally taking 𝑘 =

20 factors, 𝛼 = 1, and 𝜆 = 0.1, with 20 iterations on MovieLens
and Last.fm, and 50 iterations on Netflix.

We test the effectiveness of the algorithms by splitting the rating
data into training and test sets. Training ratings are given as input
data for the recommendation algorithms, whereas positive ratings
in the test set are taken as positive relevance judgments in the com-
putation of the metrics. Test rating values indicating dislike (values
below the relevance threshold) are taken as non-relevant judg-
ments, and so are unrated items (as the equivalent of unjudged doc-
uments in IR tasks). In all three datasets we randomly sample 20%
of the data for testing, and leave the remaining 80% for training.

Fig. 1 shows the results on the MovieLens dataset in terms of
precision and nDCG. We can see that the probabilistic and heuris-
tic non-normalized versions perform comparably well. PUB and
PIB show slightly better results than their heuristic counterparts,
but the differences are not statistically significant in this experi-
ment. We also see that the normalized variants do not perform as
well as the non-normalized ones. This goes along with the lower
performance of average rating compared to popularity. Even
though we are not aware of an explicit comparison and discussion
on this point in the literature, we can assert that normalized kNN
variants were devised for the rating value prediction task, to be
evaluated with error metrics such as RMSE [10]. And this can ac-
count for their inferior performance at item ranking, a different
task from the one they were originally designed for.

Matrix factorization shows to be the best system, confirming
prior accounts that superior accuracy can be achieved by matrix fac-
torization approaches [12]. But this is so by a rather small difference
with respect to the best performing kNN algorithms. We also con-
firm the non-negligible effectiveness of recommendation by plain
popularity reported in prior work [6], which in this experiment is as
much as about half as effective as the best performing algorithm.

 a) Netflix b) Last.fm

Figure 2: Comparative performance in the Netflix and
Last.fm datasets. We use similar color codes as used in Fig.
1. All the pairwise comparisons are statistically significant
(Student’s two-tailed t-test at 𝒑 < 𝟎. 𝟎𝟎𝟏).

0

0.1

0.2

0.3

R
N

D
P

O
P

A
V

G
H

eu
ri

st
ic

 -
 H

U
B

P
ro

b
ab

ili
st

ic
 -

 P
U

B
H

eu
ri

st
ic

 -
 H

IB
P

ro
b

ab
ili

st
ic

 -
 P

IB
H

eu
ri

st
ic

 -
 n

H
U

B
P

ro
b

ab
ili

st
ic

 -
 n

P
U

B
H

eu
ri

st
ic

 -
 n

H
IB

P
ro

b
ab

ili
st

ic
 -

 n
P

IB
M

F

Trivial UB IB UB IB

Non-
normalized

Normalized

n
D

C
G

@
1

0

0

0.1

0.2

R
N

D

P
O

P

A
V

G

H
eu

ri
st

ic
 -

 H
U

B

P
ro

b
ab

ili
st

ic
 -

 P
U

B

H
eu

ri
st

ic
 -

 H
IB

P
ro

b
ab

ili
st

ic
 -

 P
IB

H
eu

ri
st

ic
 -

 n
H

U
B

P
ro

b
ab

ili
st

ic
 -

 n
P

U
B

H
eu

ri
st

ic
 -

 n
H

IB

P
ro

b
ab

ili
st

ic
 -

 n
P

IB

M
F

Trivial UB IB UB IB

Non-
normalized

Normalized

n
D

C
G

@
1

0

Figure 1: Comparative performance in the MovieLens 1M
dataset. The metric value bars for heuristic and
probabilistic versions of each variant are shown next to
each other for ease of comparison. We use a darker color for
the probabilistic versions, and a streaked color pattern for
the algorithms other than kNN. The differences between
the probabilistic and heuristic versions of non-normalized
variants (PUB > HUB, PIB > HIB) are not statistically
significant. All other pairwise comparisons are significant
(Student’s two-tailed t-test at 𝒑 < 𝟎. 𝟎𝟎𝟏).

0

0.1

0.2

0.3
R

N
D

P
O

P

A
V

G

H
eu

ri
st

ic
 -

 H
U

B

P
ro

b
ab

ili
st

ic
 -

 P
U

B

H
eu

ri
st

ic
 -

 H
IB

P
ro

b
ab

ili
st

ic
 -

 P
IB

H
eu

ri
st

ic
 -

 n
H

U
B

P
ro

b
ab

ili
st

ic
 -

 n
P

U
B

H
eu

ri
st

ic
 -

 n
H

IB

P
ro

b
ab

ili
st

ic
 -

 n
P

IB

M
F

Trivial UB IB UB IB

Non-
normalized

Normalized

P
@

1
0

0

0.1

0.2

0.3

R
N

D
P

O
P

A
V

G
H

eu
ri

st
ic

 -
 H

U
B

P
ro

b
ab

ili
st

ic
 -

 P
U

B
H

eu
ri

st
ic

 -
 H

IB
P

ro
b

ab
ili

st
ic

 -
 P

IB
H

eu
ri

st
ic

 -
 n

H
U

B
P

ro
b

ab
ili

st
ic

 -
 n

P
U

B
H

eu
ri

st
ic

 -
 n

H
IB

P
ro

b
ab

ili
st

ic
 -

 n
P

IB
M

F

Trivial UB IB UB IB

Non-
normalized

Normalized

n
D

C
G

@
1

0

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

220

Complementing the MovieLens results, Fig. 2 shows similar
trends on the two other datasets. For the sake of space we just show
the nDCG results there (precision is very much in line with these).
The comparison between the heuristic and probabilistic versions
sometimes favors one and sometimes the other, by small differ-
ences, thus showing an overall equivalent empirical effectiveness.
The generally better performance of the probabilistic version in the
normalized variants on Netflix and MovieLens is partly achieved
by the Dirichlet smoothing, though it brought no improvement on
Last.fm. We lowered the minimum neighbor requirement to 2 for
nHIB on Last.fm as it was suffering from too low coverage by the
extremely long-tailed rating distribution over items. All in all, the
normalized variants remain (with the exception of nHUB on
Last.fm) systematically inferior to the non-normalized ones.

5.2 Popularity Biases
In order to check to what extent kNN looks alike or deviates from
popularity, we visualize in Fig. 3 how much of each item popularity
range is recommended in the top 10 of the ranking for each algo-
rithm. The trends we show and discuss next are similar in the other
two datasets. The details of the scatterplot display are described in
the figure legend. To avoid the distorting effect of neighbor selec-
tion and show the biases more clearly, the plots are computed for
the kNN algorithms taking all users (or items) as neighbors.

We see how HUB and PUB display a clear bias towards recom-
mending popular items, confirming the trend formally analyzed in
section 4. The bias may seem a trifle cleaner in the probabilistic
version, as its structural connection to popularity is more direct.
As context, the average popularity in the whole dataset is 261, and
the global average rating is 3.581. The bias is clearly weaker in the
normalized variants, which lean instead towards the average rat-
ing. We can see that the non-normalized variants also have a bias

towards high average ratings, and even the normalized kNN have
an, albeit weak, slight popularity bias. We can cast these as indi-
rect biases, due to the correlation that actually exists in the dataset
between the number of positive ratings and the average rating
value. We show this in Fig. 7a, where we see that the average rat-
ing of the most popular items is very high. It has been hypothe-
sized that this can be attributed to the propensity of people to rate
items they like rather than ones they do not [4,19,20].

It is also interesting to see that the MF algorithm has a clear
bias towards popular and highly rated items. This may hint that
to some extent our analysis and findings on kNN could be gener-
alized to other collaborative filtering approaches.

Finally, Fig. 4 confirms our theoretical findings regarding the
popularity bias in item-based kNN, which in the non-normalized
version is as strong as in the user-based counterpart. We also find
a striking structural difference between the formal normalized
item-based kNN and its heuristic counterpart. We confirm that –
contrarily to the normalized user-based algorithm– the probabilis-
tic item-based algorithms are indeed biased to popularity quite as
much with or without normalization, while the normalization in
nHIB completely does away with the popularity trend. This may
also account for the somewhat worse performance of the heuristic
normalized item-based variant we see in Fig. 1 and 2. The poor re-
sults of nHIB illustrate a weakness of heuristic compared to more
principled approaches. Heuristics rely more heavily on trial, error
and chance, and their success is hence harder to ensure beforehand.

5.3 A Second Look at Biases
Awareness of popularity biases in the data consumed by recom-
mender systems and their evaluation has risen in the field in re-
cent years. Researchers and practitioners have noticed the biases
and are posing questions about it [3,4,8,13,19,20].

 HUB PUB nHUB nPUB MF
 𝜇 = 2794 𝜌 = 0.590

 𝜇 = 2786 𝜌 = 0.597

 𝜇 = 920 𝜌 = 0.150

 𝜇 = 1776 𝜌 = 0.378

 𝜇 = 1594 𝜌 = 0.886

 𝜇 = 4.344 𝜌 = 0.118

 𝜇 = 4.334 𝜌 = 0.118

 𝜇 = 4.500 𝜌 = 0.120

 𝜇 = 4.334 𝜌 = 0.122

 𝜇 = 4.071 𝜌 = 0.247

Figure 3: Popularity biases in recommendation algorithms on MovieLens 1M. Each point in the scatterplots corresponds to
an item in the dataset; the 𝒙 axis indicates its sum of positive ratings (top), and its average rating value (bottom); and the 𝒚
axis indicates the number of users to whom the item is recommended in the top 10 by each algorithm. As further indication
of the corresponding bias, on top of each plot we indicate a) as 𝝁 the global popularity –rounded to integers– (top) or rating
value (bottom), averaged over the whole top 10 cutoff of each algorithm for all users, and b) the global Pearson correlation 𝝆
between the 𝒙 and 𝒚 values. All kNN algorithms are shown here with 𝒌 = ∞.

0

1000

2000

3000

4000

0 2000 4000

Popularity

0

1000

2000

3000

4000

0 2000 4000

Popularity

0

2000

4000

6000

0 2000 4000

Popularity

0

2000

4000

0 2000 4000

Popularity

0

500

1000

0 2000 4000

Popularity

0

1000

2000

3000

4000

1 2 3 4 5

Average rating

0

1000

2000

3000

4000

1 2 3 4 5

Average rating

0

2000

4000

6000

1 2 3 4 5

Average rating

0

2000

4000

1 2 3 4 5

Average rating

0

500

1000

1 2 3 4 5

Average rating

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

221

We may say nonetheless that the effects of the popularity bi-
ases on offline experiments have not been thoroughly researched
and understood yet. It is therefore legitimate to wonder whether
a biased evaluation might be suffering from some sort of distortion
on the comparison of biased algorithms. The factors that can be
identified to generate popularity biases include discovery distri-
butions (bias in the means by which items reach users –or vice-
versa), bias towards rating liked items (user behavior bias), and
ultimately the actual user tastes (user preference bias), [4,19]. As
a step in the direction of shedding light on this question, we set
up to carry out an experiment with data missing at random where
we remove the first two (artificial) sources of biases, isolating the
true preference distribution as the only bias in the data.

For this purpose, we randomly sampled music tracks from a
large database, Deezer,5 containing over 30 million songs at the
time of this experiment. Using this list of songs, we set up a survey
on CrowdFlower6 where we asked a number of users to rate 100
songs each, sampled uniformly at random from our set in such a
way that each music track got around 100 ratings. The resulting
dataset7 includes 103,584 ratings by 1,054 users on 1,084 tracks.

A unique property of this dataset compared to all others avail-
able today is the absence of biases in the exposition of users to
items. The discovery of items and the decision to rate them is
forced rather than free. Even though the total number of ratings
of each item is generated from a uniform distribution, the number
of positive ratings is not uniform, as we show in Fig. 5, where we
also see the rather flat distribution of the total number of ratings,
in contrast to MovieLens (which is representative of the typical
highly skewed distribution of the number of ratings over items in
common datasets). In this dataset the kNN variants work best tak-
ing all neighbors (i.e. 𝑘 = ∞) except 𝑘 = 200 for nHIB. We use no

5 https://www.deezer.com
6 https://www.crowdflower.com

Dirichlet smoothing and require no minimum number of neigh-
bors in the normalized version, as we found these adjustments do
not perceptibly improve the results on this dataset. We configure
MF with 𝑘 = 5, 𝛼 = 10, 𝜆 = 500, 20 iterations. To smooth the
variance due to the smaller size of this dataset we average the met-
rics over 10 repetitions of the experiment (namely, of the random
rating split, with 5-fold cross-validations each).

Fig. 6 shows the results. We see that the difference between all
algorithms gets considerably reduced, including the random rec-
ommendation which performs at about 1/3 as well as the best rec-
ommender. This can be explained by the absence of bias in the total
number of ratings over items. Yet the bias in the number of positive
ratings (albeit less pronounced than in typical datasets) enables a
better than random performance by popularity recommendation.

We also see that in these conditions popularity becomes a diffi-
cult baseline to overcome. We believe this may be due to the low
“local” density of positive ratings. The total rating density of about
10% is higher than it is in all the other datasets we have reported
results for (4.5% in MovieLens, 1.2% in Netflix, 0.5% in Last.fm), but

7 The dataset is publicly available at http://ir.ii.uam.es/cm100k.

 HIB nHIB
 𝜇 = 2266

 𝜇 = 3

 PIB nPIB

 𝜇 = 2787

 𝜇 = 2742

Figure 4: Popularity bias in item-based kNN on MovieLens
1M. The 𝒙 and 𝒚 axes and the 𝝁 average have the same
meaning as in Fig. 3.

0

1000

2000

3000

0 2000 4000

Popularity

0

250

500

750

1000

0 2000 4000

Popularity

0

1000

2000

3000

4000

0 2000 4000

Popularity

0

1000

2000

3000

4000

0 2000 4000

Popularity

 a) MovieLens 1M b) Crowdsourced data

Figure 5: Total and positive rating distributions in
MovieLens (left) vs. our crowdsourced dataset (right). The
items in the 𝒙 axis are ordered by decreasing number of
ratings for the blue dashed line, and by decreasing number
of positive ratings for the red continuous line.

Ll

0

1000

2000

3000

Items

Nr. ratings

Nr. positive ratings

0

25

50

75

100

125

Items

Nr. ratings

Nr. positive ratings

Figure 6: Comparative performance on the crowdsourced da-
taset. All pairwise comparisons between any two item-based
variants are statistically significant (Student’s two-tailed t-
test at 𝒑 < 𝟎. 𝟎𝟎𝟏), whereas they are not significant among
user-based variants (except for nHUB > nPUB in nDCG@10).

0

0.004

0.008

0.012

R
N

D

P
O

P

A
V

G

H
eu

ri
st

ic
 -

 H
U

B

P
ro

b
ab

ili
st

ic
 -

 P
U

B

H
eu

ri
st

ic
 -

 H
IB

P
ro

b
ab

ili
st

ic
 -

 P
IB

H
eu

ri
st

ic
 -

 n
H

U
B

P
ro

b
ab

ili
st

ic
 -

 n
P

U
B

H
eu

ri
st

ic
 -

 n
H

IB

P
ro

b
ab

ili
st

ic
 -

 n
P

IB

M
F

Trivial UB IB UB IB

Non-
normalized

Normalized

P
@

1
0

0

0.01

0.02

R
N

D

P
O

P

A
V

G

H
eu

ri
st

ic
 -

 H
U

B

P
ro

b
ab

ili
st

ic
 -

 P
U

B

H
eu

ri
st

ic
 -

 H
IB

P
ro

b
ab

ili
st

ic
 -

 P
IB

H
eu

ri
st

ic
 -

 n
H

U
B

P
ro

b
ab

ili
st

ic
 -

 n
P

U
B

H
eu

ri
st

ic
 -

 n
H

IB

P
ro

b
ab

ili
st

ic
 -

 n
P

IB

M
F

Trivial UB IB UB IB

Non-
normalized

Normalized

n
D

C
G

@
1

0

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

222

it is lower both in terms of positive preferences per user (∼28 on
average vs. e.g. ∼95 in MovieLens) and per item (∼27 vs. ∼155 in
MovieLens), and the resulting low pairwise overlapping between
users and between items, further intensified by the uniform rating
distribution. Still, we see several interesting phenomena. First, rec-
ommendation based on the average rating catches up in perfor-
mance with the popularity-based recommendation. This makes
sense, since in a uniform rating distribution, the number of positive
ratings strongly correlates with the average rating value, as we see
in Figure 7b. Yet it is quite a salient finding that in the absence of a
bias in the number of ratings, the average rating is as effective as
popularity, or more, in achieving decent recommendations.

On the other hand, following this trend, and quite remarkably,
the normalized kNN variants, which we showed to go theoreti-
cally along with the average rating, now match or even slightly
outperform their non-normalized counterparts. Fig. 8 further ex-
plains the good performance of the normalized algorithms: the
normalized user-based versions retain a stronger popularity bias
than they do on the biased datasets in section 5.2. In the absence
of an item selection bias in the input data, popularity and average
rating become almost equivalent signals, as we can see in Fig. 7b,
and the normalized versions seem to more fully capture the re-
maining item popularity distribution as a meaningful and effective
signal. We omit the plots for the item-based versions, but the pat-
tern is similar to what we observed in MovieLens: the probabilistic
variant retains its popularity bias in the normalized version, not
so in the heuristic variant.

This qualitative disagreement in the comparative effectiveness
of normalized vs. non-normalized variants with respect to the re-
sults we previously obtained in section 5.2 strike us as a hint that
we should revise the observed results in offline experiments with
the common biased datasets. The contrast in observations raises
the question whether the low results of normalized kNN in com-
mon datasets is due to a truly poor performance, or to the bias in
observations. The only definitive way to know for sure would be
to obtain the missing relevance information in those datasets.

6 RELATED WORK
Many collaborative filtering methods have been proposed that
build on a probabilistic basis [9,11] –and even on probabilistic IR
models [21,23,24]–, but to the best of our knowledge none has

been proposed that explains or results in the structure of a kNN
scheme through a fully probabilistic development.

Notably for our purpose nonetheless, Deshpande and Karypis
[7] explored the use of conditional probabilities between users and
items in the role of the similarity function in kNN, but this was
otherwise an isolated probabilistic piece in a heuristic scheme for
the rest of the formulation. Later on Aiolli [2] also tested condi-
tional probability in place of cosine in a heuristic scheme, and
hinted at the structural connection between the cosine similarity
and conditional probabilities. More recently in this line, Valcarce
et al. [21] apply more sophisticated probabilistic IR models to rank
and select neighbors, but then follow on into a cosine-based rank-
ing function similar to equations 1-4. Random walk models [9] and
Markov chains have also been used to build solutions upon prob-
abilistic inspiration, though they have been generally developed
into a mix of formal and heuristic aspects (e.g. by a heuristic com-
putation of the transition probabilities).

The concentration and popularity bias of collaborative filtering
is a well-known issue that several researchers have pointed at and
addressed in the field. To name a few, Fleder and Hosanagar [8]
research the recursive dimension of the concentration biases of rec-
ommendations in their feedback loop. Cremonesi et al. [6] were to
the best of our knowledge the first to report and discuss on the
decent performance achieved by plain popularity-based recom-
mendation. They proposed a simple trick to avoid it, consisting in
excluding most popular items from the evaluation. Realizing the
popularity biases that are commonly present in rating data streams,
Steck [19,20] suggests biases are likely to lurk in the evaluation re-
sults drawn upon such conditions, and proposes new metrics aim-
ing to cope with the biases, as well as modifications in collaborative
filtering methods in the same direction. Bellogín et al. [3] similarly
analyze the strong popularity biases that surface in IR evaluation

 HUB nHUB
 𝜇 = 74

 𝜇 = 74

 PUB nPUB

 𝜇 = 73

 𝜇 = 70

Figure 8: Popularity bias in user-based kNN on the
crowdsourced dataset. The 𝒙 and 𝒚 axes and the 𝝁 average
have the same meaning as in Fig. 3 and 4. As context, the
global average popularity in this dataset is 26.

0

250

500

750

1000

0 50 100

Popularity

0

250

500

750

1000

0 50 100

Popularity

0

250

500

750

1000

0 50 100

Popularity

0

250

500

750

1000

0 50 100

Popularity

 a) MovieLens 1M b) Crowdsourced data

Figure 7: Average rating vs. popularity in MovieLens 1M
(left), and the crowdsourced data (right). Each point in the
scatterplot represents an item in dataset, the 𝒙 axis is the
average rating of the item, and the 𝒚 value is the sum of
positive rating values (popularity) of the item.

0

1000

2000

3000

4000

1 2 3 4 5

P
o

p
u

la
ri

ty

Average rating

0

40

80

120

1 2 3 4
P

o
p

u
la

ri
ty

Average rating

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

223

methodologies when applied to recommendation. In prior work [4]
we also addressed the question whether popularity reflects or con-
tradicts the true distribution of user preference, and aimed to iden-
tify key factors that may determine the answer. Also recently,
Jannach et al. [13] present a thorough study of concentration biases
with respect to both the number of ratings and the average rating
values. The reported study has a primary empirical orientation,
testing and comparing different algorithms and configuration de-
tails, and proposing some bias-mitigating ideas.

Our work very much shares the concerns of such studies,
which we address in a complementary direction: that of seeking
theoretical explanations for the empirically observed and de-
scribed phenomena, aiming to glimpse fundamental causes be-
neath them. We focus for this purpose on a narrower, specific rec-
ommender system approach, the kNN scheme.

7 CONCLUSIONS
We have proposed a fully probabilistic yet intuitive formalization
for the nearest-neighbor collaborative filtering approach. The pro-
posed formulation shows equivalent empirical effectiveness to the
traditional heuristic formulations, and thus can serve to analyze
properties of the kNN scheme on a more principled ground.

The probabilistic basis provides an explanation of the effective-
ness of kNN at the same time that it relates the algorithm to pop-
ularity distributions, thus helping understand this well-known
bias. The effectiveness of kNN relies on the pairwise statistical de-
pendence between user behaviors, and can be expected to be most
effective to the extent that the pairwise conditional distributions
deviate from the prior collective behavior. Conversely, the more a
user’s tastes are as similar to any user as they are to the next, the
more kNN behaves like a plain majority-based recommendation.

We further show that the theoretical characterizations align
the algorithm variants along two fundamentally different trends:
popularity and average rating. We report experiments showing
that the comparison between algorithm variants (and normalized
vs. non-normalized in particular) can change depending on statis-
tical properties of the input data and the biases in the implicit or
explicit item sampling in the data.

Our results suggest that further research would be needed to de-
termine to what extent popularity biases are a helpful signal to pro-
duce effective recommendations, or a confounder that may distort
offline results. Even a simple question as which of popularity and
the average rating is a better signal would deserve further analysis
at both the empirical and formal levels –further conclusions might
be drawn on the corresponding kNN variants they are a trend
within. The formal analysis of kNN we present here aims to be a
step in this direction. Further research in this line might perhaps
lead towards more generalized findings that are not exclusive of
kNN but may be shared by collaborative filtering approaches.

ACKNOWLEDGMENTS
This work was supported by the national Spanish Government
(grant nr. TIN2016-80630-P).

REFERENCES
[1] G. Adomavicius and A. Tuzhilin. 2005. Toward the next generation of recom-

mender systems: A survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering 17, 6 (June 2005), 734–749.

[2] F. Aiolli. 2013. Efficient top-n recommendation for very large scale binary rated
datasets. In Proceedings of the 7th ACM Conference on Recommender Systems
(RecSys 2013). ACM, New York, NY, USA, 273–280.

[3] A. Bellogín, P. Castells, and I. Cantador. Statistical Biases in Information Re-
trieval Metrics for Recommender Systems. Information Retrieval. Springer,
Netherlands, in press.

[4] R. Cañamares and P. Castells. 2014. Exploring social network effects on popu-
larity biases in recommender systems. In Proceedings of the 6th Workshop on
Recommender Systems and the Social Web (RSWeb 2014) at the 8th ACM Confer-
ence on Recommender Systems (RecSys 2014). Foster City, CA, USA, October
2014.

[5] O. Celma. 2010. Music Recommendation and Discovery in the Long Tail. Springer-
Verlag Berlin Heidelberg.

[6] P. Cremonesi, Y. Koren, R. Turrin. 2010. Performance of recommender algo-
rithms on top-n recommendation tasks. In Proeedings of the 4th ACM Conference
on Recommender Systems (RecSys 2010). ACM, New York, NY, USA, 39–46.

[7] M. Deshpande and G. Karypis. 2004. Item-based top-N recommendation algo-
rithms. ACM Transactions on Information Systems 22, 1 (Jan 2004). ACM, New
York, NY, USA, 143– 177.

[8] D. Fleder and K. Hosanagar. 2009. Blockbuster culture’s next rise or fall: The
impact of recommender systems on sales diversity. Management Science 55, 5
(May 2009). Informs, Catonsville, MD, USA, 697–712.

[9] F. Fouss, A. Pirotte, J-M. Renders, and M. Saerens. 2007. Random-Walk Compu-
tation of Similarities between Nodes of a Graph with Application to Collabora-
tive Recommendation. IEEE Transactions on Knowledge and Data Engineering
19, 3 (March 2007). IEEE, Piscataway, NJ, USA, 355–369.

[10] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. 2004. Evaluating
Collaborative Filtering .Recommender Systems. ACM Transactions on Infor-
mation Systems 22, 1 (Jan. 2004). ACM, New York, NY, USA, 5–53.

[11] T. Hofmann. 2003. Collaborative filtering via Gaussian probabilistic latent se-
mantic analysis. In Proceedings of the 26th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR 2003).
ACM, New York, NY, USA, 259–266.

[12] Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative Filtering for Implicit Feed-
back Datasets. In Proceedings of the 8th IEEE International Conference on Data
Mining (ICDM 2008). IEEE Computer Society, Washington, DC, USA, 15–19.

[13] D. Jannach, L. Lerche, I. Kamehkhosh, and M. Jugovac. 2015. What recommend-
ers recommend: an analysis of recommendation biases and possible counter-
measures. User Modeling and User-Adapted Interaction 25, 5 (Dec. 2015). Kluwer
Academic Publishers Hingham, MA, USA, 427–491.

[14] Y. Koren. 2010. Factor in the neighbors: Scalable and accurate collaborative fil-
tering. ACM Transactions on Knowledge Discovery from Data 4, 1 (Jan 2010),
ACM, New York, NY, USA.

[15] G. Linden, B. Smith, and J. York. 2003. Amazon.com Recommendations: Item-
to-Item Collaborative Filtering. IEEE Internet Computing 7, 1 (Jan. 2003). IEEE,
Piscataway, NJ, USA, 76–80.

[16] X. Ning, C. Desrosiers, and G. Karypis. 2015. A Comprehensive Survey of
Neighborhood-Based Recommendation Methods. In: Recommender Systems
Handbook, 2nd ed., F. Ricci, L. Rokach, and B. Shapira (Eds.). Springer, New York,
NY, USA, Chapter 2, 37–76.

[17] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. T. Riedl. 1994.
Grouplens: An open architecture for collaborative filtering of netnews. In Pro-
ceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW 1994). ACM, New York, NY, USA, 175–186.

[18] F. Ricci, L. Rokach, and B. Shapira (Eds.). 2015. Recommender Systems: Intro-
duction and Challenges. In: Recommender Systems Handbook, 2nd ed., F. Ricci, L.
Rokach, and B. Shapira (Eds.). Springer, New York, NY, USA, Chapter 2, 1–34.

[19] H. Steck. 2010. Training and testing of recommender systems on data missing
not at random. In Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD 2010). ACM, New York, NY,
USA, 713–722.

[20] H. Steck. 2011. Item popularity and recommendation accuracy. In Proceedings
of the 5th ACM Conference on Recommender Systems (RecSys 2011). ACM, New
York, NY, USA, 125–132.

[21] D. Valcarce, J. Parapar, and A. Barreiro. 2006. Language Models for Collabora-
tive Filtering Neighbourhoods. In Proceedings of the 38th European Conference on
Information Retrieval (ECIR 2016). LNCS Vol. 9626. Springer, Switzerland, 614–625.

[22] S. Vargas and P. Castells. 2014. Improving sales diversity by recommending us-
ers to items. In Proceedings of the 8th ACM Conference on Recommender Systems
(RecSys 2014). ACM, New York, NY, USA, 145–152.

[23] J. Wang, S. Robertson, A. P. de Vries, and M. J. T. Reinders.2008. Probabilistic
relevance ranking for collaborative filtering. Information Retrieval 11, 6 (Dec.
2008). Springer, Netherlands, 477–497.

[24] J. Wang, A. P. de Vries, M. J. T. Reinders. 2008. Unified relevance models for
rating prediction in collaborative filtering. ACM Transactions on Information
Systems 26, 3 (June 2008). ACM New York, NY, USA.

[25] C. Zhai and, J. D. Lafferty. 2004. A study of smoothing methods for language
models applied to information retrieval. ACM Transactions on Information Sys-
tems 22, 2 (April 2004). ACM, New York, NY, USA, 179–14.

Session 2B: Filtering and Recommending 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

224

