
Distributed Indexing: A Scalable Mechanism

for Distributed Information Retrieval

Abstract

Peter B. Danzig, Jongsuk Ahn, John Nell, Katia Obraczka

Computer Science Department

University of Southern California

Los Angeles, California 90089-0782

danzig@usc.edu

Despite blossoming computer network bandwidths aud

the emergence of hypertext and CD-ROM databases, lit-

tle progress has been made towards uniting the world’s

library-style bibliographic databases. While a few ad-

vanced distributed retrieval systems can broadcast a

query to hundreds of participating databases, experi-

ence shows that local users almost always clog library

ret rieval systems. Hence broadcast remote queries will

clog nearly every system. The premise of this work is

that broadcast-based systems do not scale to world-wide

systems. This project describes an indexing scheme that

will permit thorough yet efficient searches of millions of

retrieval systems. Our architecture will work with an ar-

bitrary number of indexing companies and information

providers, and, in the market place, could provide eco-

nomic incentive for cooperation between database and

indexing services. We call our scheme distributed index-

ing, and believe it will help researchers disseminate and

locate both published and prepublication material.

We are building and plan to distribute a research

prototype for the Internet that demonstrates these ideas.

Our prototype will index technical reports and public

domain software from dozens of computer science cle-

partments around the country.

I~eywords: Information retrieval, heterogeneous data-

bases, resource location, bibliographic databases.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

o 1991 ACM 0-89791 -448 -1/91 /0009 /0220 . ..$1 .50

1 Introduction and Motivation

In several years, all books, journals, articles, technical

reports, images of art work, and recordings of music will

be available from thousands, perhaps millions of data re-

trieval companies and publishers[9]. Imagine that you,

a scholar, need to find an obscure article that exists in

a handful of a million databases throughout the world,

but you have no idea where to start. One solution would

have you submit your query to every database. This

process could be automated quite simply with a com-

puter network feature called broadcast [6]. While broad-

casting your query assures that you find your article, it

will not do it efficiently. The impact of millions of other

people also broadcasting queries would quickly overload

all the world’s databases, and no one’s queries would be

answered. However, if the task of dist ributing a query to

a set of appropriate databases were not automated, then

the advantages of having millions of databases would di-

minish, because using them would be slow and cumber-

some. What is needed is an automated system that only

forwards a query to a set of databases that are likely to

have the article that you seek. We report here an ar-

chitecture which we call distributed indexing that could

unite millions of autonomous, heterogeneous retrieval

systems.

We say autonomous and heterogeneous because, de-

spite cooperating together to form a single distributed

retrieval system, they are neither managed nor owned by

any individual agency. They cooperate to increase their

individual exposure, and thereby increase the likelihood

that people use (and pay for) their services. The para-

graphs below motivate distributed indexing and con-

trast it to the current state of the art [13].

220

1.1 Relationship to Existing Systems

The current largest heterogeneous retrieval system con-

nects 850 databases. This system can broadcast queries

to all 850 participants, where a stub at each participant

translates the query and response for local use[13]. If

you search for all works whose titles contain the words

“Information Retrieval”, then the system sends such a

query to all 850 databases, and you receive receive 850

responses. If you then ask for all works that cent ain title

words “Database Retrieval Systems”, the system broad-

casts a similar query to the 850 databases, and again,

you receive 850 replies. The creators of this database

have organized the 850 member databases by topic, and

users can reduce the number of databases contacted by

limiting their queries to particular topics.

The database research community, until this year,

addressed the issues of heterogeneous databases[16] by

focusing on translating schemas and concurrency con-

trol schemes, rather than finding or organizing informa-

tion. Several months ago, NSF identified these latter

problems as important [7].

The Wide Area Information Server (WAIS), an ar-

chitecture for heterogeneous retrieval systems is gaining

momentum[l 1]. WAIS maintains a directory of data-

bases, which is used to identify databases relevant to

a user’s query. Clients and servers employ the Z3!3-50

protocol [10]. Clients cache previous queries and their

results for future reference. Cache consistency is main-

tained by periodically re-executing queries or by cache

invalidation call-backs from the servers. We believe this

approach to cache consistency will cause considerable

overhead to the servers and communication network.

We are investigating how autonomous databases can

cooperate to make an efficient, distributed retrieval sys-

tem. We emphasize efhciency because the average query

to existing, nondistributed retrieval systems already re-

turns hundreds of answers on average, frequently returns

thousands of answers, and occasionally tens of thou-

sands [14]. The state of the art in distributed informa-

tion retrieval systems is intelligent “front end” interfaces

to non-cooperating, “back end” databases. Current re-

search addresses this problem with user interface tools

that help naive users refine their queries before unleash-

ing them. We believe this refinement should, instead,

be done by sophisticated users. For example, only a

sophisticated researcher would know that physicists, bi-

ologists, and computer scientists all work on vision. We

believe we can make sophisticated users out of naive

users without employing artificial intelligence. We do

this by making it easy to create autonolnous databases

that specialize in particular topics and types of queries.

Companies and user communities can create clatab~iscs

that sift through all the world’s documents, collect ma-

terial relevant to a particular topic, and process queries

submitted to them from around the world. We say such

databases are precomputed because they contain the re-

sults of executing particular queries on thousands of

other databases. Precomputation avoids the need for

users to broadcast their queries to hundreds or thou-

sands of databases. It eliminates work, reduces query

response time, and helps locate obscure information.

Our research does not address issues of access ccm-

trols, storage space, and copyright. Distributed index-

ing is a mechanism for efficiently discovering interesting

objects. While it can be extended with access controls

and the participating databases can be sensitive to copy-

right, neither this paper nor our prototype makes contri-

butions regarding copyright enforcement, access control,

or royalties. After all, these problems need only be dealt

with once an object is discovered. Information suppli-

ers that sell access to their database may still want to

have their objects indexed, since the more users that dis-

cover and subsequently retrieve them, the higher th~eir

revenues.

1.2 Precomputed Queries

A simple example illustrates what we mean by precom-

puted indices. Suppose a company created a database

of the title words of every work in each of 850 data-

bases. Because the new database contains neither the

text for the works nor even an entire citation record,

the new database would require only a small fraction of

the combined storage of the original 850 databases. It

need only contain the title and the name of the database

that has the complete record. Assuming the title word

database were kept current, it would be much more ef-

ficient to forward title word queries to the title word

database than to all 850 databases. The system would

need only contact the subset of the 850 databases that

stored appropriate articles.

The idea behind distributed indexing is to establish

databases that summarize the holdings on particular

topics of other databases. We call these special data-

bases brokers. We describe the particular topic by a

generator query. Generator queries are expressed in cmr

Common Query Language, the base query language em-

ployed by users. The rest of this-paper describes a sys-

tem that can exploit the advantages of precomputation

on a world-wide scale.

This paper is organized as follows. Section 2 de-

scribes the architect,urc of disl$ributcd indexing as seen

by prograllll)lers al)tl crentors of indict’s, and Section 3

dcscrib (’s ~llc’ arcllilectllrv as vio\v(xl l~y Il$crs. Section 4

221

Key:
.

—

Replicated Topic Broker I

Topic Broker 1
Reg@ration

1

Generator j

regtstratlon . --------------------------------- ---------------------------------J

User
queries Index Broker of

Scientific

Site Broker selling Site Sroker offering
access to free access to
Real Estate Literature Scientific Literamre

c~

Primary Database

< 2

Figure 1: Components of a distributed indexing system.

focuses attention on how to unambiguously specify the

topic of an index, and describes a special indexing struc-

ture we use. Section .5 addresses how we obtain update

consistency. We draw conclusions in Section 6 and de-

scribe the prototype retrieval system that our research

group has designed and prototype, and is planning to

distribute.

2 The Architecture

Our system consists of several components, illustrated

in Figure 1. An index broker is a database that builds in-

dices. The title word database from the example above

is an index broker. Index brokers can index the contents

of primary databases and, in fact, other index brokers.

Primary databases are today’s single-site retrieval sys-

tems such as a library catalogues, indexing services and

CD/ROM databases. Each primary database and index

broker operates in concert with one or more site brokers

that perform several functions. Site brokers store the

generator queries of all index brokers that index their as-

sociated database, and are responsible for keeping these

index brokers’ indices current. Site brokers also trans-

late the system’s query language for execution on the

primary database, translate results from the primary

database to the system’s query language[21], and im-

plement access controls.

When a site broker accepts a new generator, it trans-

lates and executes it on its associated database, and

reliably sends the results to the index broker that reg-

istered the generator. A database sends all new and

deleted records to its associated site brokers. Site bro-

kers apply their generator queries against these updates

and reliably forward appropriate changes to the index

brokers that originally registered the generators. Be-

cause we anticipate that popular site brokers may reg-

ister millions of generators, efficient storage and index

structures for evaluating them are essential. We discuss

these structures in Section 4.

Notice that index brokers are not caches. Rather

they are a consistent view of the databases that they in-

dex. The architecture’s complexity is due to this consis-

tency. This contrasts with Kahn’s Knowbots or WAIS’S

caches which must be re-executed or invalidated to re-

main consistent [15].

Index brokers index other databases, performing a

function similar to telephone yellow pages. An index

broker registers generator queries with site brokers of

primary databases and other index brokers. These site

brokers forward updates to the index broker as their

associated databases change. The index broker stores

these updates and passes them to the index broker’s

associated site brokers.

Index brokers, like telephone yellow pages, do not

compete with primary databases; they simply make the

primary databases more visible (and profitable). The

primary database is not obligated to give an index bro-

ker a copy of the object, nor is it prevented from doing

so. Users of the index broker may have to contact the

primary databases to retrieve the object itself. Previous

work on yellow page services, known as attribute-based

naming, has been restricted to network name servers

222

[17, 4, 19, 20]. Our architecture extends attribute-based

naming to bibliographic databases.

The system’s final component, the replicated Topic

Broker, describes every site and index broker [12]. Users

employ an instance of the Topic Broker to identify bro-

kers relevant to their queries. Creators of brokers use it

to find relevant brokers and primary databases to index.

Topic broker replication is implemented with a flooding

algorithm.

2.1 Creating Index Brokers

How is a new index broker created? Creating a new in-

dex broker entails describing its contents and selecting

a set of primary databases and index brokers to index.

The broker’s generator, the query that it registers at the

site brokers of the databases that it indexes, defines an

index broker. A new index broker announces its pres-

ence by recording its generator and an abstract of its

contents with the replicated Topzc Broker, the one logi-

cally centralized component of the system (site brokers

of primary databases also register a generator and an

abstract with the topic broker).

The creator of a new index broker queries the Topic

Broker for a list of site brokers whose descriptions per-

tain to the new index broker’s generator and abstract.

The creator then attempts to register its generator at

each of the appropriate site brokers, and with the Topic

Broker. Henceforth it collects and stores indexing in-

formation from these site brokers. The instance of the

Topic Broker that first registered an index broker in-

forms the index broker when a pertinent new database

or index broker is created, or when changes in the de-

scription of an existing database make it gain or lose per-

tinence. This permits index brokers to choose whether

or not to register their generator at the new site broker.

We are developing interactive tools to automate bro-

ker creation, especially the process of writing generator

queries.

3 User-System Interaction

So far, we have examined how information is organized

in the distributed indexing architecture. In this section,

we examine how users can retrieve this information.

3.1 Specification of Queries

We use a common query language to express genera-

tors and user queries (note that user interface tools, or

user agents, can hide the common query language from

users). The common query language permits Boolean

expressions over traditional bibliographic attributes such

as author name, title, publication date, journal name,

and publication type; and non-traditional attributes such

as geographic location and search cost. It also permits

Boolean expressions over ranges of Library of Congress

numbers. Range queries efficiently restrict a query’s do-

main of interest, and restrict it less ambiguously than

traditional subject keywords. We discuss how ranges

are stored and employed in Section 4.

People in specific disciplines want to specify searches

in that discipline’s preferred classification system[7]. I)is-

tributed indexing does not prevent this, and permits

constructing domain specific user interfaces and broker

creation tools. These tools can map the domain’s pre-

ferred classification system to the Library of Congress

standard. Objects described in a discipline’s terminol-

ogy are easily found by keyword searches on brokers

that index the appropriate range of Library of Congress

numbers.

3.2 Processing Queries

Executing a query invokes a sequence of steps that even-

tually identifies or retrieves a set of relevant objects.

These steps are query specification, query translation,

broker location, broker querying, primary database lo-

cation, primary database querying, and object retrieval.

The process begins when a user issues a query. While

we are not seriously addressing how user’s specify the

query, possibilities include hand-typed common query

language expressions, form or template queries, and even

natural language queries.

Once specified, the user agent translates the query

into the common query language. For hand-typed com-

mon query language expressions, no actual translation

is required. The more sophisticated the user agent, the

more elaborate the transformation.

Take, for example, the following translated query:

Topic: QA76-QA77 and TK5105-TK5IO6

Attributes:

Date >= 1989;

Type = technical report;

Keywords: {computer networks, queueing theory,

not (neural networks, artificial intelligence) ,

gigs-bit, flow control>

This query is sent to an instance of the Topic Broker,

223

IQ y. f .

. Registration Reptkcalod Topic Bmkor
relahonsh,ps]

— User ,
Queries ~

~

[..

‘=edEEmE!!q
1Quay Topic Brukar

..

University & site
Networks Bt.aker 2 Query Index Brokers ,,Find all =-nt

univem ity *dmical

u.su.i.ers~ies--”-””-

..----
..........-

%

5i!S$i%B
Site Bmkar

Primary

USC Tech Reports MIT Tech Reports ACM SIGCOMtvt

Figure 2: Interaction

L I I I1 1

which computes and returns to the user agent a list of

possible target index brokers that may be able to satisfy

the query. For our example query, this list could contain

an entry for the ACM SIGCOMM broker, the IEEE

Communication Society Broker, a university technical

report index broker on Computer Networks, and several

foreign university site brokers (See Figure 2).

The user agent ranks the list of target brokers ac-

cording to promise, and sends the query to one or more

of them. These execute the query and return a list of

object identifiers and attributes.

In our example, the user agent might send the query

to the University /3 Networks index broker and the site

broker at Cambridge University, although it turns out

that the first broker happens to already index the Cam-

bridge broker. Both brokers return a list of object iden-

tifiers and attributes. The user examines these, and may

chose to retrieve a copy of an interesting report from an

MIT full text retrieval system. His user agent contacts

the appropriate site broker to retrieve the object for

browsing.

3.3 Hypertext and Brokers

Hypertext systems provide an interface to information

that emphasizes browsing through linked chunks of data.

Hypertext can benefit from distributed indexing in three

ways: as a method to identify starting points for brows-

ing,as a way to locate interesting information to place

in a hypertext, and as a mechanism to provide “dynamic

links”.

IEEE Comm. Sot. Cambridge Tech Reprts

between system components.

Consider an existing large scale hypertext contain-

ing hundreds of millions of nodes stored in the primary

databases of our architecture. How can a user begin to

browse through such an enormous information space?

Clearly, it is impractical to visit every object in the hope

of finding something interesting. However, a query to in-

dex brokers might identify a reasonable subset of objects

for browsing. By specifying the general topic of interest

in the form of a query, the user can ask the brokers for

nodes that are worth examining[8].

Brokers can also aid in constructing a hypertext by

finding objects to serve as nodes. A query yields a set of

interesting items; these may be merged with other sets

to form a flat space of objects. Then, links are added

between objects to compose the hypertext structure.

Finally, a query to the distributed indexing system

can be used to implement dynamic links: links that are

constructed on demand. For example, a user viewing

a node might click on a link anchor. Rather than fol-

lowing an existing link, the system sends a query to the

distributed index. The result is displayed as the end-

point of the link, either taking the first object returned,

or presenting a linked list of objects. In this way, a link

endpoint can change over time as new objects are added

to the index space.

Thus, there is a complementary relationship between

hypertext and brokers: brokers add associative access to

the browsing mechanism of hypertext; hypertext adds

organization to objects so they can be easily retrieved

in the future.

224

3.4 Implementation Issues

We hope that, ultimately, a multitude of user agents,

brokers, and primary databases will cooperate to form

global distributed indexing systems. These brokers and

databases will be heterogeneous, and, by necessity, will

incorporate existing databases. Network protocol stan-

dards will avoid heterogeneity problems between bro-

ker components and user agents. However, indexing an

existing primary database requires building a new site

broker that knows how to communicate with it. Besides

this, site brokers have another primary database related

task. Suppose a user identifies an interesting object

and wants to retrieve it from its primary database, The

site broker must retrieve the object from the database

and transfer it to the user. We do this to hide the pri-

mary database’s access protocol from the user. Brokers

and site brokers will employ a common communication

protocoll.

The preceding discussion presents a rather involved

series of interactions with the system in order to process

a query. We should emphasize that these need not be

explicitly managed by the human searcher; rather, we

imagine that user agents will do most of the work, asking

for user input at important decision points.

For example, a user agent might take the initial

query specification, translate it into the common query

language, then perform the necessary communications

with brokers and primary databases to obtain a set of

relevant objects for present ation to the user. In the pro-

cess, it may do weighting and ordering of brokers and

objects according to rules specified in some user or sys-

tem specific configuration file<

After a set of objects is found, the user agent may

evaluate their relevance to the search at hand by pro-

cessing user feedback while browsing. This information

could be used to modify the weighting criteria used to

order lists of brokers and objects.

This finishes our discussion on the system’s architec-

ture. The remainder of this paper discusses implemen-

tation issues. The next two sections discuss indexing

data structures and issues in consistency, concurrency

control, and recovery.

4 Indexing Structures

Site and topic brokers store generator queries, while in-

dex brokers store object descriptors (and possibly may

1It is possible that this protocol will be the Z39.50 Information
Retrievzd Protocol, but this clecision has yet to be made.

cache the objects themselves). This section describes

the indexing structures that brokers use. Because topic

and site brokers may store millions of generator queries,

generator queries must be indexed to optimize system

response time, and the index must efficiently use disk

space. Evaluating the query language’s keyword Boolean

expressions requires an attributed, inverted index, a struc-

ture we use but do not describe here. However, in-

verted indices do not support range queries over Library

of Congress numbers. We support Boolean expressicms

over Library of Congress ranges (e.g. QA76-QA77 &

QA244-QA248) as an attempt to confront the query vo-

cabulary problem. This section describes an indexing

data structure we use to support such range queries.

When a primary database or index broker passes a

new object to its site brokers, the site brokers must de-

termine which generators need to be evaluated. Like-

wise, when a user agent queries the Topic Broker for a

list of target brokers, the Topic Broker must determine

which of the abstracts and generators to evaluate. These

operations require collecting pointers to generators from

the keyword inverted index and from the range query

index, and efficiently evaluating the Boolean operations

on the indices.

We must identify the list of generators whose Li-

brary of Congress ranges intersect with the Library of

Congress numbers of the new items. In essence, this is a

set membership problem. Similar range problems exist

in VLSI design and computational geometry[l]; we have

chosen an index structure called a segment tree from the

latter.

4.1 Seglment Trees

In its purest form, a segment tree is a balanced binary

tree that represents a set of overlapping line segments

on some interval, say zero to one. The root node covers

the entire interval and the leaf nodes cover fixed sized

segments of the interval. A node’s left and right children

cover the first and second half of the parent’s interval.

The tree’s height is determined by the segment size of

the leaf nodes, which is set at design time.

How do we use this structure to record line seg-

ments? A line segment is inserted at the highest level

node or nodes in the tree such that the segment sub-

sumes the subinterval covered by the node, but not that

of the node’s parent. This means that a line segm~ent

may appear in many nodes. Take, for example, the seg-

ment tree in Figure 3. The tree’s root covers the interval

O – 1, and its leaves break this interval into 0.125 length

segments. We would insert the interval S1 = 0.125 – 1.0

into nodes i, e, and c because i covers 0.125 – 0.25, e

225

i-
S3

-t

1=
S2

-1

1-
S3

-t

Figure 3: An example segment tree

covers 0.25 — 0.5, and c covers 0.5 — 1.0. Likewise, we

would insert interval S2 = 0.00 – .30 into nodes d and j,

and interval S3 = 0.25 — 0.80 in nodes e, t, and n.

How do we use this structure to find all segments

that contain a given point? One simply collects refer-

ences to intervals while traversing the tree from the root

to the leaf into which the point falls. Take, for example,

the point 0.20. Neither the root nor its left child index

any segments, however node d refers to segment S2, and

the leaf i refers to segment S1. Hence, S2 and S1 both

contain the point 0.20.

Site brokers use our segment tree to identify the

set of index brokers whose generator queries should be

evaluated when they learn of new items. How do we

represent Library of Congress ranges using a segment

tree, and how does one find all ranges that contain a

given Library of Congress number? We tailor the seg-

ment tree structure to fit the relatively static Library

of Congress schedules by selecting the subintervals that

nodes represent so that they fall on Library of Congress

classification boundaries. Another way to look at it is

that we’re mapping the Library of Congress numbers

onto the interval O – 1. Based on the current size of

the Library of Congress schedules (about 10,000 printed

pages), we expect the actual size of the index to be about

10 megabytes. Hence, a substantial portion of the index

can reside in main memory. Additionally, we would ex-

pect blocks containing segments attached to the upper

nodes in the tree to be cached in main memory, since

they are shared by many paths.

5 Consistency

Adding an item to a primary database or index broker

may require updating thousands of brokers, which in

turn can cascade additional updates to thousands more.

Updates introduce two sources of problems. First, un-

less we restrict the system’s topology, we must take mea-

sures to prevent an endless cycle of updates. This is be-

cause an index broker may register with other index bro-

kers as well as primary databases. We could solve this

problem by requiring that site brokers reject registra-

tion attempts when they would cause cycles. However,

this requires that each site broker have knowledge of the

complete topology of the system at all times, an expen-

sive assumption. Furthermore, restricting the topology

to acyclic graphs reduces the probability of indexing rel-

evant objects, and may expose proprietary information.

We take an alternate approach based on flooding.

We require that each update message include the object

identifier of the object that caused the update. Upon re-

ceiving an update, an index broker examines its database

for the presence of the object identifier.

In the case of an addition, if the identifier is not

present in the broker, then the broker has not yet seen

the update. It processes the update and forwards it to

other registered brokers as appropriate. Conversely, if

the object identifier is already present, then the broker

has already received the update via another path. It

therefore ignores the update, thus breaking the cycle.

Deletion is quite similar. If the object identifier is

present in the database, then the update has not been

226

seen. The broker processes and forwards the deletion.

If, however, the object identifier is not present, then the

update has already been processed, and is thus ignored.

We have to maintain consistency if index brokers or

primary databases disappear or generators are unregis-

tered. When the topology is acyclic, it is easy to nlain-

tain consistency. Permitting cycles, however, requires

that certain path information be exchanged in addition

to object identifiers. The deletion algorithm may need

further work.

Also, because it is unlikely that several thousand

databases are simultaneously functional, we cannot up-

date several index brokers simultaneously in a single

atomic action. We investigate these problems below.

5.1 Atomic Actions

When a database adds a new object, it is the respon-

sibility of the database’s site brokers to identify index

brokers that may be interested in the new object. This

is done by comparing the new object against the list of

generator queries of all index brokers who have regis-

tered at the site. It is entirely possible that the result

may include thousands of index brokers; it is also un-

likely that all of these brokers will be functional at any

given instant of time. Thus, it is unreasonable to as-

sume that notification of the new object can take place

as an atomic transaction.

To solve this problem, we require that new objects

be timestamped with their creation time, and add a

timestamp to each index broker’s registered generator

query. The latter timestamp indicates when the last

update was successfully reported to the index broker.

Site brokers repeatedly attempt to contact each index

broker and report the new object. When contact is es-

tablished, the generator timestamp is set to the times-

tamp of the new object. The process stops when all

generator timestamps are equal to the timestamp of the

last object created.

Deletions are handled in the same way. Each bro-

ker that had expressed interest in the deleted object

is notified in turn of the object’s deletion, All brokers

have been notified when the timestamp of every gener-

ator query is the same as the deletion timestamp of the

deleted object.

5.2 Media Recovery

We assume that primary databases perform their own

media recovery and that index brokers can recover their

list of generators. The index broker’s and site broker’s

timestamps can be used to recover either the index or

site broker after a disk crash[2]. For this reason, inclex

brokers need not recover the indices they store. These

are automatically recovered by resetting the generatc,r’s

timestamp at the site broker. To ensure that site bro-

kers can recover an index broker’s generator query, each

index broker regularly polls all site brokers where it has

registered a generator. If a site broker suffers a media

failure, its generators are recovered as each index bro-

ker polls it and reregister its generator and generator

timestamp.

6 Conclusions

Building a retrieval system to incorporate ten million

databases has never been attempted. The largest exist-

ing distributed database is the DNS name server which

has very limited functionality and only encompasses less

than twenty thousand sites [18, 3]. We believe that dis-

tributed indexing presents a new perspective on uniting

autonomous retrieval systems.

6.1 Prototype

We are implementing the system sketched above to dis-

tribute to the Internet community. The prototype will

run on Sun UNIX, which should make it easily ported

to other UNIX systems. At this time, we have a pro-

totype running in our lab. We expect to complete the

prototype by the time this paper is presented.

With the cooperation often to thirty other computer

science and electrical engineering departments, we will

create a national collection of computer science technical

report index brokers covering the various subdiscipli nes

of our field. Each department will create primary data-

bases of their technical reports, and make a site brc~ker

available over the Internet. As it is currently difficult to

obtain technical report lists, we believe our distributed

indexing project could easily become a permanent part

of the research Internet community. This prototype, al-

beit small, will demonstrate the system’s functionality.

We also plan to interface with DNS databases.

6.2 Future Work

We plan to evaluate how these ideas scale to retrieval

systems beyond this prototype. Scalability depends on

statistical properties of the data, queries, and brcjker

topology. We intend to load CD/ROM databases cmto

227

the disks of various workstations, and build experimen-

tal index brokers. We will investigate the index broker

size as the number of indexed databases grows, and will

develop better tools for writing generator queries so that

they comprehensively yet selectively retrieve what we

expect. We are also working on extensions of our ideas

to object oriented databases[5]. Below we consider ques-

tions of scalability y and expressiveness.

Generator queries must describe subjects precisely

if brokers are to precompute useful views of millions

of retrieval systems. However, topics ordinarily span

many ranges. Someone searching “Computer Network-

ing” expects to see articles on Queueing Theory and

Network Technology as well. For this reason, we have

included ranges of Library of Congress numbers in our

queries. We do not expect users themselves will specify

ranges, but, as mentioned earlier, domain-specific user

interfaces can append a Library of Congress range to a

user’s keyword query. Broker creation tools help broker

creators specify Library of Congress ranges that appro-

priately cover the creator’s intended subject matter.

Acknowledgements

We would like to thank Carl Braganza for several useful

discussions and ShihHao Li for his work on the pro-

totype. We would also like to thank LBT for reading

earlier drafts of this paper.

References

[1]

[2]

[3]

[4]

[5]

Jon Louis Bentley and Derick Wood. An opti-

mal worst case algorithm for reporting intersections

of rectangles. IEEE Transactions on Computers,

29(7):571-577, July, 1980.

Philip Bernstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

Andrew Birrell, Roy Levin, Roger M. Needham,

and Michael D. Schroeder. Grapevine: Au exercise

in distributed computing. Communications of the

ACM, 25(4):260-274, April 1982.

Mic Bowman, Larry Peterson, and Andrey Yeatts.

Univers: An attribute-based name server. Sojlware

Practice and Experience, 1989.

Peter Danzig, Michael Arbib, and Shahram Ghan-

deharizadeh. Brane: Brain analysis environment.

Technical Report 91-14, University of Southern

California, hIay 15, 1991.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Steven Deering. Multicast routing in internetworks

and extended LANs. 1988 ACM SIGCOMM Sym-

posium, pages 55-64, August 16-19, 1988.

James C French, Anita K Jones, and John L Pfaltz.

Summary of the final report of the NSF work-

shop on scientific database management. SIGMOD

Record, 19(4):32-40, Dee, 1990.

Mark E. Frisse. Searching for information in a hy-

pertext medical handbook. In Hypertext ’87 Pro-

ceedings, Chapel Hill, North Carolina, November,

1987, pages 57–66, New York, 1987. The Associa-

tion for Computing Machinery.

William Gardner. The electronic archive: Scientific

publishing for the 1990s. Psychological Science, To

Appear.

1S0. Information retrieval service definition and

protocol specifications for library applications.

Technical report, National Information Standards

Organization, 1989.

Brewster Kahle. Wide area information server

concepts. Alpha Release Documentation, anony-

mous FTP from think .tom:/public/wais/wais-8-

aXX.tar.Z.

Butler Lampson. Designing a global name service.

ACM Principles of Distribut ed Computing, August

1986.

Witold Litwin, Leo Mark, and Nick Roussopou-

10S. Interoperability of multiple autonomous data-

bases. 1990 ACM Computing Surveys, 22(3):267-

293, September, 1990.

Clifford Lynch. Melvyl show statistics command.

Personal Communication, February 21, 1991.

John Markoff and Robert Kahn. Creating a giant

computer highway. New York Times, Sept 2, 1990.

Dennis McLeod. An approach to controlled sharing

among autonomous, heterogeneous database sys-

tems. IEEE Database Engineering, pages 17-41,

1987.

B. Clifford Neuman. The virtual system model:

A scalable approach to organizing large systems:

A thesis proposal. Technical Report TR-90-05-01,

University of Washington, Seattle, May 1990.

Marshall T. Rose. NYSERNet White Pages Pi-

lot Project: Administrator’s Guide. NYSERNet,

March 26, 1990.

228

[19] M. F. Schwartz. A scalable, non-hierarchical re-

source discovery mechanism based on probabilistic

protocols. Technica lReportTechnica lReport CU-

CS-474-90, Department of Computer Science, Uni-

versity of Colorado, Boulder, Colorado, June 1990.

[20] M. F. Schwartz, D. R. Hardy, W. K. Heinzman,

and G. Hirschowitz. Supporting resource discovery

among public internet archives using a spectrum

of information quality. Technical Report Technical

Report CU-CS-487-90, Department of Computer

Science, University of Colorado, Boulder, Colorado,

September 1990.

[21] Michael F. Schwartz, John Zahorjan, and David

Notkin. A name service for evolving heterogeneous

systems. Proceedings of the llth ACM Sympo-

sium on Operating Systems Principles, 21(5):52-62,

November 1987.

229

