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ABSTRACT  
Real life information retrieval takes place in sessions, where users 
search by iterating between various cognitive, perceptual and motor 
subtasks through an interactive interface. The sessions may follow 
diverse strategies, which, together with the interface characteristics, 
affect user effort (cost), experience and session effectiveness. In this 
paper we propose a pragmatic evaluation approach based on scenar-
ios with explicit subtask costs. We study the limits of effectiveness 
of diverse interactive searching strategies in two searching envi-
ronments (the scenarios) under overall cost constraints. This is 
based on a comprehensive simulation of 20 million sessions in each 
scenario. We analyze the effectiveness of the session strategies over 
time, and the properties of the most and the least effective sessions 
in each case. Furthermore, we will also contrast the proposed 
evaluation approach with the traditional one, rank based evaluation, 
and show how the latter may hide essential factors that affect users’ 
performance and satisfaction - and gives even counter-intuitive 
results.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Search process 

Keywords 
Session-based evaluation, simulation, time-based evaluation  

1. INTRODUCTION 
Interaction through search interface and environment greatly affects 
the user behavior, user experience, and user performance. 
Many earlier studies have extended the traditional Cranfield view of 
IR and discussed various aspects of interactive searching (see, e.g., 
[4], [5], [6], [13], [21]), user interaction, and query modification 
(see, e.g., [3], [10], [14], [28]). 

During interaction the user selects between subtasks, e.g., whether 
to scan the result or launch a new query instead, and how to con-
struct the query. Such selections obviously affect session gains. 
However, different subtasks also have costs, e.g., they take time. 
This is important because real life IR often takes place under (time) 

constraints. In particular, keeping the overall session cost reasonable 
may be essential for end users.  

The costs of subtasks may vary for many reasons between searching 
environments. For example, regarding the query side, small devices 
and touch screens are inconvenient for typing [11]. Recently, novel 
kinds of searching devices, including personal phone-based mobile 
devices, have become increasingly popular. 

In order to minimize the overall session costs, a mobile phone user 
might e.g., avoid typing and prefer result scanning. Low input costs 
might change the situation from the user’s point of view, leading to 
longer queries. Therefore, if we assume two users having identical 
needs and identical cost constraints regarding the overall session 
time, it is possible that different devices render different subtask 
combinations optimal in searching.  

Traditional IR evaluation focuses on the quality of the ranked out-
put. In this view, the costs of posing queries are non-problematic, 
even uninteresting. In this paper we will utilize simple scenarios to 
bring time factors into the research setting. Scenarios formalize and 
quantify the gains and costs of interactive sessions. We construct 
two cases – a personal desktop computer (PC) and a smart phone 
(SP) case, with subtask costs derived from the literature. We will 
simulate session interaction involving multiple queries based on 
prototypical but empirically grounded query modification strategies 
using a test collection. We then explore the effectiveness of search-
ing via the exhaustive set of querying-scanning combinations possi-
ble, and evaluate the effectiveness of both scenarios in terms of 
Cumulated Gain (CG) [16] under time constraint (overall session 
time). We use non-normalized metrics, because normalized metrics 
may yield misleading results, especially if time is taken into ac-
count. 

Early papers on IR evaluation had a comprehensive approach to 
interactive IR evaluation. Cleverdon et al. [8] pointed out, among 
others, physical and intellectual user effort as an important factor in 
IR evaluation. Salton [24] identified user effort measures in the 
context of IR evaluation. More recently Su [30] gave a comparison 
of 20 different evaluation measures for interactive IR, including 
actual cost of search, several utility measures, and worth of search 
results vs. time expended. The interactive aspect of IR requires 
attention because previous studies have repeatedly shown that 
discrepancy exists between interactive and non-interactive evalua-
tion results. Hersh et al. [12] showed that a weighting scheme giv-
ing maximum improvement over the baseline in non-interactive 
batch evaluation failed to surpass others when real users performed 
a simulated task.  Turpin and Hersh [31] observed that a system 
superior over the baseline in batch evaluation, measured by mean 
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average precision, was not superior in an interactive situation.  
Turpin and Scholer [32] found no significant relationship between 
the search engine effectiveness measured by mean average preci-
sion and real user success in a precision-oriented task. Smith and 
Kantor [25] observed that users of degraded systems were as suc-
cessful as those using non-degraded systems. They suggested that 
users achieved this by altering their behavior.  

Dunlop [9] proposed “time-to-view” graphs, which incorporate user 
interface and system as well as the time component into the same 
framework for evaluation of system effectiveness. However he did 
not analyze time constraints, query modification strategies and 
different devices. 

Smucker [26] brought time factors into the traditional Cranfield 
setting by augmenting it with the use of the GOMS [7] model (ac-
ronym for Goals, Operators, Methods, and Selections).  He sug-
gests a user model for IR where the search process is seen as a 
sequence of actions (e.g., typing; clicking; evaluating a summary; 
waiting for the results to load) with associated times and probabili-
ties (e.g., whether the simulated user will click on a relevant sum-
mary). He used the model in a simulated study to demonstrate the 
impact of changes in the IR system interface (e.g., when the speed 
and accuracy of the summary evaluation is varied) on user perform-
ance (the number of relevant documents read within a given time 
frame).  While his experiment was limited to single query situations, 
the approach can be extended to multiple query scenarios, e.g., for 
computing the costs of specific query reformulations.  

Azzopardi [2] addressed the cost aspect by treating interactive IR as 
an economical problem and studied the trade-off between querying 
and browsing while maintaining a given level of normalized CG 
(NCG) [15] in sessions. His analysis focused on querying – scan-
ning depth combinations for various formal retrieval methods that 
deliver a given level of NCG.  

Our approach in the present paper differs from earlier studies. Our 
study is based on the simulation of multiple-query sessions gener-
ated with various query modification and scanning strategies in 
different searching environments. 

In the next section we start by discussing session generation with 
costs, and present the research questions. In Section 3 we describe 
the research setting. In Section 4 we will run an experiment in a test 
collection based on scenarios and discuss the results. We close the 
paper by discussing the significance of our approach in the last 
section. 

2. CONSTRUCTION OF SESSIONS 
A use case is “a relatively informal description of system’s behavior 
and usage, intended to capture the functional requirements of the 
system by describing the interaction between the outside actors and 
the system, to reach the goal of the primary actor" [19].  We utilize 
simplified use cases, which we call scenarios, to present an alterna-
tive way to look at the effectiveness of IR approaches based on the 
user viewpoint. The next subsections will first explain the session 
generation formally, and then explain the specific query modifica-
tion (QM) and scanning strategies utilized in the scenarios. 

2.1 Session generation 
For session simulation, we first formally generate all possible ses-
sions under constraints. We will represent sessions as sequences of 
actions with costs. For example the tuple <(a1,c1), (a2,c2), …, 
(an,cn)> is a session of n actions and each pair (ai,ci) in the session 

representation represents an action ai and its cost ci. The elementary 
action types are: 

• Initial query, represented as (‘iq’, ic), where ‘iq’ is the action 
label and ic (∈R) the cost in seconds. 

• Query reformulation (‘q’, qc), where ‘q’ is the action label and 
qc (∈R) the cost in seconds. 

• Document snippet scan (‘s’, sc), where ‘s’ is the action label 
and sc (∈R) the cost in seconds. 

• Next page request (‘n’, nc), where ‘n’ is the action label and nc 
(∈R) the cost in seconds. 

The constraints are: 

• MaxSLen, maximum session length in terms of elementary 
actions, here 50 actions. 

• MaxSCost, maximum session cost (seconds), here 60, 90 or 
120 seconds. 

• A session always begins with an initial query. 
• All queries (initial and reformulation) are followed by at least 

one snippet scan. 
• The longest scan sequence we consider is a scan of 10 snippets 

(i.e. one typical result page). 

In effect, the shortest possible session therefore is initial action IA = 
<(iq, ic),(s, sc)>, consisting of an initial query followed by the scan 
of one snippet (with costs). To generate longer sessions, we define 
the set NA for the possible subsequent actions: 

NA = {<(q, qc), (s, sc)>, <(s, sc)>, <(n,nc), (s,sc)>} 

Note here that the next actions are tuples of one or two elementary 
actions; a scan may appear individually, while a reformulation / 
next page requires a scan to follow. Sessions are generated by con-
catenating next actions to the initial action. Concatenation of two 
tuples S1 = <e1, e2 ,…, en> and  S2 = <f1, f2 ,…, fm> is denoted by < 
S1, S2 > = <e1, e2 ,…, en, f1, f2 ,…, fm>. This operation generalizes 
over a set of session tuples Si, denoted as: 

×i=1…n Si = <<… <<S1, S2>, S3>, …>, Sn>. 

The cost of a session S is, informally, the sum of its action costs. 
More formally, we derive this cost by the function s-cost as follows: 

s-cost(S)= Σ (a,c) ∈ S c 

[N.B. we extend the definition of the set membership operator from 
sets to tuple components in an obvious way.] For example, the cost 
of the session S1 = <(‘iq’, ic),(‘s’, sc), (‘q’, qc),(‘s’, sc)>  is s-
cost(S1) = ic+sc+qc+sc. 

The condition of maximum scan length of n in a session S is en-
forced by the Boolean predicate max-scan(S, n). It yields ’true’ for a 
given session S if S does not contain a subsequence of scan actions 
<(‘s’, sc)1, (‘s’, sc)2, …, (‘s’, sc)n>, otherwise ‘false’ (formal defini-
tion here omitted for brevity).  

To generate sessions, we first generate all sessions up to the max 
number of actions MaxSLen. This session set is MLS:  

MLS = ∪  i=1…MaxSLen{<IA, ×j=1…i acj > | acj ∈ NA} 

We then select the subset of sessions fulfilling the time constraint 
MaxSCost and the scan length constraint as follows. All sessions in 
MLS with maximal cost MaxSCost (or less) form the set MCS: 

MCS = {S ∈ MLS | s-cost(S) ≤ MaxSCost ∧ max-scan(S, 11)} 
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Note that this approach does not define the query contents or modi-
fications in sessions. However, it keeps them within constraints and 
guarantees that the last action is a document snippet scan. In our 
experiments, we excluded the next page action from NA due to the 
max scan length constraint of 10. The next two sub-sections explain 
and justify the query modification and scanning strategies used in 
the experiment.  

2.2 Query Modification Strategies 
We will simulate interactive search sessions as querying-scanning 
iterations having a goal, a procedure to reach the goal, and con-
straints regarding the procedure. We define the goal in terms of 
maximizing CG during the session under the constraint on the 
overall session time available. The procedure is defined in terms of 
QM and scanning strategies. 

The previous section did not define any particular QM strategies. 
We assume that a set of individual words {w1, w2, w3, w4, w5} is 
available for each particular topic, and QM strategies determine 
how elements from this set are combined to form queries (either the 
initial query, or one of the subsequent queries). In other words, 
given a set of individual search words for the topic, the QM strategy 
defines how to form a sequence of queries.  

Five QM strategies (S1 – S5) were used in the experiment. These 
prototypical strategies are based on term level changes which have 
grounding in the observed real life behavior and are justified by 
literature (see [1], [20], [33]): 
• S1: an initial one-word query (w1) is followed by repeatedly 

varying the search word : 
Q1: w1 -> Q2: w2 ->Q3:  w3 ->Q4:  w4 ->Q5:  w5 

• S2: an initial two-word query (w1 w2) is followed by queries 
formed by repeatedly varying the second word : 
 Q1: w1 w2 -> Q2: w1 w3 -> Q3:  w1 w4 -> Q4: w1 w5  

• S3: an initial three-word query (w1 w2 w3) is followed by que-
ries formed by repeatedly varying the third word : 
 Q1: w1 w2 w3 -> Q2: w1 w2 w4 -> Q3:  w1 w2 w5  

• S4: an initial one-word query (w1) is followed by adding one 
word to each subsequent query : 
 Q1: w1 -> Q2: w1 w2 -> Q3:w1 w2 w3 -> Q4:w1 w2 w3 w4 -> … 

• S5: an initial two-word query (w1 w2) is followed by adding 
one word to each subsequent query : 
 Q1: w1 w2 -> Q2:  w1 w2 w3 -> Q3: w1 w2 w3 w4 -> … 

This means that the sessions consist of at most 3 to 5 queries; this 
reflects real life behavior [22]. Generally speaking, constructing a 
query entails a cost due to the cognitive user load plus the edit costs. 
We will return to the cost factors in Section 2.4. 

2.3 Scanning Strategies 
The user may simply scan one or more documents after each query 
before formulating the next query candidate or ending the session. 
After a single query Qi a sequence of one or more document snip-
pets may be scanned: 
Q1->s11->s12->s13->… 
The cost of this session manifests as: 
qc1 + sc11 + sc12 + sc13 + … 
 
 
 

When a set of queries is available for one topic, the user can scan 
varying numbers of document snippets after any particular query, 
leading to a vast number of possible querying-scanning sessions, 
e.g., 

Q1->s11->Q2->s21->Q3->s31-> … or 
Q1->s11->s12->Q2->s21->… or 

Q1->s11->s12->s13->Q2->s21-> s22->Q3->s31->… etc. 

In real life a session typically continues until the user has found 
what he was looking for, at least partially, and/or when he runs out 
of time or queries. The scanning lengths may fluctuate for many 
reasons. In this paper we study the properties of optimal and less 
optimal interactive behaviors in sessions below the given overall 
time constraint. Therefore we produced all possible sessions as 
follows. For all five QM strategies we formed all possible combina-
tions of scanning lengths exhaustively (from 1 to 10 documents) 
using a sequence of all possible queries available per topic (cf. 
equation MCS in Section 2.1). We focus on the top documents 
because only few top documents may be inspected by the user in 
real life [14], [23], and only these may matter for the user [1]. As we 
had 5 words for each topic, sessions had at most 5 queries, con-
trolled by the QM strategy and time constraint. As the query words 
were ordered by quality (see 3.1), the query words were used in that 
particular order, not permuted. 

2.4 Cost Factors 
There is a cost involved with the subtasks of formulating the query 
and scanning. We assume that the absolute cost is partially deter-
mined by the scenario. Empirical studies show that it takes signifi-
cantly more time to enter queries by using a small smart phone 
keypad than by using an ordinary keyboard [17]. To study the sig-
nificance of subtask costs under overall session cost constraint we 
define two scenarios, i.e., a Desktop PC scenario (PC) and a Smart 
phone scenario (SP). These scenarios have different subtask costs. 
This is justified because the properties of the devices partially de-
termine the subtask costs [17].  

Obviously, also forming queries under different QM strategies S1 – 
S5 have very different relative costs. All queries in strategies S1, S2 
and S3 have a fixed query length in sessions (one, two or three 
words, correspondingly) while in strategies S4 and S5 the queries 
grow longer.  In real life the typing speed is affected by, e.g., the 
experience and knowledge of the person, the size of the keyboard, 
the layout of the keyboard (e.g., nine-key multi-tap vs. qwerty 
keyboard) [17], [18], and whether predictive text feed is available 
and used. We used literature to derive the cost values in scenarios 
PC and SP regarding the initial query cost and the subsequent query 
cost (Table 1).The query costs in S1 – S5 in the Desktop PC case 
are based on the typing costs of 3.0 seconds per word. The corre-
sponding Smart Phone costs are based on [17]. The authors per-
formed a large-scale log analysis of cell phone usage and observed 
that an average smart phone query length was 2.56 words and the 
average query-entry time was 39.8 seconds (average typing cost of 
15.5 seconds per word). We assume in our simulations that the cost 
of adding one word to a query (that is, S4 and S5) or replacing one 
word at the end of the previous query (that is, S1, S2, S3) is a con-
stant, i.e., either 3.0 or 15.5 seconds depending on the scenario. 
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Table 1. Average subtask costs (in seconds) of five QM strate-
gies (S1-S5) for two scenarios: (i) initial query cost, (ii) subse-
quent query cost, and (iii) the cost of scanning one document 
snippet 

Scenario 1: Desktop PC 

QM strategy S1 S2 S3 S4 S5 

Initial query 3.0 6.0 9.0 3.0 6.0 
Subsequent query 3.0 3.0 3.0 3.0 3.0 

Snip. scanning cost 3.0 3.0 3.0 3.0 3.0 

Scenario 2: Smart Phone 

QM Strategy S1 S2 S3 S4 S5 

Initial query 15.5 31.0 46.5 15.5 31.0 

Subsequent query 15.5 15.5 15.5 15.5 15.5 

Snip.  scanning cost 3.0 3.0 3.0 3.0 3.0 

 

To check whether these costs are reasonable we also performed a 
small-scale experiment where four test persons typed the initial and 
subsequent queries according to strategies S1-S5 using two types of 
interfaces (Desktop PC and Smart Phone) for three test topics. The 
experiment corroborated that the query time estimates were reason-
able. 

The document snippet scanning costs in real life are affected by the 
motor and perceptual costs plus the cognitive load related to the 
task. In this study we assume that the document snippet scanning 
cost is constant in both scenarios and across the searching strategies 
S1 – S5 (see Table 1). In the SP case we defined a scanning cost of 
three seconds per snippet. We justify this by an observation by 
Kamvar and Baluja [17] that the average cell phone user used 30 
seconds to scan the search results before selecting one, after receiv-
ing 10 search results. For the snippet scanning costs in the Desktop 
PC case we decided to use the same value. Obviously, our method-
ology is well-suited to experiment with different costs. The overall 
cost constraint of a session was defined as 60, 90, or 120 seconds. In 
the simulations all subtasks (querying and scanning) had to be 
performed within this time constraint. We excluded the eventual 
thinking time in producing query words. 

2.5 Research questions 
We set forth the following research questions: 

1. How effective are the five QM strategies (S1 to S5) in terms of 
CG when we compare the Desktop PC and the Smart Phone 
scenarios under overall time constraint? 

2. What are the characteristics of the best and the worst sessions 
achieved in terms of average scan length, and average number 
of queries? 

3. How stable are the observed trends when the overall time con-
straint changes?  Can we recommend QM strategies based on 
the scenario - what to do, and what not to do, assuming a spe-
cific time constraint? 

4. What is proper evaluation methodology when time is part of the 
evaluation setting? 
 

3. RESEARCH SETTING 
3.1 Test Collection and Search Engine 
We used a subset of the TREC 7-8 document collection with 41 
topics for the experiment.  The documents have graded relevance 
assessments on a four-point scale with respect to the topics. [27]  
The present authors obtained query words for session generation for 
the test topics from [20] where the authors used real test persons to 
suggest keywords of various lengths for queries on the 41 topics. 
The test persons were asked to directly propose good search words 
from topic descriptions (descriptions and narratives) in a structured 
way. Among others, they produced query versions of various 
lengths: (i) one word, (ii) two words, and (iii) three or more words. 
These were collected per topic as ordered word lists of 5 words for 
each topic. During the query formulation experiment the test per-
sons did not interact with a real retrieval system. While this may 
have affected negatively the quality of queries, Keskustalo and 
colleagues [20] suggest that the test persons were able to construct 
the query words in a descending order of effectiveness.  

Retrieval system Lemur with language modeling and two-stage 
smoothing options was used in the experiment. 

3.2 Session Data  
For each topic we utilized a minimum of 1 query and a maximum of 
5 queries in each session. A minimum of 1 document snippet and a 
maximum of 10 document snippets were scanned per query.  
In Table 2, the number of possible scanning paths is given for con-
secutive queries. If the session comprises at most 2 queries, first 
there are 10 possible paths after the first query, and for every path 
there are 10 possible paths after the second query. So the combina-
tions of these at most two queries sum up to 10+10*10 =110 possi-
ble paths. In our experiment design, users can pose up to 5 queries 
depending on session strategy; this presents altogether 111,110 
possible paths, which are taken into consideration.  

 Table 2. Number of possible sessions per number of queries, 
when at most 10 documents can be scanned after each query 

Queries 1 2 3 4 5 ∑ 
Possible 
sessions 

10 100 1000 10,000 100,000 111,110 

 
We ran all 41 topics * 5 QM strategies * Q queries, Q ∈ {3, 4, 5} 
depending on the strategy, and collected their results. Then we 
generated all 111K possible sessions from the query results, pruned 
the ones exceeding the time constraint in each scenario, and by 
using the recall base (qrels), evaluated the CG of the scanned snip-
pets for each session. For example, for the session Q1->s11-> s12-
>s13->Q2->s21->s22->Q3->s31, the CG is calculated on the basis of 
the snippet sequence s11, s12, s13, s21, s22, s31. Altogether about 45 
million sessions (41 topics * 5 QM strategies* 111,110 possible 
scanning sessions * 2 scenarios) were evaluated. As the collection 
has graded relevance assessments, CG was incremented by 3 points 
for the highly relevant documents, 2 points for the fairly relevant 
documents and 1 point for the marginal ones. Whenever a duplicate 
was retrieved by a subsequent query in a session, its gain was nulli-
fied. Finally, we ranked all sessions within a topic and a strategy by 
their CG scores. In this data set per topic, strategy and time con-
straint, each session is represented by its tuple of actions (see 2.1) 
and its gain.  
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3.3 Data Analysis 
The action tuples allow the analysis of the number of queries and 
the length of each scan in a session. The ranked order of sessions 
allows identification of the best and the worst session across  topics, 
strategy, scenario, and time constraint. We analyze the sets of 10 
best sessions, and 10 worst sessions per topic as averages instead 
the single best or worst session. This approach smoothes minor 
random variations in human behavior and thus the set of top (bot-
tom) 10 sessions provide more reliable measurements compared to 
the single best/worst session when we explore their properties under 
varying conditions. Since the present study does not aim to prove 
one retrieval method better than another, we report the findings 
without tests on significance of statistical differences.    

4. EXPERIMENTS 
4.1 Results for the 60 Seconds Time Frame 
First we discuss the CG results under the two scenarios, PC and SP. 
We present the best case and worst case results regarding all query-
ing-scanning sessions based on the five QM strategies: S1 (se-
quence of individual words); S2 (two-words; last word varied); S3 
(three-words; last word varied); S4 (incremental extension starting 
from one word); and S5 (incremental extension starting from two 
words). Table 3 gives the averaged CG values, the number of que-
ries and scans per query for 10 best and 10 worst cases for every 
QM strategy for the 60 second time constraint, which are utilized in 
the following figures in this section.  
 

Table 3. Averaged CG, number of Queries (#q) and Scans per 
Query (s/q) for scenarios PC and SP, for 5 strategies for the 10 
best (b) and 10 worst (w) sessions, time constraint 60 seconds 

 Query Modification Strategies Time 
(60 s) 

Environment 
best/worst S1 S2 S3 S4 S5 

b  4.9 8.3 8.5 7.9 8.1 
PC 

w  1.2 5.4 7.1 4.7 6.0 

b  2.8 3.6 2.3 4.4 3.7 
avg. 
CG 

SP 
w  1.2 2.8 2.3 2.0 2.9 

b  2.7 2.6 2.5 4.2 3.0 
PC 

w  5.0 4.0 3.0 5.0 4.0 

b  1.9 1.5 1.0 2.0 1.5 
avg.
#q 

SP 
w  2.7 1.7 1.0 2.6 1.7 

b  6.4 6.3 6.2 3.8 5.3 
PC 

w  3.0 3.8 5.0 3.0 3.8 

b  4.7 3.6 2.5 4.0 3.6 
avg.
s/q 

SP 
w  1.6 2.5 2.5 1.7 2.5 

 
Table 4 and Table 5 are equivalent to Table 3 but for the time con-
straints 90 and 120 seconds, respectively. Figure 1 shows the CG of 
the best (worst) sessions for each strategy in both scenarios under 
the overall cost constraint of 60 seconds. Note that all sessions 
require 60 seconds or less if no further action fits in (the absolutely 
worst imaginable session without any time requirement, in terms of 
the CG, would naturally consist of the initial action (IA) only). In 
other words, regarding the worst results, we report CG for the worst 
possible 60 second performance. 

When the best sessions of the PC and SP cases are compared in 
Figure 1, the PC case performs at a considerably higher level (aver-
age CG is above 8 in three strategies) than the SP case (average CG 
is below 5 in all strategies). 

 
Fig 1. Cumulated Gain under cost constraint of 60 seconds. 
 

Second, when the best and the worst cases are compared within the 
scenarios, not surprisingly, the best case results are typically clearly 
better than the worst case results except in SP case for S3. In the 
latter case both the best and the worst session may not contain more 
than one query because of high query entry cost.   
Third, among the best cases for PC the strategies S2 and S3 are 
almost equally good. For the SP case, the strategy S2 (varying the 
second word), S4 (extending from one word), and S5 (extending 
from two words) lead to much higher gain than S1 and S3. An 
interesting trade-off in the SP scenario can be observed when the 
scanning length is considered. In the best case the gain reached 
increases from S1 to S2. However, the average scanning length 
decreases (Fig. 2). In other words, a better result is achieved using 
the longer queries although a smaller number of documents are 
scanned on the average; the ranking is simply better. 
 

 
Fig 2. Average number of scanned document snippets per query 
under cost constraint of 60 seconds. 
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Table 4. Averaged CG, number of Queries (#q) and Scans per 
Query (s/q) for scenarios PC and SP, for 5 strategies for the 10 
best (b) and 10 worst (w) sessions, time constraint 90 seconds 

 Query Modification Strategies Time 
(90 s) 

Environment 
best/worst S1 S2 S3 S4 S5 

b  5.8 10.5 10.4 10.4 10.5 
PC 

w  1.9 7.6 10.3 7.6 8.7 

b  5.0 7.3 6.0 7.1 7.0 
avg. 
CG 

SP 
w  0.9 2.5 3.0 2.5 2.6 

b  3.8 3.5 3.0 5.0 4.0 
PC 

w  5.0 4.0 3.0 5.0 4.0 

b  2.0 2.0 1.9 2.5 2.0 
avg. 
#q 

SP 
w  4.1 3.4 2.6 4.1 3.4 

b  6.9 7.3 8.3 5.0 6.3 
PC 

w  5.0 6.3 8.3 5.0 6.3 

b  8.8 6.8 4.7 6.3 6.8 
avg. 
s/q 

SP 
w  1.6 1.4 1.7 1.4 1.4 

 
4.2 Results for the 90 Seconds Time Frame 
Figure 3 shows the CG results when the sessions take 90 seconds. In 
this case, the observations comply with the 60 second case. Differ-
ence between S3’s best and worst CG values is closing in the PC 
scenario; this is because of lacking further scanning options, there is 
now enough time to scan almost all 10 documents for each query. 
S3 strategy has a maximum of 3 queries to execute before the 5 
keywords run out. This in turn confines the possible scanning space. 
It is also conspicuous that the difference between best and worst CG 
values in SP case is much larger than in PC case. 

 
Fig 3. Cumulated Gain under cost constraint of 90 seconds. 
When scanning in the best sessions of the PC and SP cases is com-
pared (Fig. 4), we notice that even though the scans per query val-
ues for SP case are higher than or similar to the PC case, the CG 
values are always poorer (Fig. 3). This is due to the smaller number 
of posed queries in SP case than in PC case.  This follows from the 
trade-off between query vs. scan costs. 

 
Fig 4. Average number of scanned document snippets per query 
under cost constraint of 90 seconds. 

Interestingly, the difference between the best and the worst sessions 
both in terms of gain and average scan length remains great in SP 
case, but fades away in PC case. In the latter, 90 seconds allows the 
searcher to launch almost all queries and scan the best results in all 
cases. When the results are compared between different strategies, 
the strategy S4 with on average 5 scans in PC case and approxi-
mately 6 scans in SP case (Fig. 4) produce similar CG values as the 
other QM strategies (Fig. 3). Again, larger queries yield better 
rankings. On the other hand, S3 in SP case has less than 5 scans per 
query, and still achieves slightly better CG results than S1 strategy. 

Table 5. Averaged CG, number of Queries (#q) and Scans per 
Query (s/q) for scenarios PC and SP, for 5 strategies for the 10 
best (b) and 10 worst (w) sessions, time constraint 120 seconds 

Query Modification Strategies Time 
(120 s) 

Environment 
best/worst S1 S2 S3 S4 S5 

b  6.4 11.1 11.4 11.7 11.5 
PC 

w  3.4 10.5 11.4 10.0 10.9 
b  5.6 9.1 9.2 9.1 8.9 

avg. 
CG 

SP 
w  1.1 5.1 6.7 4.5 5.7 
b  4.8 4.0 3.0 5.0 4.0 

PC 
w  5.0 4.0 3.0 5.0 4.0 
b  3.0 2.9 2.0 3.0 2.9 

avg. 
#q 

SP 
w  5.0 4.0 3.0 5.0 4.0 
b  7.3 8.8 10.0 7.0 8.8 

PC 
w  7.0 8.8 10.0 7.0 8.8 
b  7.6 6.6 8.8 7.6 6.5 

avg. 
s/q 

SP 
w  2.8 3.5 4.7 2.8 3.5 

 

 

4.3 Results for the 120 Seconds Time Frame 
Figure 5 shows the CG values under the cost constraint of 120 
seconds. In the PC case, the gaps between the best and worst CG 
values are diminishing. This can be explained so that every strategy 
except S1and S4 has enough time to pose all the queries and employ 
much scanning. According to the experiment design, worst cases 
must also use up the allocated time, and this results in that there is 
enough time to launch all queries and scan the results.  When the 
best sessions of the PC and SP cases are compared, we notice that 
there are no large differences. Again, in Figure 6 we can see as 
many scans per query (S/Q) for S1 and S4 in the SP case as in the 
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PC case for best sessions. Besides all the strategies for PC case 
show the same S/Q for 10 best and 10 worst sessions. Although in 
SP case S/Q values diverge from each other, Figure 6 exhibits 
similar patterns as Figure 4. From Figure 5 one can conclude that, if 
there is enough time for searching, one should use at least two word 
queries for good results. If the queries are of lower quality like S1, 
then scanning matters. In short, the more you scan, the more you 
get. 

 
Fig 5. Cumulated Gain under cost constraint of 120 seconds. 
 

 
Fig 6. Average number of scanned document snippets per query 
under cost constraint of 120 seconds. 

5. DISCUSSION  
We had three empirical and one methodological research question. 
The three empirical ones were about effectiveness of different QM 
strategies under time constraints, characteristics of the best and the 
worst QM sessions, and  the stability of the observed trends.  The 
methodological one was about proper evaluation of sessions under 
time constraints. We will consider each of the questions below. 

Strategy effectiveness. Given a stringent time frame in the PC 
scenario, the user cannot use the entire vocabulary (all queries) and 
perform exhaustive scanning for all queries. Short queries (strategy 
S1) are clearly inferior regarding session effectiveness. It seems 
reasonable to invest on two to three word queries (S2, S3) because 
the evidence thereby added for ranking significantly improves the 
quality of the results. This can also be seen in strategies S4 and S5, 
when they have enough time to advance beyond the first query. 
When more time is allocated to searching, the weaker strategies 
catch up because there is more time for scanning the results and the 
weaker ranking effectiveness is not that critical.  

In the SP scenario the rules of the game change a bit. In a stringent 
time frame there is no time for tedious query input, and one must 
compromise toward short scanning of weaker quality rankings. The 
more effective strategies cannot be applied at all due to high query 
input cost. Again, when more time is allocated, weaker strategies 
catch up. In the longest sessions of S2-S5, the gap between the best 
vs. worst sessions begins to close. 

Session characteristics.  In the PC scenario, under stringent time 
constraints, the best sessions involved less queries and longer scans 
than the worst sessions (Table 3).  However, as the time allocation 
grows, the differences disappear. Between the best strategies in the 
PC case, both the number of queries and the average scan lengths 
increase as time allocation grows (Tables 3-5). Correspondingly, in 
the worst sessions, the number of queries does not change as time 
grows, but the scan lengths grow. This is because the worst sessions 
consume all possible queries even under the shortest time frame. 
Similarity with best sessions grows. 
In the SP scenario, under stringent time constraints, the best ses-
sions also involved less queries and longer scans than the worst 
sessions (Table 3).  As the time allocation grows, the differences 
remain, probably due to shortage of time even in the longer ses-
sions. Between the best strategies in the SP case, both the number of 
queries and the average scan lengths increase as time allocation 
grows, the latter dramatically between 60 and 90 seconds (Tables 3-
4). Correspondingly, in the worst sessions, the number of queries 
grows along time, but the scan lengths remain low. The worst be-
havior here means investing the effort in query input. Also here 
there were interesting differences in scan lengths between queries in 
sessions.  

All in all, if time allows, two to three first query words that one 
identifies, followed by a longer scan, seem to provide reasonable 
performance, no matter what the strategy among S2-S5 is. 

Effect of time. With limited time allowance, it seems important to 
make a good compromise between providing evidence for ranking 
(longer queries) and scanning the search results. The compromise 
depends on the overall cost levels related to the stringency of the 
time frame and on the relations between cost types. This depends on 
the searching device. Expensive input favors scanning at length, 
cheap input favors better queries. The more time is available the less 
it matters how one searches – there will be time to identify the 
relevant documents. 
Evaluation methodology. Typical IR evaluation metrics are based 
on the quality of ranking alone. In session-based evaluation they 
must be applied with great care because they may be insufficient or 
even misleading. They may be partially insensitive to the user’s 
experience and observed costs and benefits. This is particularly 
critical, when user’s costs (time expenditure) are taken into account 
and the metric employs normalization, i.e. scaling the measurements 
to a predefined range such as [0, 1]. For example, the popular 
NDCG metric [15] and its non-discounted counterpart NCG should 
be avoided in any comparisons between searching environments, 
and between strategies within a given searching environment when 
input costs are taken into account. This is because the ideal gain 
vector used for normalization is read to vastly different lengths 
between strategies or environments. For example, consider Figure 7, 
which plots NCG over time for strategy S2 in the two scenarios. 
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Fig 7. NCG vs. time comparison of PC and SP for S2 (41 Top-
ics). 
Due to normalization (division by the ideal cumulated gain vector) 
the SP scenario seems to have better performance in the time frame 
from 40 to 135 seconds. This is due to (a) ranking being somewhat 
effective, and (b) the number of documents seen in each session: in 
the PC case the user sees 15 to 35 documents, but in the SP case 
only 5 to 20 documents in the indicated time frame. Figure 8 plots 
CG with the corresponding data and makes the difference clear. 

  
Fig 8. CG over time for S2 in scenarios PC and SP (41 Topics). 
 
Similar pitfalls also plague the most classic metric, MAP. Consider 
the following two rankings observed for a given topic in two scenar-
ios and/or strategies under the same time constraint (say, one min-
ute; queries omitted and binary relevance for simplicity): 
 r1: 0 0 0 0 0 0 0 0 1 1  
 r2: 1 0 0 0 0 
Further, assume that there are three relevant documents for the 
topic. The MAP for the ranking r1 is (1/9 + 2/10 + 0)/3 = 0.103 and 
for r2 (1 + 0 + 0)/3 = 0.333. Arguably, r2 is the better ranking, but if 
both require one minute, what is the user’s opinion? The first ses-
sion collected twice as many relevant documents.  

Even within the un-normalized metric, such as CG, incorporating 
time in session-based evaluation has profound effects. Consider 
Figures 9 and 10. The former gives traditional cumulated gain over 
ranks for strategies S1 and S3 for the 41 topics. The latter gives CG 
over time in the two scenarios.  

 
Fig 9. Traditional View, CGs over ranks for 41 topics, scenarios 
PC and SP for strategies S1 (allowing 5 queries) and S3 (allow-
ing only 3 queries). 
In Figure 9, both scenarios PC and SP have the same observed 
effectiveness, because the evaluation focuses on the gain (CG) over 
the result ranks, no matter how long it takes to retrieve the docu-
ments. The two strategies S1 and S3 differ in effectiveness, S3 
providing far better effectiveness than S1. However, when time is 
taken into account (Fig. 10), the scenarios and strategies differ 
greatly from each other. Up to 60 seconds, S3 in the SP case is the 
worst strategy and this is entirely due to the high input cost of the 
long query. With enough time (180 sec.), S3 in SP catches up S3 in 
PC case. Also, PC and SP do not much differ for S1 due to the 
relatively low input cost and weak result quality. Comparing Fig-
ures 9 and 10, it is easy to see that time drives interaction and pro-
foundly affects both user experience and effectiveness in sessions in 
different scenarios. 
 

 
Fig 10. Time based View, CGs over time for 41 topics, scenarios 
PC and SP for strategies S1 and S3. 
Limitations. In our study we did not take into account the time, 
which users spend for pondering about possible query words. One 
might argue that the more words one needs to identify, the harder 
(and slower) per word it comes. However, the thinking time is the 
same between sessions using the same number of words. In addi-
tion, this could be taken into account by revising subsequent query 
costs (Table 1). We have chosen to short-cut here in order to avoid 
too much complexity at this stage. Furthermore, we do not consider 
the time users spend in examining documents. This may depend on 
the device used. This can be seen as an artificial limitation. Tackling 
it would, however, complicate analysis, and this is therefore left for 
later study. We did not simulate user’s learning during a session. 
Admittedly, learning from snippets and seen documents take place. 

112



This is not impossible to simulate but some challenges remain to be 
solved. 

We employed in the evaluation relatively limited query vocabular-
ies, simple bag-of-word queries, and relatively short time frames. 
The query vocabularies and structure are justified by query length 
statistics in many search environments [14], [29], and the time 
frames by our simulation capabilities. However, the time frames are 
for effective search time in sessions, excluding thinking and docu-
ment examination time. While the query vocabularies are short, they 
are human-generated for this collection, and therefore more realistic 
than words mined, e.g., from known relevant documents (in qrels). 

We did not cover all the imaginable complex sessions. However we 
employed idealized and literature-based sessions, which shed the 
light on the peculiar evaluation problems beyond the traditional 
rank-based evaluation. This is a step forward while we are not 
suggesting that anyone follows a single strategy consistently in real 
life. 

Our initial results are promising. First, the scenario, and to a large 
extent the device itself, dictate what kind of interactive behavior can 
be successful. Because real users do have limited resources and they 
use various devices having different properties, our methodology 
has unquestionable user relevance and potential pragmatic value for 
the industry. Measuring the effectiveness of systems from the 
pragmatic point of view may increase the validity of the results 
achieved. This may lead to greater user satisfaction. Secondly, our 
experimental results suggest that strict time constraints determine 
some session strategies as the best strategies as they maximize CG. 
The strengths of our approach are: 
• The QM strategies S1-S5 have an empirical real life grounding 

• The query vocabularies were generated by real test persons, 
and only thereafter used in automatic simulation 

• We were able to evaluate over 20M sessions in each scenario; 
this is clearly intractable both physically, intellectually and 
economically with human test persons. 

We have only taken the first steps. In future, we will study the 
dimensions of variation related to users, systems, information 
sources and sessions to construct more fine-grained scenarios expli-
cating hypotheses about user goals, learning, and behaviors to 
validate evaluation measures used. [19] 

6. CONCLUSIONS 
In this study, we have shown the necessity of a pragmatic evalua-
tion approach based on scenarios with explicit subtask costs under 
an overall time constraint. Effectiveness of various query modifica-
tion and scanning strategies for two scenarios, namely, PC and SP is 
analyzed. Furthermore, the characteristics of the best and the worst 
interactive search sessions are examined. Expensive input favors 
scanning at length, cheap input favors better queries. The more time 
is available the less it matters how one searches – there will be time 
to identify the relevant documents. We have shown that the effort 
required by searching devices and the overall search time allocation 
drive interaction and profoundly affect both user experience and 
effectiveness in sessions in different scenarios. Moreover, we have 
also pointed out the inapt use of all normalized rank-based meas-
ures. Thus, we hope we could instigate new evaluation metrics for 
time-based comparisons. 

7. ACKNOWLEDGMENT 
This research was funded by Academy of Finland grant number 
133021. 

8. REFERENCES 
[1] Azzopardi, L. 2007. Position Paper: Towards Evaluating 

 the User Experience of Interactive Information Access Sys-
tems.  In SIGIR'07 Web Information-Seeking and Interaction 
Workshop, 5 p. 

[2] Azzopardi, L. 2011. The economics of interactive information 
retrieval. In Proceedings of the 34th Annual International ACM 
SIGIR Conference on Research and Development in Informa-
tion Retrieval, 15-24. 

[3] Bates, M. J. 1979. Information search tactics. Journal of the 
American Society for Information Science, 30(4), 205-214. 

[4] Bates, M. J. 1989. The Design of Browsing and Berrypicking 
Techniques for the Online Search Interface. 
Online Review, 13(5), 407-424. 

[5] Beaulieu, M. 2000. Interaction in Information Searching and 
Retrieval. Journal of Documentation, 56(4), 431-439. 

[6] Belkin, N. L. 1980. Anomalous States of Knowledge as a 
Basis for Information Retrieval. Canadian Journal of Informa-
tion and Library Science, 5, 133-143. 

[7] Card, S. K., Moran, T. P., and Newell, A. 1983. The Psychol-
ogy of Human-Computer Interaction. L. Erlbaum Assoc. Inc., 
Hillsdale, NJ, USA. 

[8] Cleverdon, C.W., Mills, L., and Keen, M. 1966. Factors de-
termining the performance of indexing systems, vol. 1-design. 
In Aslib Cranfield Research Project, Cranfield. 

[9] Dunlop, M. D. 1997. "Time Relevance and Interaction Model-
ing for Information Retrieval". In Proceedings of the 20th An-
nual International ACM SIGIR  Conference on Research and 
Development in Information Retrieval, Philadelphia,206-213. 

[10] Fidel, R. 1985. Moves in online searching. Online Review, 9 
(1), 62-74. 

[11] Hearst, M. A. 2011. “Natural” Search User Interfaces. Com-
munications of the ACM, vol. 54, 60-67. 

[12] Hersh, W., Turpin, A., Price, S., Chan, B., Kraemer, D., Sa-
cherek, L., and Olson, D. 2000. Do Batch and user Evaluations 
Give the Same Results? In Proceedings of the 23rd Annual In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, 17-24. 

[13] Ingwersen, P. and Järvelin, K. 2005. The Turn: Integration of 
Information Seeking and Retrieval in Context. Heidelberg, 
Springer. 

[14] Jansen, M. B. M., Spink, A., and Saracevic, T. 2000. Real 
Life, Real Users, and Real Needs: A Study and Analysis of 
User Queries on the Web. Information Processing & Man-
agement, 36(2), 207-227. 

[15] Järvelin, K. and Kekäläinen, J. 2002. Cumulated Gain-Based 
Evaluation of IR Techniques. ACM Transactions on Informa-
tion Systems, 20(4), 422-446. 

[16] Järvelin, K. and Kekäläinen, J. 2000. IR evaluation methods 
for retrieving highly relevant documents. In Proceedings of the 
23rd Annual International ACM SIGIR  Conference on Re-
search and Development in Information Retrieval, Athens, 
Greece, 41-48. 

[17] Kamvar, M. and Baluja, S. 2007. Deciphering Trends in Mo-
bile Search. Computer, 40(8), 58-62. 

[18] Karat, C-M., Halverson, C., Horn, D., and Karat, J. 1999. 
Patterns of entry and correction in large vocabulary continuous 

113



speech recognition systems. In ACM Conference on Human 
Factors in Computing Systems, 568-575. 

[19] Karlgren, J., Järvelin, A., Eriksson, G, and Hansen, P. 2011. 
Use cases as a component of information access evaluation. In 
DESIRE’11 workshop, October 28, 2011, Glasgow, Scotland, 
UK. 

[20] Keskustalo, H., Järvelin, K., Pirkola, A., Sharma, T. and Lyk-
ke, M. 2009. Test Collection-Based IR Evaluation Needs Ex-
tension Toward Sessions – A Case of Extremely Short Que-
ries. In Proceedings of the 5th Asia Information Retrieval Sym-
posium (AIRS’09), 63-74. 

[21] Kuhlthau, C. C. 1991. Inside the Search Process. Journal of the 
American Society for Information Science, 42(5), 361-371. 

[22] Price, S.L., Nielsen, M.L., Delcambre, L.M.L., and Vedsted, P. 
2007. Semantic Components Enhance Retrieval of Domain-
specific Documents. In Proceedings of the 16th ACM CIKM, 
429-438. 

[23] Ruthven, I. 2008. Interactive Information Retrieval. In Annual 
Review of Information Science and Technology, vol. 42, 2008. 
43-91. 

[24] Salton, G. 1970. Evaluation Problems in Interactive Informa-
tion Retrieval. Information Storage and Retrieval, 6, 29-44. 

[25] Smith, C. L. and Kantor, P. B. 2008. User Adaptation: Good 
Results from Poor Systems. In Proceedings of the 31st Annual 
International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, 147-154. 

[26] Smucker, M. D. 2009. Towards Timed Predictions of Human 
Performance for Interactive Information Retrieval Evaluation.  
In Third Workshop on Human-Computer Interaction and In-

formation Retrieval (HCIR'09), October 23, 2009, Washington 
DC, USA. 

[27] Sormunen, E. 2002. Liberal Relevance Criteria of TREC – 
Counting on Negligible Documents? In Proceedings of the 25th 
Annual International ACM SIGIR Conference 
on Research and Development in Information Retrieval, Tam-
pere, 324-330. 

[28] Spink, A. 1997. Study of Interactive Feedback during Medi-
ated Information Retrieval. Journal of the American Society 
for Information Science, 48(5), 382-394. 

[29] Stenmark, D. 2008. Identifying Clusters of User Behavior in 
Intranet Search Engine Log Files. Journal of the American So-
ciety for Information Science, 59(14), 2232-2243. 

[30] Su, L.T. 1992. Evaluations Measures for Interactive Informa-
tion Retrieval. Information Processing & Management 28(4), 
503-516. 

[31] Turpin, A. and Hersh, W. 2001. Why Batch and User Evalua-
tions Do Not Give the Same Results. In Proceedings of the 24th 
Annual International ACM SIGIR Conference on Research 
and Development in Information Retrieval, 225-231.  

[32] Turpin, A. and Scholer, F. 2006. User Performance versus 
Precision Measures for Simple Search Tasks. In Proceedings 
of the 29th Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval, 11-18. 

[33]  Vakkari, P. 2000. Cognition and changes of search terms and 
tactics during task performance. In Proceedings of RIAO 2000 
Conference, Paris: C.I.D., 894-907. 

 
 

 

114




