
Muitikey Access Methods Based on
Term Discrimination and Signature Clustering

Jae VV. Chang, Joon H. Lee and Yoon J. Lee

Department of Computer Science, KAIST
P.O. Box 150, Chongryang, Seoul, Korea 131

,jwjang%csd.kaist.ac.kr@relay.cs.net

Abstract

In order to improve the two-level signa-
ture file method designed by Sacks-Davis et al.
[20], we propose new multikey access methods
based on term discrimination and signature clus-
tering. By term discrimination, we create
separate, efficient access methods for the terms
frequently used in user queries. We in addition
cluster similar signatures by means of these
terms so that we may achieve good performance
on retrieval. Meanwhile we provide the space-
time analysis of the proposed methods and com-
pare them with the two-level signature file
method. We show that the proposed methods
achieve 15-30% savings in retrieval time and re-
quire 3-9 % more storage overhead.

1. Introduction

Traditional database management sys-
tems are well suited for a variety of applications
in the commercial world such as air line reser-
vations, banking, etc. These applications typical-
ly use formatted data. Recently, there have
been many attempts to extend conventional sys-
tems so that they can handle documents (or
records) containing both formatted fields and
free texts [4,5,12,15]. Among such applications,
there are library systems, medical records sys-
terns, and office information systems [l3].

Because it is essential to efficiently store
and retrieve both formatted data and free texts,

Permission to copy without fee all or part of this material is grankd provided that
the copies are not made or distributed for direct commercial advantage, the AC‘V
copyright notice and the title of the publication and its date appear, and notice IS
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise. or to republish. requires a fee and/or specific permission
0 1989 ACM O-89791-321-3/89/0006/0176 $1.50

efficient access methods are required in such sys-
tems. An approach widely advocated for both
data bases uses the signature file method [14].
Signature file methods, in fact, have been pro-
posed for various applications, such as multikey
retrieval [17,18,19], text retrieval [6,11], office
systems [4,10], and prolog systems [1,3,16].

A signature (descriptor) in the signature
file method is associated with each record, the
signature being an encording of the index terms
used to retrieve. the record. When a query is
processed, the file of signatures, rather than the
data file, is examined for potential matches.
This method provides good retrieval performance
and efficient storage usage [6]. As well as
forming record signatures for individual records,
it is possible to maintain block signatures for
blocks of records, thus forming the two-level
signature file method [18,20]. In this method,
the file of block signatures is viewed as a bit
slice representation whereas the file of record
signatures is built using a bit string one.

In this paper, we propose new multikey
access methods which improve the above two-
level method using term discrimination and
record signature clustering. Faloutsos & Chris-
todoulakis [9] considered it unrealistic to assume
both uniform query and uniform occurrence fre-
quency. They proposed an encording scheme to
allow special treatment to terms with high
discriminatory power, so as to improve the per-
formance of the signature file method. The
terms with high discriminatory power are the
ones which are frequently used in user queries
but are infrequently occurring in data file. In
the proposed methods, we also distinguish terms
with high discriminatory power from ones with
low discriminatory power and specially treat the
for mers to acquire good retrieval performance.
However, instead of using a special encording
scheme we construct additional, efficient access

176

methods, e.g. the inverted file, for the terms
with high discriminatory power.

Meanwhile we cluster similar record sig-
natures so that we can achieve better perfor-
mance on retrieval to records (documents). To
make the clustering easy and effective, it is pos-
sible to combine term discrimination and record
signature clustering. That is, we can form clus-
ters by means of the similarity between terms
with high discriminatory power, rather than all
the terms. This still keeps clustering benefits to
a high degree.

The remainder of the paper is organized
as follows. First we present a brief overview of
the signature file method. In section 3 we pro-
pose new, efficient multikey access methods
based on term discrimination and record signa-
ture clustering. In section 4 we provide the
space-time analysis of the proposed methods. In
section 5 we present the performance results of
the proposed methods and compare them with
that of the two-level signature file method. The
conclusions and further works are presented in
section 6.

2. Signature Files

In a recent review of text retrieval
methods, Faloutsos [6] has presented the signa-
ture file method as an access method applicable
to both formatted and unformatted data. In
fact, the signature file is an abstraction which
contains the signatures of the records (docu-
ments) in data file. A signature is a bit string
formed from the terms that are used to index a
record. Indexing using signature files assigns a
signature to every record in the data file. To
answer a query, the signature file, rather than
the data file, is examined first for immediately
discarding many non-qualifying records.

Signature files typically use superim-
posed coding [14] to create the signature of a
record. When a record consists of n terms,
each term is converted into a bit string (term
descriptor) using a hash function. A record
descriptor is formed by superimposing (inclusive
ORing) the n term descriptors. For example,
we assume that a record consists of 2 terms, say
Database and Date. The record signature of
this record using superimposed coding is given
below.

Database 0010 0100
Date 1000 1000

_^________---------_-------------------
Record Signature 1010 1100

This method naturally supports variable numbers
of terms per record since the number of terms
does not affect the signature length. Thus
records with multi-valued fields (fields in a
record which can contain more than one value)
and free text are handled easily because there is
no distinction made between terms (values) be-
longing to the same field.

To check if a signature matches a
query, the query terms are also hashed to form
a query descriptor using exactly tb? same way
used to generate the record signat:ues. If every
bit set in the query descriptor is also set in the
record signature, then the record signature is a
potential match. Superimposed coding can result
in a case where the query descriptor qualifies the
record signature, but the corresponding record
does not actually contain the query terms. This
is called a false match. The probability of a
false match occurred is a function of the
number of bits in the query descriptor and the
record signature. False matches place a practi-
cal restriction on the .number of terms that a
record may contain for a given signature size.
Detailed formulas for calculating false match
probability and values for k and b are presented
in 141, where b is a signature size and k is the
number of bits set to 1.

Meanwhile many works have focused on
minimizing the search time for signature files.
To efficiently access signature file& four stra-
tegies have been adopted as follows [13]:

(i) bit slice representations
(ii) multilevel indexes.
(iii) speciB1 encoding schemes based on

term discrimination
(iv) compression techniques.

Roberts [17] proposed a bit slice
representation to improve a bit string one. A bit
slice approach reduces the amount of signature
file that must be retrieved on query. Instead of
viewing the signature file as consisting of N
strings of b bits in length (where N is the
number of records and b is a signature size), the
bit slice approach stores the signature file as b
strings, each of length N. For example, we as-
sume that a data file contains 5 records, and

177

their signatures are 001, 101, 110, 011, and Ill
respectively. Both representations of this exam-
ple are seen as below.

---- ___..----,_
001 01101
101 00111
110 11011
011 ~~~-~-~~~
111

Bit string

Representation
Bit slice

Representation

If a signature have b bits in size and a query
contains w l’s, then with the bit slice representa-
tion, it is possi.ble to check the relevant w bits of
every record signature without fetching any of
the other bits. Thus only WN rather than bN
bits of the signature file need be examined on a
query. This approach can contribute consider-
able savings, since typically w <C b.

The second strategy for reducing the
amount of signature file accessed is based on
multilevel signature files, rather than single-level
files. For very large data files, queries using
the bit slice approach can still be expensive.
For example, we suppose there is k=4 slices,
each containing n = 500,000 bits and each page
in secondary store has a capacity of p=8192
bits. As many as 248 disk accesses are required
to determine the matching records, since the
number of disk accesses is at least k*[n/p].
This shows that one-level method is somewhat
expensive even if using a bit slice representation.
By Sacks-Davis et al. [20], a two-level method
is proposed for which a data file of N records is
viewed as consisting of Ns blocks, each contain-
ing Nr records where N = Ns*Nr. Thus block
signatures as well as record signatures must be
stored in this method. A block signature is
formed analogously to a record signature using
all the terms of all the records contained in that
block. The block signature is first examined on
a query to identify which blocks of records
match, and then the record signatures from the
matching blocks are examined to identify the in-
dividual matching records. The block signature
file is viewed as the bit slice representation to
facilitate efficient query processing, whereas the
record signatures are stored as the bit string one.

The third strategy uses special encoding
schemes based on term discrimination. In gen-
eral, many works [4,17,18] assume that the pro-

bability of any term in a user query is uniform
(uniform query frequency assumption), as well
as that the terms appear with equal frequency in
the text (uniform occurrence frequency assump
tion). But Faloutsos & Christodoulakis [9] ar-
gued that both assumptions should be unrealistic.
They improved the performance of the signature
file method by allowing special treatment to
terms with high discriminatory power (high query
frequency and low occurrency frequency). And
they demonstrated the 50% savings in false
drops in case the 80-20 rule holds. If the
number of false drops is kept constant, the sav-
ings in false drops result in the decrease in sig-
nature length. This after all reduces the search
time for signature files.

The fourth strategy uses compression
techniques on signatures. Although the bit slice
representation is much faster than the bit string
one, there may be room for improvement. On
Searching, each search term requires the retrieval
of k bit slices, where k is the number of bits set
to 1. The retrieval time can be improved if k is
forced to be one. In that case, the signature size
has to be increased in order to maintain the
same false drop probability. But the
corresponding bit slices will be sparse and they
can be compressed. As a result, the small
amount of space in signature files can still main-
tain the same false match. We finally classify
the works co-ncerning signature files from the
viewpoint of above four strategies as shown in
Table 1.

(NJ/A : Not Applicable)

Bit slice Bit Suing

No Special special No Special Special
Eacoding F.mding Eacoding Etmding

No Files & Faloutsos &

COlllp. Huskey Christodoulakis Robens

El71
N/A

One- [Ill [91
level

Camp. Faloutsos Faloutsos Q

[71
N/A ChEUl N/A

[al

MUlti- I181 PO1 1181 [201
lewl Faloursos &

Comp. N/A N/A c&an N/A

t’31

Table 1. Classification of Related Works

178

3. New Multikey Access Methods Based on term discrimination and signa-

3 .l Framework
As described in the previous section,

the two-level signature file method is an en-
couraging one to combine two strategies for effi-
ciently accessing signature files. But there can be
rooms for improvement. Faloutsos & Christo-
doulakis [9] distinguished terms with high
discriminatory power from terms with low
discriminatory power, which is called term
discrimination, and made use of a special encod-
ing scheme for the former terms to improve the
performance of the signature file method. Here
the terms with high discriminatory power are the
ones which are frequently used in user queries
but are infrequently occurring in data file, while
the terms with low discriminatory power are op-
posite. Besides Sacks-Davis et al. ,[20] improved
the two-level signature file method by identifying
the terms in the database which occur most fre-
quently (referred to as common terms) and by
using a special encoding scheme for these terms
in creating the block signature file. Therefore
we take term discrimination into account to im-
prove the two-level signature file method. How-
ever instead of using a special encoding scheme
(i.e. the third strategy in section 2), we construct
separate, efficient access methods, e.g. the in-
verted file, for terms with high discriminatory
power.

ture clustering, we present the framework of a
multikey access scheme [2] as shown in Figure
1. In the following, we will call primary terms
the terms with high discriminatory power and
secondary terms the ones with low discriminatory
power. Also we will call primary block descrip
tors the block descriptors for primary terms and
secondary block descriptors the ones for secon-
dary terms.

himary Block

Discriptor File

Path 1
- - - - - - - - - - ->.
Record Signature File Data File

Secondary Block

Figure 1. Framework of a New Multikey
Access Scheme

In addition to four strategies described
in section 2, the use of clustering method is
another promising strategy to efficiently access
signature files. In fact the clustering method is
a dominating access method in library science
[21]. Similar documents in the method are
grouped together to form clusters. Usually they
are stored physically together. However it seems
that the clustering method can not handle inser-
tion easily, and moreover may fail to retrieve
some documents even though they qualify. We
use the clustering method to cluster similar
record signatures rather than similar records (do-
cuments), and therefore avoid above two prob-
lems to some extent. To make the clustering
easy and effective, it is required to combine term
discrimination and signature clustering. That is,
we construct clusters by means of the similarity
between only terms with high discriminatory
power, rather than all the terms. This leads to
fast retrieval to the records required by a user
query.

In this scheme there are two block descriptor
files, primary and secondary block descriptor
files. For a query with a primary term, we must
access the primary block descriptor file following
path 1, while for a secondary term, we must
follow path 2. Since there exist two paths to re-
trieve records in data file, it is necessary to
select paths effectively in the case of queries
with multiple terms. However for simplicity,
queries with a single term are considered in this
paper.

Depending on a way to construct the
primary block descriptor file, we propose three
different access methods, primary-signature-based
two-level signature file Method, inversion-based
two-level signature file method, and hash-table-
based two-level signature file method. The pro-
posed methods are described in detail next. On
the other hand, we adopt the signature file
method to construct the secondary block descrip
tor file. Record signatures are stored as a bit
string representation, while the secondary block
descriptor file is viewed as a bit slice one. Thus
the path 2 is exactly the same as the two-level
signature file method. If we use the compres-
sion technique for the primary block descriptor

179

file, we can combine four strategies in section 2
as well as the signature clustering strategy into
the proposed methods. As a result, they become
very efficient access methods for retrieving both
formatted data and free texts. Table 2 gives a
list of the names of the methods and their ab-
breviations.

TSM Two-level Signature file Method

PTSM Primary-signature-based Two-level
Signature file Method

ITSM Inversion-based Two-level
Signature file Method

HTSM Hash-table-based Two-level
Signature file Method

Table 2. List of Methods and Abbreviations

3.2 PTSM
PTSM is an access method which is

directly constructed using above scheme. As a
primary block descriptor file, PTSM creates a
separate signature file called primary block sig-
nature file and store it in a bit slice representa-
tion, like the secondary block signature file.
Figure 2 illustrates this method.

Primary Block

Secondary Block
Signature File /

m
Figure 2. Illustration of PTSM

In this method there exists primary and secon-
dary block signature files. By two separate
block signature files, the method can allows as
few false drops. as the special encoding tech-
niques described in section 2. That is, since pri-
mary terms yield their own block signature in
their separate signature file, there. is no false
drop occurring when primary terms and secon-
dary terms are mixed to create a block signa-

ture. In addition, as primary terms are fre-
quently used in user queries, it is necessary to in-
crease the size of primary block descriptors.
This results in smaller false drops, thus provid-
ing good retrieval performance.

3.3 ITSM
Analogously to PTSM, ITSM also

creates a separate block descriptor file for pri-
mary terms. But it adopts the inversion method,
instead of the signature file method. Figure 3
illustrates this method.

Index File
Record Sig-

Posting File nature File Data File

Word

I I J / I
Secondary Block
Signature File /

Dx
Figure 3. Illustration of ITSM

The motivation behind the method is to avoid
false drops completely by storing actual terms in
the primary block descriptor file. In addition
ITSM produces great clustering benefits since it
can contain much information needed for clus-
tering . Thus ITSM achieves fast retrieval on
user queries. However this method suffers from
two problems of the inversion method: slow
insertion and much storage overhead. But this is
not critical since we construct the inverted file
for only primary terms. A different point from a
conventional inversion method is that a posting
file points a block containing record signatures,
rather than actual records.

3.4 HTSM
PTSM is one extreme which allows

false drops but provides small storage overhead.
On the contrary, ITSM is the other extreme
which concentrates on fast retrieval by suppress-
ing false drops completely but gives rise to much
storage overhead. HTSM can be regarded as a
bridge between above two extreme. This method

180

makes use of hash table to suppress false drops
to a small degree. But it contains only pointers
without storing actual terms, thus leading to re-
latively small storage overhead. Moreover
HTSM is nearly as good on clustering effects as
ITSM since it can store the information needed
for clustering in the posting file. As a result,
this method is considered very suitable because it
provides good performance on both sides: re-
trieval side and storage overhead side. Figure 4
illustrates the method.

Nash Posting
Table File

Record Sig-
nature File Data File

Secondary Block

Figure 4. Illustration of HTSM

4. Analysis

Here we will provide the space-time
analysis of proposed methods. In the following,
we will require an estimate of the expected
number of blocks containing r randomly chosen
tokens, given that m is the number of tokens per
block and n is the number of blocks. We define
e(r,m,n) as the expected number of blocks con-
taining the r tokens. Similarly, we define
c(r,m,n) as the expected number of blocks con-
taining the r tokens, when m*n tokens are
clustered in n blocks according to their similarity.
The input and design parameters for the analysis
are given in Table 3.
Now we will examine the performance measures
for given input and design parameters. The
measures we are interested in are listed below:

OR : number of disk accesses on retrieval.
They include the disk accesses to search
the descriptors, as well as to retrieve the
qualifying records.

O Rl : number of disk accesses through path 1
(including the primary block descriptor)

O R2 : number of disk accesses through path 2
(including the secondary block descriptor)

Symbol Definition
N Total number of records
P Page size in bits

2
Number of records that satisfy query
Average Number of records that satisfy query

3
Size of the record signature file in blocks

b,: 4, bsl. b%
Number of record signatures in a block(where N = Ns * NJ
Size of a signature in bits,
(block, record, primary block, secondary block respectively)

ks, kr, ksl. k% Number of bits set to ‘1’ by a term
(block, record, primary block, secondary block respectively)

Fs, Fr, Fsl, Fs, False drop probability of a signature
(block, record, primary block, secondary block respectively)

a Probability that primary terms are used in user queries on the average
S Average number of all the terms in a record

‘v
Average number of primary terms in a record

I-f
Total number of distinct primary words in all the collection of records
Hash table size

t Pointer size in bytes
G Average word length in bytes
h Height of inverted file (B-tree)
E Average chain length in posting file

Table 3. Input and Design Parameters

O 0” : disk storage overhead in pages
01 : number of disk accesses on insertion

4.1 TSM

o Retrieval

h = Fogd VA, where d =

the branching degree of
(Here B-tree- is considered as the
index file of the inversion method).

+ (e(Aflr Js) + Ns *

F,) +A

o Storage Overhead
o Storage Overhead

bs *JJs 0, = F--l P
+ Ns

0 Insertion

I = s * k, + 2

4.2 PTSM

o Retrieval

R = a * R, + (1 - a) * R,

R, = ksl * + (c(WJr fl,) + Ns *

Fsl) (1 + N, * F,) + A

R, = ks2 * + (e(AJV,JV,) + % *

Fs2) (1 + Nr * Fr) + A

o Storage Ove.rhead

0 Insertion

I = r * ksl+ (s - r) * kS2 + 2

4.3 ITSM

o Retrieval

R = a * RI + (1 - ol> *R,

RI = h + E + c(A,N,,N~)(l + N, * F,.)

0, =

0 Insertion

7

+ N,;
where ii is the average number of
chains in ; page,

I = r * (h -t E) + (s - r) * ksz + 2

4.4. HTSM

o Retrieval

R = OL *R, + (1 - a) *R,

4 = 1 + c + (c(A,iV,.,Ns) f N, *
Fh)(l +A’,. *FJ +A,

where Fh = L is the false drop

probability in hayh table.

R, = + (&(A& Ps) + N, *

Fs-) (1 i N, * F,) + A
L

o Storage Overhead

where E and ii are the same as
those in ITSM.

0 Insertion

I = r * (1 + E) + (s - r) * ksz + 2.

182

5. Comparison

In order to show the efficiency of the
proposed methods, we will compare TSM with
PTSM, ITSM, and HTSM. For the comparis-
on, we consider an example database shown in
Table 4. It is formed based on Sacks-Davis’
database [19,20] and the 80-20 rule [9]. Using
this database, we obtain the performance results
as presented in table 5.

N = 1,048,576 (number of records)
s = 20 (number of attributes)
P = 32768 (page size (4K bytes))
L = 1024 bytes (average record size)
t = 4 bytes
W= 6 bytes
] Two-level Method]
N, = 16384

N; =90 I-
kr

1,
ks =5 = 11

bs = 58066 br=332

F, = l/N, Fr =1/--= ZY Nr

] Prouosed Methods]

ksl
=3 k, =5

b
Sl

= 26888

F81
=1/N

bS; = 4645

V
Fs2

=1/N,

Kp
= s = 150,000 a = 0.8 (80-20 rule

= 200 r =4 (80-20 rule

Table 4. Example Database

Measures \ll Retrim ‘-* wa June
1 Storag

Methods
(#ofd lisk access)

TSM II 5.03+1.03B+A

4.43+0.82C
PTSM 1 +0.21B+A 207.2 94

ITSM
3.61+0.82C

2 +0.21B+A 273.4 94

HTSM
3.02+0.82C3
+0.21B+A 272.5 90

A : Number of qualifying records

B : e(A, Nr , Ns) in all methods

Cl, Cz, cj : C(A, N,, Ns) in PTSM, ITSM, and HTSM,
respectively

Table 5. Performance ResuIts

It is shown from the results that the
main difference of the proposed methods from
TSM comes from the signature clustering bene-
fits described as C,, C,, and C,. Here c(A,
N, , NJ), the common expression of C, , C,, and
C, , 1s the expected number of blocks containing
about A matching record signatures, when N
record signatures are clustered in N, blocks ac-
cording to the similarity of primary terms.
Therefore e(A, N,, N,) > c(A, N,, N,), that is
B >, C,, C,, and C,. We let c(A, N,, N,) =
A/p, where p is a clustering factor which indi-
cates the degree of signature clustering. As /3
increases, more record signatures are clustered in
a single block, thus resulting in better perfor-
mance on retrieval. On the contrary, as A in-
creases, the retrieval performance decreases since
B becomes relatively small when A is large.

On the other hand, there also exists the
difference among the proposed methods on re-
trieval performance. The difference is mainly
made by the value of C,, C,, and C,. C,,
C,, and C, are the values dependent on the
clustering degree of PTSM, ITSM, and HTSM
respectively. In general, ITSM produces the
greatest clustering benefits because it can contain
much information required for clustering as well
as can avoid false drop completely. And
HTSM is nearly as good on clustering effects as
ITSM. Thus we can state that C, 6 C, < C,.
As a result, ITSM requires the smallest disk
accesses to retrieve the qualifying records for a
given query.

Here we will compare ITSM with TSM
to show the superiority of the proposed methods.
Table 6 presents the ratio of the decreased disk
accesses of ITSM over TSM, with respect to l3
and A. In addition Figure 5 describes the disk
accesses on retrieval with respect to A when l3
= 2 and 3 respectively [19]. It is seen from
the comparison that ITSM achieves 15-30 %
faster retrieval than TSM when A = l-10000
and p = 2-3. Since the comparison is mainly
focused on the clustering benefits, PTSM and
HTSM will show similar results when C, and
C, are the same as C,. Meanwhile the pro-
posed methods require more storage overhead
than TSM. Here the average record size is
1024 bytes as presented in our example database
in Table 4. Therefore the ratios of the in-
creased storage overhead of PTSM, ITSM, and
HTSM over TSM are 3.9, 9.4, and 9.3 %

183

respectively. In terms of insertion time, the pro-
posed methods require about 10 % smaller disk
accesses than TSM.

(IJnit : %)

1.5 2 2.5 33.54

1 30.0 30.0 30.0 30.0 30.0 30.0

10

100 J

19.6 24.8 27.9 30.0 31.4 32.5

100 14.1 20.7 24.6 27.2 29.1 30.5

1000 12.5 19.4 23.5 26.2 28.1 29.6

3.9 11.6 16.2 19.3 21.5 23.1

Table 6. Ratio of Decreased Disk Accesses
of ITSM over TSM

disk
accesses t

TSM

/

1 10 100 1000 10000 record
matches

Figure 5. Disk Accesses on Retrieval
when p = 2 and 3

6. Conclusions and Further Works

In order to improve the two-level signa-
ture file method, we proposed new multikey ac-
cess methods using term discrimination and sig-
nature clustering. By term discrimination, we
can separate primary terms from all the terms
used for indexing records. Thus it is possible to
create new, efficient access methods for primary
terms, so that we can achieve good performance
on retrieval. In addition, we can cluster similar
record signatures to provide better performance.
To make the clustering easy and effective, we
can form clusters by means of the similarity
between primary terms, rather than all the
terms.

Using above two concepts, we proposed
three different access methods depending on a
way to construct the primary block descriptor
file: PTSM, ITSM, and HTSM. PTSM gives
small storage overhead while ITSM concentrates
on fast retrieval. HTSM is a bridge between
both extremes which can be considered as a
promising method to provide good performance
on both sides: retrieval side and storage over-
head side. We in addition provided the space-
time analysis of the proposed methods and com-
pared them with the two-level signature file
method. We showed from the comparisons that
the proposed methods achieved 15-30 % gains
on retrieval performance when the clustering
factor is 2 and 3, and required 3-9 % more
storage overhead.

Now in order to validate the space-time
analysis of the proposed methods, we are imple-
menting the PTSM, ITSM, and HTSM method.
Further works can deal with the following issues:
- Performance analysis on multi-term queries
- Efficient path selection for multi- term queries
- Performance comparison with the conventional

inversion method.

184

Reference

[I] P.B. Berra et al., “Computer Architecture
for a Surrogate File to a Very Large
Data/Knowledge Base,” IEEE Computer,
Vol. 20. No. 3, Mar. 1987, 25-32.

[2] J.W. Chang and Y.J. Lee,“Multikey Access
Scheme based on Term Discrimination and
Signature Clustering,” International Sym-
posium on Database Systems for Ad-
vanced Applications, Apr. 1989, to be ap-
peared.

[3] R.M. Colomb and J. Jayasooriah, “A Clause
Indexing System for Prolog Based on Su-
perimposed Coding,” The Australian Com-
puter J.. Vol. 18, No. 1, Feb. 1986, 18-

[4] S. ‘zhristodoulakis and C. Faloutsos “Design
Considerations for a Message Fiii Server,”
IEEE Trans. Soft. Eng., SE-lo, No. 2,
1984, 201-210.

[5] B.C. Desai, T. Goyal and F. Sadri, “A Data
Model for Use with Formatted and Textu-
al Data,” J. Am. Sot. Inf. Sci.(JASIS),
Vol. 37. No. 3, May 1986, 158-165.

[6] C. Faloutsos, “Access Methods for Text,”
Computing Survey, Vol. 17, No. 1, Mar.
1985, 49-74.

[7] C. Faloutsos, “Signature Files: Design and
Performance Comparison of Some Signa-
ture Extraction Methods,” ACM SIG-
MOD, May 1985, 63-82.

[8] C. Faloutsos and R. Chan, “Fast Text Ac-
cess Methods for Optical and Large Mag-
netic Disks: Design and Performance
Comparison,” VLDB, Aug. 1988, 280-
293.

[9] C. Faloutsos and S. Christodoulakis, “Design
of a Signature File Method That Accounts
for Non-Uniform Occurrence and Query
Frequencies,” VLDB, Aug. 1985, 165-170.

[lo] C. Faloutsos and S. Christodoulakis,
“Description and Performance Analysis of
signature File Methods,” ACM TOOIS,
Vol. 5, No.3, 1987, 237-257.

[ll] J.R. Files and H.D. Huskey, “An Informa-
tion Retrieval System Based on Superim-
posed Coding ,” Proceedings of the Fall
Joint Computer Conference, AFIPS Press,
1969, 423-432.

[12] R.L. Haskin and R.A. Lorie, “On Extend-
ing the Functions of a Relational Data-
base System,” ACM SIGMOD, Jun. 1982,
207-212.

[13] A. Ken.t, R. Sacks-Davis, and K.
Ramamohanarao, “A Superimposed Cod-
ing Scheme Based on Multiple Block
Descriptor Files for Indexing Very Large
Data Bases,” VLDB, Aug. 1988, 351-359.

[14] D.E. Knuth, “The Art of Computer Pro-
gramming, vol 3: Sorting and Searching,”
Addison-Wesley, 1973.

[15] 1. A. Macleod and A. R. Reuber, “The
Array Model: A Conceptual Modeling
Approach to Document Retrieval,” J. Am.
Sot. Inf. Sci.(JASIS), Vol. 38, No. 3,
May 1987, 162-170.

[16] K. Ramamohanarao, and J. Shepherd. “A
Superimposed Codeword Indexing Scheme
for Very Large Prolog Databases,”
Proceedings of International Symposium
on Logic Programming, 1986, 569-576.

[17] C.S. Roberts, “Partial-Match Retrieval via
the Method of Superimposed Codes,”
Proc. IEEE 67, Dec. 1979, 1624-1642.

[18] R. Sacks-Davis and K. Ramamohanarao,
“A Two Level Superimposed Coding
Scheme for Partial Match Retrieval,” In-
formation Systems, Vol. 8, No. 4, 1983,
273-280.

[19] R. Sacks-Davis and K. Ramamohanarao,
“Performance of a Multi-Key Access
Method Based on Descriptors and Super-
imposed Coding Techniques ,‘I Information
Systems, Vol. 10, No. 4, 1985, 391-403.

[20] R. Sacks-Davis et al., “Multikey Access
Methods Based on Superimposed Coding
Techniques ,‘I ACM Tran. Database Sys-
tems, Vol. 12, No. 4, Dec. 1987, 655-
696.

[21] G. Salton and M.J. McGill, “Introduction
to Modern Information Retrieval ,I’
McGraw-Hill, 1983.

185

