Combining Classifiers in Text Categorization

Leah S. Larkey and W. Bruce Croft
{larkey,croft}@cs.umass.edu
Center for Intelligent Information Retrieval
Department of Computer Science, University of Massachusetts
Ambherst, MA 01003-4610

Abstract

Three different types of classifiers were investigated in the
context of a text categorization problem in the medical do-
main: the automatic assignment of ICD9 codes to dictated
inpatient discharge summaries. K-nearest-neighbor, rele-
vance feedback, and Bayesian independence classifiers were
applied individually and in combination. A combination
of different classifiers produced better results than any sin-
gle type of classifier. For this specific medical categoriza-
tion problem, new query formulation and weighting meth-
ods used in the k-nearest-neighbor classifier improved per-
formance.

1 Introduction

Past research in information retrieval has shown that one
can improve retrieval effectiveness by using multiple repre-
sentations in indexing and query formulation [28, 20, 3, 12]
and by using multiple search strategies {6, 25, 8]. In this
work, we investigate whether we can attain similar improve-
ments in the domain of text categorization by combining
different representations and classification methods.

Our domain is the automatic assignment of ICD9 codes
to dictated inpatient discharge summaries. There is a great
deal of interest in automating the assignment of categories
such as ICD9-CM and other codes to patient medical rec-
ords. Many hours of human effort go into this task. Because
this coding determines reimbursement, it is important to
accomplish this task as easily and as accurately as possible.

The most common approaches to text categorization use
a large corpus of previously coded documents to infer codes
for new documents. Algorithms include k-nearest-neighbor
[7, 27, 19], Bayesian independence classifiers [14], relevance
feedback [22], and rule-induction algorithms from machine
learning, like decision trees {2, 17]. These categorization
algorithms have been applied to many different subject do-
mains, usually news stories, but also physics abstracts [10],

Permission to make digital/hard copy of all part of this work for per-
sonal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice
is given that copying is by permission of ACM, Inc. To copy otherwi-
se, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or fee.
SIGIR'96, Zurich, Switzerland©1996 ACM
8/96/08.$3.50

0-89791-792-

289

and medical text [30].

We are following several of these approaches to automatic
coding, all of them incorporating INQUERY, a probabilis-
tic information retrieval system based on an inference net
model [28]. Each possible code is a category, and we want
to determine whether documents belong in each category,
or more generally, the probability that a document belongs
in each category. We use three different classification tech-
niques, a k-nearest-neighbor [7] approach using the belief
scores from INQUERY as the distance metric, Bayesian in-
dependence classifiers {14], and relevance feedback [22].

Within each classification method, we experiment with
ways to optimize performance that are specific to the char-
acteristics of the ICD9 coding problem and the kinds of dis-
charge summaries that make up our collection. Each classifi-
cation method lends itself to different kinds of variations on
representations. In k-nearest-neighbor, test documents are
queries, so we experiment with various forms of structur-
ing the query using INQUERY’s query operators. Because
the discharge summaries contain large amounts of text that
are not relevant to the coding task, we have incorporated
a method for differentially weighting sections that provide
the most diagnostic evidence, described in [13]. For the
Bayesian and relevance feedback classifiers, the documents
are represented by a small set of features (terms, phrases),
and they are selected by slightly different criteria. We do
not try to make representations consistent across classifiers.
Instead we take advantage of the diversity of the represen-
tations when the classifiers are combined.

These classification techniques yield a ranked list of codes
(categories) for each document. A purely automatic coder
would need cutoff criteria for which codes should actually
get assigned. Lewis [15] has argued that in evaluating a
classification system, one should use effectiveness measures
based on estimates of class membership rather than mea-
sures based on rankings, like recall-precision. We do not
take this last step of going from a score to a yes/no deci-
sion, partly because the correct number of codes for a doc-
ument can range from 0 to 15, and partly because of the
way these classifiers are likely to be used. We envision these
classifiers being used in an interactive system which would
display the 20 or so top ranking codes and their scores to
an expert user. The user could choose among these candi-
dates, possibly with the aid of other software which could
display information from the ICD-9-CM manuals. We use
several different measures in addition to average-precision,
which we believe to measure how well our classifiers would
perform in such a semi-automatic coder.

1.1 K-nearest-neighbor Classifier

The k-nearest-neighbor classifier attempts to retrieve those
already-coded documents which are most similar to the to-
be-coded document, and assign codes based on the codes
of the retrieved documents. The already-coded documents
make up an INQUERY database, and the to-be-coded coded
documents (also referred to as test documents) are queries
submitted to the database. A similar approach has been
used for other classification tasks and is sometimes referred
to as memory-based reasoning [19, 27]. Our approach is sim-
ilar to that of Yang and Chute {30} except that we use IN-
QUERY rather than cosine similarity for the similarity met-
ric. We go beyond their work in representing the document
as a structured query, and in combining k-nearest-neighbor
with other classifiers. We also incorporate into the weight-
ing scheme some additional independent information that
is specific to this data set. We consider not only whether
a category (code) is assigned to a retrieved document, but
also whether that category is the principal diagnosis code
for the retrieved document.

1.2 Bayesian Independence Classifier

The Bayesian independence classifier was first proposed by
Maron [18] as a way to estimate a probability that a category
or key word should be assigned to a document, given the
presence of “clue words” in the document. Various improve-
ments to Maron’s approach have been explored by other re-
searchers [9, 16, 14]. We adopt a form of classifier very close
to one used by Lewis [14].

Highlights of this probabilistic model are the following;:
A small set of features (stopped and stemmed terms) is se-
lected separately for each code. Independent binary clas-
sifiers are trained for each ICD9 code. Bayes theorem is
used to estimate the probability of category membership for
each category and each document. Probability estimates are
based on the co-occurrence of categories and the selected fea-
tures in the training corpus, and on an assumption of linked
dependence of these co-occurrences [5].

Within this framework, we train a separate binary clas-
sifier for each ICD9 code, using a manually labeled training
corpus of discharge summaries.

1.3 Relevance Feedback

Relevance feedback has typically been used in information
retrieval to improve existing queries. Usually, an original
query is submitted to an information retrieval system. From
the documents retrieved, the user indicates a (usually small)
set of relevant documents. The original query and terms
from the indicated relevant documents are combined to pro-
duce a new query which is better at ranking relevant docu-
ments over nonrelevant documents. Term weights in the new
query depend upon the occurrence of the terms in relevant
and nonrelevant documents [22, 24].

Although the original query typically plays an important
role in relevance feedback, it does not have to. For this
categorization problem, we start with a null query for each
category, and a set of documents of known status, that is,
whether they are relevant (have the code) or nonrelevant (do
not have the code), and use relevance feedback to generate
a query.

Relevance feedback is like the Bayesian independence
classifier in its broad outline. A small set of features is
selected separately for each code, and a query is trained for

290

PRINCIPAL DIAGNOSIS: OSTEOARTHRITIS OF THE LEFT HIP
SECONDARY DIAGNOSIS: WOLFF-PARKINSON-WHITE SYNDROME
PROCEDURES: Left total hip replacement (uncemented), 2-2-93.
HISTORY OF PRESENT ILLNESS: The patient is a 54 year old white
male with a 8 month history of left hip pain. He has noted a severe
limitation of ambulation over this period of time and presently
is limited to non reciprocal stairs and short distances. He has
trouble getting out of a chair as well as a car. The examination
and radiographs ... confirmed bilateral hip osteoarthritis with left
greater than right. He is admitted for an elective left total hip
replacement. He has donated three units of autologous blood.
PAST MEDICAL HISTORY: Notable for osteoarthritis as noted above
and WPW syndrome. PAST SURGICAL HISTORY: Notable for ton-
sillectomy at age 3 and bilateral hammer toe corrections. MEDICA-
TIONS ON ADMISSION: At the time of admission, the patient was on
Ferrous Sulfate 325 mg po t.i.d. ALLERGIES: NKDA.
PHYSICAL EXAMINATION: HEENT examination was within normal
limits. The lungs were clear. The cardiac examination revealed no
murmurs. The abdomen was benign. The extremity examination
revealed a left antalgic gait with no lurch. There was negative bi-
lateral Trendelenburg sign. His range of motion of both hips are
as follows: flexion is 90 bilaterally and extension was -10 degrees
bilaterally. He had abduction to only 5 degrees bilaterally and
adduction of 30 degrees bilaterally. His external rotation was 5 de-
grees and internal rotation was 0 degrees bilaterally. His knees and
ankles had full range of motion. Distal sensory motor examination
was intact. Distal pulses were intact.
LABORATORY DATA. The patient’s admission hematocrit was 38.1.
Electrolytes were within normal limits. Coagulation factors were
normal. Sed rate was 11.
HOSPITAL COURSE: The patient underwent a left total hip replace-
ment on 2-2-93. Postoperatively, he was transferred to the floor in
stable condition. His hematocrit immediately postoperative was 38
and trended down to a hematocrit of 34. His postoperative course
was notable for quick progression in physical therapy and he was
discharged on 2-9-93. He was anticoagulated in routine fashion
postoperatively and at discharge his PT was 13.8 with iron of 1.6.
Vascular ultrasound and x-rays were taken prior to discharge and
the results were not available at the time of this dictation. He was
to continue on 6 weeks of coumadinization and follow up with Dr.
. at that time.
MEDICATIONS ON DISCHARGE: ... DISPOSITION: To home.

D715.95 Osteoarthrosis, unspecified whether generalized or local-
ized, involving pelvic region and thigh

D426.7 Anomalous atrioventricular excitation

Figure 1: Example discharge summary and its codes

each code. Both feature selection and the weights on the fea-
tures in the query are based on the co-occurrence of selected
features and codes in the training set.

2 Method

2.1 The Corpus

The corpus consists of 11,599 dictated inpatient discharge
summaries, divided into a training set of 10,902 documents,
a test set of 187 documents, and a tuning set of 510 docu-
ments. ! We are using the discharge summaries rather than
the entire patient medical record, because this is the part of
the medical record that has been computerized.

The discharge summaries range from around 100 to near-
ly 3000 words in length with a mean length of 633 words.
Each document has between one and 15 ICD-9 codes as-
signed to it, with a mean of 4.43 codes per document. 90%
of the documents have fewer than 9 codes. The first ICD9
code is the principal diagnosis (DX) code. The ordering of
the additional codes is not necessarily indicative of impor-
tance.

!The training set is large because of the number of different classes
(3261) to be trained.

Ranked list of retrieved documents

Principal
Doc | belief; | DX code | Other codes for retrieved Doc i
35680 | .4320 | 715.35 996.4
5997 | .4301 | 715.95
7059 | .4300 | 715.35 428.0 041.10 458.9 490
1040 | .4298 | 720.0 424.0 592.0 533.90
4556 | 4295 | 715.35 | 276.1 458.9 278.0
6476 | .4294 | 715.35 276.5 796.3

4

Ranked list of retrieved codes

Code # | Sco. | Description of code
715.35 | 10 | 7.71 | osteoarthrosis, localized not spec...
%x715.95 | 5 | 3.85 | osteoarthrosis, unspecified whether
. generalized or localized ...
428.0 4 | 1.71 | congestive heart failure
401.9 4 | 1.70 | unspecified essential hypertension

Figure 2: Ranked list of retrieved docs, and derived ranked
list of retrieved codes for test doc

A sample document can be seen in Figure 1. Note that
the codes and text following the codes are not indexed in
the database, and are not included in the test documents.

In style, the discharge summaries are fairly typical of
hospital discharge summaries. Most of the documents in
the corpus follow a standard medical document chronology,
usually consisting of an assessment, history of present ill-
ness, past medical history, physical examination, laboratory
examination, hospital course, and disposition. Some docu-
ments include operations and procedures. A small propor-
tion of the documents are aberrant in format, or were very
short addenda to other documents. No effort was made to
screen these out of the corpus, or to attach addenda to other
documents that they may belong with. The documents were
produced by a large number of practitioners and were con-
sequently heterogeneous in linguistic style and in the way
the sections were labeled.

Automatic coding of such documents is particularly dif-
ficult because there is so much free form text in each docu-
ment, much of it is not relevant or only indirectly relevant
to the coding task, and the portion of text relevant to each
code is not explicitly associated with its code in any way.

2.2 K-nearest-neighbor classifier

The training collection of 10,902 discharge summaries was
indexed and built into an INQUERY database, using the
normal stop list and Porter stemmer. The test documents
were turned into queries. In the baseline condition, these
queries were the full free-text of the discharge summaries,
which were stopped and stemmed as part of the query pro-
cess.

K-nearest-neighbor classification consists of two steps,
exemplified in Figure 2. In the first step, a query (test doc-
ument) is submitted to the database of manually coded dis-
charge summaries. The INQUERY retrieval engine returns
a list of those discharge summaries from the database which
are most similar to the test discharge summary to be coded.
Each retrieved document has an associated belief score, and
the list is ranked by this score. Each code found in a re-

291

trieved document is a candidate for assignment to the test
document.

The second step in assigning codes to the test document
is to assign a score to each code in each retrieved document,
based on the belief score for the retrieved document. These
scores allow us to rank-order the codes proposed for the test
document.

Our preliminary studies showed that the optimal number
of documents to retrieve for each test document was 20. In
all subsequent work this number remained fixed at 20.

A major problem in this paradigm is how to assign a
score to a candidate code for a test document, based on the
codes and scores assigned to retrieved documents. We have
experimented with several different ways of assigning scores
to candidate codes for each test document. The simplest and
most obvious method is to use as a code’s score the number
out of the twenty retrieved documents that have that code
assigned to it, but this produces too many ties. Instead, we
sum the belief scores of the retrieved documents assigned
that code, weighting the scores before summing, i.e.

Score. = Z (belief; - w,e)

where 7 ranges over the retrieved documents, Score. is the
test document’s score for code ¢, belief; is the belief score for
retrieved doc ¢, and w;. is the weight for code ¢ in document
i.

We have tested several different weighting methods for
determining w;c, which are discussed in [13]. However, the
best method used a very simple weighting scheme (referred
to as Princ in the results section), which depended only upon
whether a code was the principal diagnosis for the retrieved
document, as follows:

wp
Wic = 1
0

wp could range from 1 to 3, and was tuned on a tuning
set of 255 documents which was separate from the corpus
and the test set.

Besides manipulating document-score weighting, we ex-
perimented with query formulation, turning the 187 test
documents into structured queries using #wsum (weighted
sum) and #sum operators, as in Figure 3. Two subtasks, de-
scribed in detail in [13], made up this part of the research:
identifying document sections, and tuning the weights on the
sections. Sections were identified heuristically. Weights were
tuned using the tuning set divided into two sets with 255
documents each. We used a hill-climbing algorithm [7], and
accepted each successive change in weights that improved
the first tuning set without hurting performance on the sec-
ond tuning set.

if ¢ is the principal DX code for doc ¢
if ¢ is a nonprincipal DX code for doc i
if ¢ is not assigned to doc ¢

2.3 Bayesian Independence Classifiers

A set of 1068 classifiers were trained, one for each code that
occurred 6 or more times in the training data, using the
training corpus of 10902 labeled discharge summaries. Some
of these codes have a large number of training examples (the
most frequent code occurred in 2364 of the 10902 training
documents), but most do not. Obviously, the number of
examples of a code in the training set will have a large effect
on the quality of the classifier that can be trained from the
examples.

#usum(1.0 1.5 #sum (PRINCIPAL DIAGNOSIS: OSTEOARTHRITIS OF
THE LEFT HIP SECONDARY DIAGNOSIS: WOLFF-PARKINSON-WHITE
SYNDROME) 1.0 #sum (PROCEDURES: Left total hip replacement
(uncemented), 2-2-93.)

1.5 #sum (HISTORY OF PRESENT ILLNESS: The patient is a 54 year
old white male with a 9 month history of left hip pain . He has
noted a severe limitation of ambulation over this period of time and
presently is limited to non reciprocal stairs and short distances. He
has trouble getting out of a chair as well as a car. The examination
and radiographs by ... confirmed bilateral hip osteoarthritis with
left greater than right. He is admitted for an elective left total hip
replacement. He has donated three units of autologous blood.)
1.0 #sum (PAST MEDICAL HISTORY: Notable for osteoarthritis as
noted above and WPW syndrome . PAST SURGICAL HISTORY. No-
table for tonsillectomy at age 3 and bilateral hammer toe correc-
tions. MEDICATIONS ON ADMISSION: At the time of admission, the
patient was on Ferrous Sulfate 325 mg po t.id. ...) ...)

Figure 3: Example weighted sum query for k-nearest-
neighbor classification

First, the training documents were stopped and stemmed
as above. The resulting stemmed terms were the potential
features for the classifiers. Second, up to 40 of these features
were chosen for each classifier (code) according to mutual
information [29], subject to the following constraints: Terms
must have length >1, must contain at least one alphabetic
character, must co-occur at least two times with the code,
and cannot begin with a digit. Forty terms were obtained
for most codes. The exceptions were codes with few training
examples, where fewer than forty terms met the criteria.
Preliminary experiments showed that increasing the number
of features above 40 per code did not improve performance.

Classifiers were trained according to the probabilistic
model described by Lewis [14}, which was derived from a
retrieval model proposed by Fuhr [9]. The model supports
probabilistic indexing [9], however we implement a simpli-
fied version in which only estimates of 0 or 1 are used for the
probability that a document has a feature. The model also
considers features which are absent in the test document,
which many models do not. (See [13] for more detail.)

The classifier yields an estimate of the log probability
that a code is assigned to a test document. We produce a
ranked list of code candidates for each test document, or-
dered according to this probability. This output is compa-
rable to that produced by the k-nearest neighbor classifier,
facilitating the comparison between them, and their combi-
nation.

In order to compare more directly the Bayesian classi-
fier with the k-nearest-neighbor classifier, we recomputed
the k-nearest-neighbor results based only on the 1068 codes
that occur 6 or more times in the training data rather than
the 3261 codes that occur 1 or more times. In practical
terms, we pretend that the list of codes for a (test or train-
ing) document includes only those codes which occur 6 or
more times in the training corpus. We removed 30 test doc-
uments whose principal diagnosis code was removed by this
restriction, leaving 157 documents in the test set.

2.4 Relevance Feedback

A set of 1068 queries was trained using relevance feedback,
one for each ICD9 code occurring 6 or more times in the
training corpus. The relevance feedback algorithm was es-
sentially the same as that used in TREC4 [1] and is more
fully described there. Relevance feedback began with null
queries. First, 40 terms were chosen by comparing their oc-
currences in relevant and non-relevant training documents.
A weighted sum query was built from these 40 terms with

292

weights from the Rocchio formula applied to INQUERY'’s
weighting scheme. Finally, the weights were adjusted using
an iterative technique similar to that of Buckley and Salton
and others [4, 21].

The relevance feedback classifier is very much like the
Bayesian classifier. In our instantiation of the two approach-
es there are two major differences, concerning the use of term
frequency and terms associated with nonrelevant training
documents.

Our Bayesian classifier considers only whether a term
occurs or does not occur in a document, not how often the
term occurs in the document. This classifier ignores term
frequency both in feature selection and in training the clas-
sifier. The relevance feedback classifier uses term frequency
in feature selection and in determining weights for the terms
in the trained query.

The Bayesian classifier chooses terms by mutual infor-
mation, which means it can select terms which are strongly
associated with documents in the class, or terms that are
strongly associated with documents that are not in the class.
For example, the term “male” is selected as one of the fea-
tures for a leiomyoma of the uterus, and the classifier gives
this term a high negative weight. If the term “male” occurs
in the document, it counts strongly against this diagnosis.
The relevance feedback classifier selects only terms that are
strongly associated with documents that are in the class.

2.5 Combining Different Classifiers

The k-nearest-neighbor classifier was combined with each of
the other classifiers in linear combinations (weighted sums)
in several different ways. For each code ¢, the 2-way combi-
nation score for a given test doc is:

Scorec = k - scoregnn,c + (1 — k) - scoreother,c

where Score, is the test document’s combined score for code
¢. The component scoregnn, is a function of the test docu-
ment’s k-nearest-neighbor score for code c¢. The component
SCOT€ SCOT€other,c 18 @ function of the test document’s score
for code c on either the Bayesian or relevance feedback clas-
sifier. Component scores could be based either on ranks
or on scores output by the individual classifiers, and scores
could be normalized.

2.5.1 Ranks

For a given test document, a rank-based component score
for code ¢ was determined as follows for each component
classifier:

if ranked
otherwise

SCOT€component,c = { é\’ — T'a’nkcomponent,c

Recall that the k-nearest-neighbor method yields a can-
didate list of codes for each test document. This does not
include all possible codes, but only those codes which were
in the top 20 retrieved documents. In contrast, the Bayesian
and relevance feedback classifiers give a score for each possi-
ble code (class) for each test docament. Codes that were not
k-nearest-neighbor candidates for a document were given a
score of zero for rankipn,.. Furthermore, in all the com-
binations below, performance was better if the k-nearest-
neighbor candidate lists included only codes which occurred
in two or more retrieved documents. For this reason, scores
for codes which occurred in only one retrieved document
were also set to zero before combination with Bayesian or
relevance feedback candidate lists.

Component Component
1 | KNN rank Bayesian rank
2 [KNN rank Bayesian rank of norm score
3 | KNN score/20 | Bayesian normalized score
4 | KNN rank RF rank
5 | KNN score/20 | RF score

Table 1: Components of 5 2-way combination classifiers

2.5.2 Normalization of component scores

The k-nearest-neighbor and Bayesian scores had to be nor-
malized to fall in a range between 0 and 1 for combination.
Relevance feedback scores already fell in this range, so they
did not need to be normalized. K-nearest-neighbor scores
were divided by 20, and Bayesian scores were divided by the
maximum score for that code, that is, the score that would
have been attained for a hypothetical document that had all
the terms which had larger coefficients for presence of the
term than for absence of the term, and which did not have
any terms which had larger coefficients for absence of the
term than for presence of the term. Note that normaliza-
tion by the maximum possible score for the code changes the
ranks of code candidates for each document, because each
code is normalized by a different quantity. 2

2.5.3 Combination Conditions

Table 1 summarizes the types of component scores that went
into each of the five 2-way combinations tested. The pa-
rameter k above was tuned separately for each of the five
combinations, using one of the 255 document tuning sets.
Values ranging from .1 to .9 in steps of .1 were tested.

Combinations 1, 2, and 3 merged the k-nearest-neighbor
and Bayesian classifiers. Combination 1 used scores based
on the ranks of the codes assigned to each document. Com-
bination 2 was similar, but the Bayesian rank was based on
the normalized score described above. Combination 3 used
normalized scores rather than ranks. Combinations 4 and
5 merged the k-nearest-neighbor and Relevance Feedback
classifiers. Combination 4 was based on ranks, and Combi-
nation 5 was based on scores.

Combination 6, not shown in Table 1, is a 3-way com-
bination of the k-nearest-neighbor score/20, the normalized
Bayesian score, and the relevance feedback score. We tested
all possible triples of coefficients ranging in tenths from .1
to .9 in which the coefficients summed to one. These tests
used the same tuning set of 255 documents that the 2-way
combinations were tuned on.

2.6 Measuring effectiveness
2.6.1 Four measures

We report four measures of coding accuracy which reflect the
success at getting all the codes as high as possible in the list
of candidates without considering a cutoff for acceptance.

Average 11 point precision. Precision and recall have been
standard measures of retrieval effectiveness in information
retrieval [23]. When the task is retrieval, these measures
are computed from the ranked list of documents retrieved
for each query. For each such list, and each possible stopping
point on the list, one can measure precision - the proportion

2This type of normalization worked better than the more obvious
exponential transformation.

293

of retrieved documents that are relevant to the query - and
recall - the proportion of all the relevant documents that are
retrieved. Average precision is computed across precision
values obtained at n evenly spaced recall points (0, 10%,
etc.).

In a categorization task, one can use the same measures,
recall and precision, in the same way, on the list of docu-
ments ranked by their score on the classifier. Being in the
category is analogous to being relevant.

In this study, we compute recall and precision on the list
of codes ranked for each test document, rather than the list
of documents ranked for each classifier (code). A “relevant”
code is one which should be assigned to the test document.
This is a natural way to analyze the output of the k-nearest-
neighbor classifier. It is a less natural way to analyze the
output of the Bayesian and relevance feedback classifiers,
but it allows us to compare the performance of the three
classifiers and combine them in simple ways.

Top candidate. Proportion of cases where the test doc-
ument’s principal diagnosis (first) code is top candidate in
the list of codes ordered by Score..

Top 10. Proportion of cases where the test document’s
principal diagnosis code is in the top 10 candidates.

Recall 20. Recall level in the top 20 candidates, that is
what proportion of all the correct codes for the document
appear in the top 20 candidates. Twenty was chosen because
it is a reasonable number of codes for an interactive coder
to display. Note that recall 20 can be 100%, because the
maximum number of codes per document is less than 20.

2.6.2 Full codes vs categories.

The four measures above can be based on full codes or cate-
gories. ICD9 codes have two parts, a major category (before
the decimal point) and a subcategory (additional digits after
the decimal point). Although a completely automatic coder
would have to assign full codes including subcategories, we
have included some measures that reflect partial success.
Therefore, we report the four measures above for two differ-
ent scoring schemes. Full Codes means that the whole code
with subcategory had to match to be counted as correct.
Categories means that only the category — the part of the
code before the decimal point — had to match to be counted
as correct.

3 Results

3.1 K-nearest-neighbor Results

Table 2 shows k-nearest-neighbor performance on the mea-
sures described above for the baseline, for the best docu-
ment-score weighting condition, and for the weighted sum
condition with equal weights on all sections, and for the
weighted sum condition with tuned weights on each section.
The weighted sum conditions included the document score
weighting. These results summarize ranked lists of codes
that could include any of the 3261 ICD9 codes that occurred
in the training corpus. The table also shows percentage in-
crease over the baseline for the nonbaseline conditions.

Full Codes

Principal Principal

Average code is top code in

Precision candidate top 10 Recall at 20
Base 37.5 24.1 59.4 55.4
Princ 385 42.7{30.5 -+26.7|652 499 | 56.6 +2.2
Wsum 41.3 +10.2 [36.4 +51.1 | 69.0 +16.2 | 58.7 +6.0
Sec 426 +13.6| 385 +60.0 722 +21.6|61.6 -+11.3
Categories
Base 48.7 422 74.9 69.0
Princ 50.6 +3.8 497 4177|781 +43|69.0 +0.0
Wsum 535 +9.7|540 +278|81.8 +93| 728 +5.6
Sec 54.0 +10.7 | 55.1 4304 | 84.0 +12.1 | 729 +5.7

Table 2: K-nearest-neighbor coding performance

3.1.1 K-nearest-neighbor baseline accuracy

The rows labeled Base in Table 2 show performance for the
baseline condition.

Average 11-point precision for full codes in the baseline
condition is 37.5%. The principal code was the top candi-
date in 24.1% of the cases, and was in the top ten in 59.4%
of the cases. Recall is 55.4% at 20 candidates. When we
score categories rather than full codes, the average preci-
sion is 48.7%. The principal category is the top candidate
in 42.2% of the cases, and is in the top 10 in 74.9% of the
cases. Recall is 69.0% at 20.

3.1.2 Document-score weighting

The best value for the principal diagnosis code weight (wp)
was 1.8. Note that this was the value that maximized aver-
age precision. A value of 3 would have maximized the top
candidate measure. However, in all of the tuning experi-
ments reported in this paper, we maximized average preci-
sion in the tuning set, since this is the only measure that
summarizes the performance of the full ordering of codes.

As can be seen in Table 2 in the row labeled Princ, this
weighting scheme produced a 2.7% increase in average preci-
sion over the baseline, a 26.7% increase in the top candidate
measure, a 9.9% increase in the top 10 measure, and a very
small increase in recall 20. A similar pattern is seen with
category scores.

Note that principal DX weighting has a large effect only
on the measures involving the principal DX code. This
weighting scheme primarily moves the principal DX code
higher on candidate lists, and does not greatly affect the
other codes.

3.1.3 Structured queries

Table 2 also shows the results when the test document is
converted into a query which is a weighted sum of sections.
Formulating the query as a weighted sum with weights of
1, combined with a principal DX weight of 1.8 { Wsum con-
dition) produces a 10.2% improvement in average precision
over the baseline, a 51.1% increase in the top candidate mea-
sure, and a 16.2% increase in the top 10 measure. Combining
the tuned section weights with the best principal DX weight
(Sec condition) yields a 13.6% improvement in average pre-
cision, a 60% increase in the top candidate measure, and a
21.6% increase in the top 10 measure. A similar pattern is
seen with category scores.

It is interesting that the #wsum version of the documents
is such an improvement over the flat free-text version, even

294

before the sections are differentially weighted. The improve-
ment is probably due to the length normalization INQUERY
performs at each #sum node, which has the effect of giving
more weight to short sections and less weight to long sec-
tions.

3.2 Bayesian Results

Table 3 shows the Bayesian and k-nearest-neighbor results
on the test data restricted to codes that occur six or more
times, and restricted to test documents whose principal di-
agnosis code was not eliminated by this frequency criterion.
Note that the k-nearest-neighbor data in this table have
been restricted to the same subset of codes and documents.
For this reason, the baseline k-nearest-neighbor scores in
this table are substantially higher than the baseline in Ta-
ble 2. To save space, only full code scores are reported in
this table.

Although the k-nearest-neighbor and Bayesian results
are not significantly different in average precision, they do
show some striking differences in the other measures. The k-
nearest-neighbor classifier is better at getting correct codes,
and particularly the principal diagnosis code, to the top of
the candidate list, but the Bayesian classifier is better at
getting more codes onto the list. This can be seen to a cer-
tain extent in Table 3, in that the Bayesian classifier is much
worse than k-nearest-neighbor in the top candidate measure,
about the same in the top 10 measure, and better in the Re-
call 20 measures. This pattern is more apparent when one
examines the precision at 11 recall levels, in Table 4. The k-
nearest-neighbor classifier is better at low recall levels, and
the Bayesian classifier is better at high recall levels.

3.3 Relevance Feedback Results

The rows labeled RF 6 in Table 3 show the relevance feed-
back results in comparison with the k-nearest-neighbor and
Bayesian classifiers, also restricted to codes that occur six or
more times in the training corpus. Overall performance is
substantially worse than that of the k-nearest-neighbor and
Bayesian classifiers. It scores low where each of the other
classifiers scores low, but does not score high where they
score high. Average precision is lower than that of the k-
nearest-neighbor and Bayesian classifiers, the top candidate
measure is comparable to the Bayesian classifier, that is,
much lower than k-nearest-neighbor . The relevance feed-
back classifier is comparable to the k-nearest-neighbor clas-
sifier on the recall 20 measure, that is, substantially lower
than the Bayesian classifier. The poor performance of the
relevance feedback classifier is probably due to our using

Full codes

Principal DX | Principal DX
Average code is top code in

Coeflicients Precision candidate top 10 Recall at 20
KNN 6 48.9 45.9 80.9 67.1
Bayes 6 475 -2.8 1357 -—222|8l5 +0.8 | 747 +11.3
RF 6 421 -139|344 -250| 81.5 +0.8 | 67.1 +40.0
1: K+4+B ranks | .3,.7 52.0 +6.4 |40.8 -—11.1] 80.3 -08 729 487
2: K+B ranks | .5,.5 53.9 +10.3 1389 -15.3] 80.3 -0.8|726 +8.1
3: K+B scores | .6,.4 55.3 +13.0 | 46.5 +1.4 | 86.0 +6.3|76.4 +13.9
4: K+R ranks | .7,.3 53.7 499 | 44.6 —2.8 | 82.2 16 | 71.8 +7.1
5: K+R scores | .3,.7 55.6 +13.8 | 46.5 +1.4 | 87.9 +8.7 | 75.7 +12.8
6: K+B+R .3,.1,.6 57.0 +16.6 | 46.5 +14|91.1 4126 | 77.6 +15.6

Table 3: Performance of all classifiers - codes occurring >6 times

Precision and % change 157 queries
Recall | KNN 6 | Bayes 6 RF 6

0| 81.0 [727 -1011]710 -123
10| 794 |[718 -09.7]69.0 -13.2
20| 745 |66.0 -—11.4]64.1 -14.0
30| 659 {577 -125]562 -14.8
40 | 56.2 |51.7 -—08.0 [46.1 ~17.9
50 53.0 50.2 —05.2 | 439 -17.2
60 37.3 39.7 +06.4 | 31.0 -16.8
70 27.3 329 42041255 —6.7
80 24.1 29.7 +23.6 {209 -13.0
90 19.7 254 +429.2 | 17.8 -9.7
100 19.6 | 251 4283|177 9.7
avg 489 475 —-02.8 421 -13.9

Table 4: Precision at 11 standard recall points for Bayesian
and Relevance Feedback Classifiers

idf’s from the test set rather than from the larger training
set.

3.4 Results - Combination Classifiers

Table 3 shows the results of all five 2-way combinations
of the k-nearest-neighbor and other classifiers in compari-
son with the best versions of the individual classifiers. It
is striking that all the combinations perform much better
than the individual classifiers. Although the individual rel-
evance feedback classifier was quite a bit worse than the
Bayesian classifier, the relevance feedback combination clas-
sifier performed as well as or better than the Bayesian com-
bination classifier. Two-way combinations involving normal-
ized scores were better than combinations involving ranks.

Consequently, when we tested combinations of all three
classifiers, we used normalized scores. K-nearest-neighbor
scores were divided by 20 and Bayesian scores were normal-
ized by the maximum possible score that classifier. Rele-
vance feedback scores were not normalized. The optimal set
of coefficients was .3 for the k-nearest-neighbor classifier, .1
for the Bayesian classifier, and .6 for the relevance feedback
classifier. As can be seen in Table 3, this 3-way combina-
tion was better than any of the 2-way combinations in all
measures.

4 Discussion

Combining a k-nearest-neighbor classifier with another clas-
sifier yielded a substantial improvement in accuracy over

295

either classifier alone, and the combination of all three clas-
sifiers was the best of all. Detailed analyses of the outputs
of each classifier showed that they had somewhat comple-
mentary strengths and weaknesses. The k-nearest-neighbor
classifier was good at getting the principal DX code at the
top of the list of candidates, probably because of the princi-
pal DX weighting. It was also good at getting other codes to
the top of the list (good at low recall levels). The other clas-
sifiers were worse at getting correct codes to the top of the
list. The Bayesian classifier was better than the k-nearest-
neighbor and relevance feedback classifiers at getting correct
codes onto the list, that is it was better at high recall levels.

It is somewhat surprising that the relevance feedback
combination classifier was as good or slightly better than
the Bayesian combination classifier, given that the relevance
feedback classifier alone was substantially worse than the
Bayesian classifier alone. An examination of the codes as-
signed to individual documents suggested a possible expla-
nation for this pattern. There were several documents on
which neither individual classifier (k-nearest-neighbor or rel-
evance feedback) did well, but the combined classifier did
very well. An examination of the candidate lists of codes
for these cases showed that the k-nearest-neighbor and rel-
evance feedback classifiers proposed very different codes for
these documents. For a code to appear high on the list for
the combined classifier, it must occur moderately high on
both lists. Only the correct codes did so.

We have confirmed our hypothesis that using multiple
classifiers improves classification performance, just as using
multiple retrieval methods improves retrieval effectiveness.

4.1 Amount of training data

All the results so far are based on codes which have at least
6 examples in the training corpus. Six examples is a small
number of cases to base our training on, and we believe the
results would improve with more training data. To illustrate
the effects of amount of training data we could restrict the
data to codes which met a training minimum frequency cri-
terion. Unfortunately, this would not give a clear picture
of the effects of amount of training, because the number
of training cases would be confounded with the number of
codes in the test. For example, for the test restricted to
codes with 100 or more training examples, precision would
be based on ranked lists of 89 codes. For the test restricted
to codes with 6 or more training examples, precision would
be based on a ranked lists of 1068 codes reflecting a choice
among 1068 rather than 89 codes, a more difficult task.
Figure 4 shows the 3-way combination data partitioned

1 . T :
08
o
o
3 06 .
@
o,
@D
&
a;, 0.4 E
<
0.2 |
0 L i 1 1
0 50 100 150 200 250

Frequency of principal DX code in training data

Figure 4: Average precision as a function of frequency of
principal DX code

in a way that avoids this confounding. The test documents
have been grouped by the frequency of the principal diagno-
sis code for the document. Precision is still computed using
the ranked lists of 1068 codes. The data point at frequency
6 includes the documents whose principal diagnosis code oc-
curs between 6 and 12 times in the training data. The data
point at frequency 13 includes the documents whose prin-
cipal diagnosis code occurs between 13 and 24 times in the
training data, etc.

Figure 4 shows a rapid rise in average precision as the
frequency in the training data rises from 6 to 25, then it
rises more slowly. Clearly performance is better when each
code has 25 or more training examples.

4.2 Comparison with other research

How do these results compare to other attempts at auto-
matic coding and categorization in the medical domain? Re-
searchers at the Mayo Clinic [30] have used a method called
ExpNet which is very similar to our k-nearest-neighbor clas-
sifier and which yields performance very similar to that of
our k-nearest-neighbor classifier when applied to a problem
with similar parameters.

Yang and Chute report categorization performance on
two different data sets, one for surgical reports in which the
classes were ICD9 categories, and one for a set of MED-
LINE documents. Although their surgical report task was
more like ours in content, the task was very different. The
average text had only nine words, and needed to be associ-
ated with one code. There were many duplicate texts, and
a total of 281 codes were trained. On this easy tasks, aver-
age precision was 88%. Recall that our data set contained
texts averaging 633 words in length, had 3261 (different)
codes, with an average of 4.4 codes per text. Yang and
Chute’s MEDLINE data set was somewhat comparable to
ours, averaging 168 words per document, 17 categories per
document, and a total of 4020 different codes. Their perfor-
mance of 35% was very similar to the 37.5% attained by our
baseline k-nearest-neighbor classifier. Our improvements to
the k-nearest-neighbor classifier brought the performance up
to 42.5%, and the 3-way combination classifier was at 57%
average precision.

296

Performance in this task is still far from the level re-
quired for unsupervised automatic coding. However, this
system could form a component of a computer-aided coding
system. It could present a list of codes as candidates to be
checked by an expert coder. As Table 3 indicates, this sys-
tem would get the principal DX code as the top candidate
46.5% of the time, it would have the principal DX code in
the top 10 candidates 91.1% of the time, and it would have
77.6% of the correct codes in the top 20 candidates. Such
an interactive system has proven useful to human experts in
indexing physics abstracts [10] and may be useful in coding
patient records.

4.3 Future Directions

Our next step is to take advantage of yet another level of
structure in these documents. Our associates are using NLP
techniques to tag phrases in the discharge summaries with
five subtypes each of diagnoses and signs or symptoms [26].
Our hypothesis is that performance will be improved by giv-
ing more weight to these items in k-nearest-neighbor clas-
sification, or to consider such phrases as candidate features
along with the single terms we now use in the Bayesian or
relevance feedback classifiers.

We are also experimenting with direct lookup in the ICD-
9-CM manuals {Alphabetic Index and Tabular List).

The Bayesian and relevance feedback classifiers could be
possibly enhanced by training two levels of classifiers. The
first level classifiers would assign categories of codes (the
code without the subcategories after the decimal points).
The second level would choose the best subcategory for each
code. This approach is motivated by the observation that
the candidate lists often contained many codes of the same
category, pushing other correct codes lower on the list. This
is not surprising, since codes for related conditions have very
similar evidence. A classifier which was trying to distin-
guish a code from other codes in the same category could be
more discriminating than a classifier trying to distinguish a
code from all the others. Another advantage of a two-level
classifier would be to capture co-occurrence patterns among
different classifiers, as Fuhr, et. al. do in the AIR/X sys-
tem [10]. Our current models lose this information because
classifiers for each code are completely independent of each
other.

5 Acknowledgments

We would like to thank David Aronow for his help in catego-
rizing the section titles in the documents and David Fisher,
Fang-Fang Feng, and Stephen Soderland for the NLP tag-
ging. Thanks to James Allan for the relevance feedback al-
gorithms. This material is based on work supported by the
National Science Foundation, Library of Congress, and De-
partment of Commerce under cooperative agreement num-
ber EEC-9209623 and on work supported by NRaD Con-
tract Number N66001-94-D-6054. Stephen 1. Gallant also
contributed to this work, supported by National Cancer
Institute Grant 1 R43 CA 65250-01 to Belmont Research
Inc. Data are courtesy of Brigham and Women'’s Hospital,
Boston, MA.

References

{1] J. Allan, L. Ballesteros, J. P. Callan, W. B. Croft, and
Z. Lu. Recent experiments with INQUERY. In D. K.
Harmon, editor, The Fourth Text REtrieval Conference

(2l

(3]

[4]

(5]

(6]

(7]
(8]

(10]

(11)

(12]

(13]

(14]

(15]

(16)

(TREC-4), Gaithersburg, MD, 1996. NIST special pub-
lication. To appear.

C. Apte, F. Damerau, and S. M. Weiss. Automated
learning of decision rules for text categorization. ACM
Transactions on Information Systems, 12(3):233-251,
July 1994.

N. Belkin, C. Cool, W. B. Croft, and J. P. Callan. The
effect of multiple query representations on information
retrieval system performance. In Proceedings of ACM
SIGIR’93, pages 339346, 1993.

C. Buckley and G. Salton. Optimization of relevance
feedback weights. In Proceedings of ACM SIGIR’95,
pages 351-357, 1995.

W. S. Cooper. Some inconsistencies and misnomers in
probabilistic information retrieval. In Proceedings of
ACM SIGIR’91, pages 57-61, 1991.

W. B. Croft, T. J. Lucia, J. Cringean, and P. Willett.
Retrieving documents by plausible inference: An ex-

perimental study. Information Processing and Manage-
ment, 25(6):599-614, 1989.

R. O. Duda and P. E. Hart. Pattern Classification and
Scene Analysis. John Wiley & Sons, New York, 1973.

E. A. Fox and J. A. Shaw. Combination of multi-
ple searches. In D. K. Harmon, editor, The Second
Text REtrieval Conference (TREC-2), pages 243-252,
Gaithersburg, MD, 1994. NIST special publication 500-
215.

N. Fuhr. Models for retrieval with probabilistic in-
dexing. Information Processing and Management,
25(1):55~72, 1989.

N. Fuhr, S. Hartmann, G. Lustig, M. Schwantner,
K. Tzeras, and G. Knorz. AIR/X - a rule-based multi-
stage indexing system for large subject fields. In Pro-
ceedings of the RIAQ 91, pages 606-623, Barcelona
Spain, April 1991.

D. K. Harmon, editor. The Third Tezt REtrieval Con-
ference (TREC-3), Gaithersburg, MD, 1995. NIST spe-
cial publication 500-225.

J. Katzer, M. McGill, J. Tessier, W. Frakes, and P. Das-
Gupta. A study of the overlap among document repre-
sentations. Information Technology: Research and De-
velopment, 1:261-274, 1982.

L. S. Larkey and W. B. Croft. Automatic assignment of
ICD9 codes to discharge summaries. Technical Report
IR-64, University of Massachusetts Center for Intelli-
gent Information Retrieval, 1995.

D. Lewis. An evaluation of phrasal and clustered repre-
sentations on a text categorization task. In Proceedings
of ACM SIGIR’92, pages 37-50, 1992.

D. Lewis. Evaluating and optimizing autonomous text
classification systems. In Proceedings of ACM SI-
GIR’95, pages 246-254, 1995.

D. D. Lewis. Representation and Learning in Informa-
tion Retrieval. PhD thesis, University of Massachusetts,
1992.

297

(17]

(18]

[19]

20]

(21}

(22]

23]

(24]

25]

[26]

[27]

(28]

[29]

(30]

D. D. Lewis and M. Ringuette. A comparison of two
learning algorithms for text categorization. In Third
Annual Symposium on Document Analysis and Infor-
mation Retrieval, pages 81-93, University of Nevada,
Las Vegas, 1994.

M. Maron. Automatic indexing: An experimental in-
quiry. Journal of the ACM, 8:404-417, 1961.

B. Masand, G. Linoff, and D. Waltz. Classifying news
stories using memory based reasoning. In Proceedings
of ACM SIGIR’92, pages 59-65, 1992.

T. B. Rajashekar and W. B. Croft. Combining auto-
matic and manual index representations in probabilistic
retrieval. Journal of the American Society for Informa-
tion Science, 6(4):272-283, May 1995.

S. Robertson, S. Walker, S. Jones, M. Hancock-Beau-
lieu, and M. Gatford. Okapi at TREC-3. In Harmon
[11].

J. Rocchio. Relevance feedback in information retrieval.
In G. Salton, editor, The SMART Retrieval System -
Ezperiments in Automatic Document Processing, chap-
ter 14. Prentice Hall, Englewood Cliffs, 1971.

G. Salton. Automatic Text Processing: The Trans-
formation, Analysis, and Retrieval of Information by
Computer. Addison-Wesley, Reading, MA, 1989.

G. Salton and C. Buckley. Improving retrieval perfor-
mance by relevance feedback. Journal of the American
Society for Information Science, 41(4):288-297, 1990.

J. A. Shaw and E. A. Fox. Combination of multiple
searches. In Harmon [11].

S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert.
CRYSTAL: Inducing a conceptual dictionary. In Pro-
ceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, Montreal, Canada, Au-
gust 1995.

C. Stanfill and D. Waltz. Toward memory-based reason-
ing. Communications of the ACM, 29(12):1213-1228,
Dec. 1986.

H. Turtle and W. B. Croft. Evaluation of an inference
network-based retrieval model. ACM Transactions on
Information Systems, 9(3):187-222, July 1991.

C. van Rijsbergen. Information Retrievael. Butter-

worths, London, second edition, 1979.

Y. Yang and C. G. Chute. An application of Expert
Network to clinical classification and MEDLINE index-
ing. In Proceedings of the Euighteenth Annual Sympo-
stumm on Computer Applications in Medical Care, pages
157-161, 1994.

