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ABSTRACT
A fundamental task in Information Retrieval (IR) is term
weighting. Early IR theory considered both the presence or
absence of all terms in the lexicon for ranking and needed to
weight them all. Yet, as the size of lexicons grew and models
became too complex, common weighting models preferred
to aggregate only the weights of the query terms that are
matched in candidate documents. Thus, unmatched term
contribution in these models is only considered indirectly,
such as in probability smoothing with corpus distribution,
or in weight normalization by document length. In this work
we propose a novel term weighting model that directly as-
sesses the weights of unmatched terms, and show its ben-
efits. Specifically, we propose a Learning To Rank frame-
work, in which features corresponding to matched terms are
also “mirrored” in similar features that account only for un-
matched terms. The relative importance of each feature is
learned via a click-through query log. As a test case, we con-
sider vertical search in Community-based Question Answer-
ing (CQA) sites from Web queries. Queries that result in
viewing CQA content often contain fine grained information
needs and benefit more from unmatched term weighting. We
assess our model both via manual evaluation and via auto-
matic evaluation over a clickthrough log. Our results show
consistent improvement in retrieval when unmatched infor-
mation is taken into account. This holds both when only
identical terms are considered matched, and when related
terms are matched via distributional similarity.

Keywords: Unmatched Terms; Document Ranking; Community-

based Question Answering

1. INTRODUCTION
One of the fundamental tasks in Information Retrieval

(IR) is term weighting, which refers to the assessment of a
weight for each term appearing in the document collection,
and similarly in the input query. Early Probabilistic IR the-
ories considered the presence or absence of all terms in the
lexicon for ranking, both in the query and the documents
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[29, 26]. However, term weights in these models were found
difficult to compute, and the main line of research around
weighting models chose to consider mainly the weights of the
query terms that are matched in candidate documents. In-
deed, weighting schemes such as TF-IDF [31], BM25 [28] and
statistical language models [33, 24, 40], as well as Learning
To Rank (LTR) methods [20], are primarily based on con-
sidering the contribution of the matched terms, those query
terms that appear also in the document. Though unmatched
terms, i.e. terms that appear only in the query or only in the
document, are not completely ignored, they are considered
indirectly in these models, such as by using the document
length for weight normalization or via corpus-based smooth-
ing of maximum likelihood estimations.

As suggested by early probabilistic models we argue that
analyzing directly unmatched terms may provide additional
cues to the relevance of a candidate document to the query.
Indeed, while the contribution of stop-words, such as de-
terminers and modals, can be largely ignored, unmatched
named entities are strong indicators of semantic differences
between the query and the document. For example, for the
query “most deadliest snake”, the document title “where can
I find a list of the deadliest snakes” is more relevant than
“which is the most deadliest snake in Russia”, though the
first title is longer than the second, and second title con-
tains all of the query terms in the right order.

Another intuition regarding direct modeling of unmatched
terms refers to the percentage of query terms that are cov-
ered in the document. We would like to explicitly indicate
that for two queries, a short one and a long one, if both
match the same set of terms within a candidate document,
this document is likely to be of less relevance for the longer
query, which contains more unmatched terms, compared to
the shorter one. As an example consider the queries “most
deadliest snake” and “most deadliest snake in Russia” and
the candidate document “where can I find a list of the dead-
liest snakes”. We would like to explicitly express the lack
of relevance of the document to the second query due to
unmatched query terms.

We expect the subtleties between different types of un-
matched terms to show especially for Web queries with fine-
grained information-need. Therefore, we focus in this paper
on Web queries with question intent, which constitute ∼10%
of the Web queries issued to a search engine [36]. Exam-
ples for such Web queries are those resulting in the searcher
clicking on a question page belonging to Community-based
Question Answering (CQA) sites, such as Yahoo Answers,
StackExchange and Quora, and are called here CQA queries.
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Our retrieval scenario is vertical search [25, 2], in which con-
tent of a CQA sub-collection should be retrieved on top of
general Web search.

In this work, we address this vertical search task by in-
troducing a term weighting model that directly considers
the contribution of unmatched terms for ranking. However,
instead of a probabilistic framework, we utilize LTR as a
ranking framework. To this end, we employ a large set of
state-of-the-art features, which capture various attributes of
matched terms, both statistical ones (such as variants of
TF-IDF) as well as syntactic ones (such as Part-Of-Speech
(POS) tags) [20, 9]. We then design “mirror” features that
evaluate similar attributes, but for the unmatched terms.
These novel mirror features are provided, together with the
features that correspond to matched terms, as input to an
LTR algorithm, which learns the relative weights of the dif-
ferent features using click-through training data.

Prior work in document ranking noted that, occasionally,
different terms in the query and the document actually con-
vey related meanings or even the same meaning (e.g. ‘guy ’
– ‘man’, ‘drink ’ – ‘alcohol ’) and should be considered as
matching for document ranking. One common approach to
handle this lexical gap is via translation models, which in-
clude some similarity measure between query and document
terms as part of term matching [4, 17, 39, 14]. In order to
analyze the contribution of our unmatched term modeling
under such “soft matching” schemes, we introduce a “soft”
variant of all the features we compute for matched terms in
our LTR framework, which is based on distributional simi-
larity between terms. We then provide a similar soft variant
of our unmatched-term features that complement the soft
matched-term features. This should enable the unmatch-
based features to better account for only semantically un-
matched terms instead of terms that have similar meanings.

We conducted experiments on a vertical search setting
that searches a Web query over a large collection of ques-
tion pages from Yahoo Answers. The contribution of our
unmatch-based features for term weighting was evaluated
under two setups: a) large-scale automatic evaluation over
a click-through query log; b) manual evaluation of the top re-
trieved documents for a set of tested queries. We compared
our model to a state-of-the-art LTR model that utilizes only
features that correspond to matched terms. The tested mod-
els were assessed both under the exact matching modeling,
in which only identical terms are considered matched, and
the soft matching modeling, where terms may be partially
matched via distributional similarity. Our novel features
provided consistent improvement in document ranking on
both scenarios, showing the benefit of directly considering
unmatched terms for term weighting.

2. RELATED WORK
Unmatched terms were addressed in prior IR ranking mod-

els in different ways, both for general search and for CQA
search. We distinguish between two types of unmatched
terms: a) terms that appear in the candidate document but
not in the query, denoted as excessive terms; b) terms that
appear in the query but not in the candidate document for
ranking, denoted as missing terms.

Probabilistic information retrieval theory accounts for pres-
ence or absence of all terms in the lexicon, both in the query
and in a candidate document for ranking [29]. Similarly,
early reformulation of language models for IR (LMIR) [26]

considered the query as a set of words, and modeled ex-
cessive terms in the document by their ability to generate
terms not in the query. However, term weighting compu-
tation becomes a difficult problem under these frameworks
[30, 33, 40], especially when no relevance feedback is con-
sidered. Therefore, recent ranking models, and specifically
term weighting models, focus mainly on the matched terms
between the query and a candidate document.

The overall ranking score of a document is typically the
sum of the weights of the terms in the document that match
(to some extent) the query terms. Therefore, document term
weights in popular weighting schemes are non-negative and
the effect of missing terms in a candidate document is con-
sidered indirectly by not contributing their weights to the
document ranking score. This is the case in common prob-
abilistic and vector space models, such as Binary Indepen-
dence Model (BIM) [30], TF-IDF [31], Okapi BM25 [28],
divergence from randomness [1], and multinomial language
models, which view the query as a sequence of terms [33,
24, 41, 40]. Specifically, language models were extensively
explored for CQA retrieval and were extended in different
ways to incorporate meta data like categories [7], and the
question focus and topic [13]. The same principle of scor-
ing documents by summing matching term weights is also
behind different weighting terms at the query side [3, 43].

In another line of ranking research, Learning to rank (LTR)
approaches [20, 19] were introduced for learning to com-
bine many features in a supervised way. Various learning
algorithms were proposed, such as SVMRank [8] and Lamb-
daMart [38], which may assign negative weights to some
features. Still, the features themselves are typically derived
for the matched terms, and therefore LTR algorithms learn
the relative contribution of each feature with respect to the
matched terms. Most derived features are statistical in na-
ture, such as variants of term frequency and document fre-
quency scores [20], and were also utilized in supervised rank-
ing models in CQA [18, 37]. Carmel et al. [9] showed that
utilizing features derived from syntactic analysis of the doc-
ument title improves ranking performance for CQA queries.
In a related task of answer sentence ranking within the field
of Question Answering, tree kernels that incorporate seman-
tic and syntactic features of the words provide state-of-the-
art performance [34]. Still, the overall approach weigh in the
number of matched sub-trees but not the unmatched ones.

Missing terms, which appear in the query but not in the
document, received considerable attention within attempts
to address the lexical gap problem: improving the match-
ing between query and document terms that are not lexi-
cally identical but convey similar meaning. One common
approach incorporates a translation model as part of term
weighting [4, 17]. This approach was found useful also for
retrieving CQA content, where translation models were used
within LMIR for retrieving related questions [16, 39, 42] as
well as for ranking CQA documents for Web queries [37].
Recently, lexical semantic similarity between terms via dis-
tributed representations, such as word2vec [23], was found
helpful in several IR tasks, including query term weighting
[43] and as features in a LTR framework for answer retrieval
[10]. Ganguly et al [14] employed similarity between word
embedding vectors within a translation model for LMIR as
means to overcome the lexical gap between queries and doc-
uments, where it outperformed a language model extended
with latent topics.
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Figure 1: Sum of IDF values (normalized) for the
matched, excessive and missing terms, computed
separately over all non-clicked documents ranked
at positions 1 to 20 (the three plots) and over the
clicked documents (three horizontal lines).

Prior work captured the effect of excessive terms (appear-
ing only in the document) on the ranking score mainly by
their contribution to overall document context or structure.
Many vector space and probabilistic models (e.g. TF-IDF,
BM25, language models) utilize the document’s length as
a degrading parameter for term weights, e.g. as the de-
nominator of maximum likelihood estimation or in `2 vector
normalization. Other models include all document terms
when modeling a global latent representation for each doc-
ument. One line of works uses latent topics (e.g. LDA [5])
as additional smoothing elements within LMIR [35]. This
extension was shown useful also in retrieval of related CQA
questions [6]. Another approach is to embed the document
in a latent space. Latent Semantic Indexing [12] utilizes
SVD to represent documents and queries within a reduced
dimension space based on the main singular values of a
term/document co-occurrence matrix. Lately, deep learn-
ing was shown useful for ranking by embedding the query
and document texts into a shared latent space, within Web
search [15] and within Question Answering [32]. Such ap-
proaches were not evaluated under the CQA vertical search
setting yet, whose query length distribution and query at-
tributes is quite distinguishable from general Web search
and from question/answer datasets [9, 36].

3. YAHOO ANSWERS DATASET
In this work we perform our analysis and experiments on

a large document collection taken from Yahoo Answers. Ya-
hoo Answers is a popular CQA website containing questions
about diverse topics, such as sports, healthcare, politics, sci-
ence and many others. Each question page in the site con-
sist of: a) a title, which is typically a short summary of the
question, b) a body, containing a detailed description of the
question, and c) all the answers provided for this question.
We collected 54 million question pages from Yahoo Answers
(referred to as our corpus) and indexed them using Lucene1.

We also randomly sampled Web queries that were issued
to a popular search engine and resulted in a click on one of
the pages in our corpus by analyzing the search log. For each
sampled query the top 100 results from our corpus were re-

1lucene.apache.org

Figure 2: POS tagging and dependency parse tree
for the question Can someone suggest fun party
games?. The upper label of each token is its POS
tag and the lower label is its syntactic role.

trieved using Lucene’s BM25 ranking function over all fields
(title, body, answers). We retained the set of queries for
which the clicked page for the query (as extracted from the
search log) was found among the top 100 Lucene results.
After this process, our click-based query collection consists
of 136,000 queries.

Since search-engines show mostly the title of a question
page on the search result page, Carmel et al. [9] reason that
the relevance of the title to the query is one of the main rea-
sons for a user to click on the page. This especially makes
sense as the title is often a good summary of the question
in the page. Furthermore, both title and query are concise
and usually do not contain redundant information. There-
fore, we expect that unmatched term weighting would help
in retrieval under this scenario. Following them [9], we an-
alyze and model unmatched terms only between the title of
a Yahoo Answers question page and the target query.

4. UNMATCHED TERM ANALYSIS
To further motivate our modeling approach we analyze

the properties of the unmatched terms: terms that appear
in the candidate document but not in the query (exces-
sive), and terms that appear in the query but not in the
candidate document (missing). To this end, we sampled
20,000 queries2 from our query collection and examined the
matched and unmatched terms between each query and the
titles of the retrieved documents (using Lucene). We com-
pared the analysis statistics between documents that were
clicked by the user who issued the query, denoted as clicked
documents, and the other top retrieved documents, denoted
as non-clicked documents.

4.1 IDF Distribution Analysis
First we examined the distribution of IDF values among

the matched and unmatched terms. To this end, we com-
puted the sum of IDF values for the matched terms and the
excessive terms in each title (normalized by the title length).
We also computed the IDF sum for the query’s missing terms
(normalized by the query length). These three indicators
are plotted in Fig. 1, where each point in the plot repre-
sents the value averaged over all non-clicked titles ranked
at the i’th position by the BM25 ranking, for i=1..20. The
three horizontal lines in Fig. 1 correspond to the values of
the three indicators averaged over the clicked documents.
Note, higher values intuitively reflect more relevance in the
matched term curve but less relevance in excessive and miss-
ing term statistics.

2Taken from our training set – see Sec. 5.4
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Figure 3: Probability of a term in the title not to
match any query term given its POS tag (top chart)
or syntactic role (bottom chart)

The matching-term IDF values (the diamond shape points)
indicate that the clicked document (the horizontal line) is
comparable, on average, only to the document at the 4′th
position. This means that, with respect to matched terms,
top ranked non-clicked documents usually contain as much
and even more IDF volume compared to the clicked docu-
ment. Yet, excessive and missing term analyses reveal com-
plementing phenomena. First, on average, only non-clicked
documents that are ranked first have the excessive term indi-
cator lower than the value for clicked documents. This may
indicate that while several non-clicked documents contain
“important” (high-IDF) query terms in their title, driving
them to high ranking positions, they also contain additional
“important” terms that do not appear in the query and may
change the meaning of the title compared to the query.

Second, the indicator for missing terms in clicked docu-
ments stands out even more, as it is lower compared to all
non-clicked documents. This could indicate that in CQA
queries it takes more than one term to express the gist of
the information needed. While some non-clicked documents
may include in their title high-IDF query terms, which cor-
respond to “important” terms, they also tend to leave-out
more “important” terms compared to the clicked document.

Assuming that click analysis is a useful approximation of
relevance analysis, these results suggest that matched term
statistics reveal only some aspects of the title’s relevance to
a searcher’s information need. More relevance aspects may
be further exposed by explicitly modeling unmatched terms.

4.2 Syntactic Analysis of Excessive Terms
Carmel et al. [9] showed that document terms with differ-

ent syntactic properties should be weighted differently for
retrieval. Hence, we examine similar syntactic properties of
excessive terms, namely POS tags and dependency roles.

To this end, all titles in our corpus were syntactically an-
alyzed using the Stanford parser3 under the “all typed de-
pendencies” setting. Then, for each title term in a retrieved
document we extracted its POS tag and syntactic role (the

3http://nlp.stanford.edu/software/lex-parser.shtml

dependency relation in which the term is the dependent).
Fig. 2 presents an example for this analysis. Finally, for each
syntactic property we counted its total occurrences in each
title and its occurrences within excessive terms, and com-
puted their ratio. The ratio of these two counts represents
the probability of each syntactic property to be an excessive
term. In Fig. 3 we depict two probability families, averaged
across all analyzed queries: a) for all clicked documents;
and b) for the three highest ranking non-clicked documents
(representing the “toughest” competitors to beat for rank-
ing the clicked documents on top of non-clicked ones). For
clarity, the charts contain only the results for the 15 most
common POS tags and syntactic roles, and they are sorted
in decreasing order of the probability value.

Looking at Fig. 3 we observe large differences in excessive
term probability between different syntactic tags. For exam-
ple, in clicked items, this probability for pronouns (PRP -
usually a low IDF stopword) is ∼0.75, while for proper nouns
(NNP) it is only ∼0.35. Such large differences echoes previ-
ous observation [9] that there is a possible gain in modeling
differently terms with different syntactic tags.

Comparing the statistics between clicked titles and the
top non-clicked titles, we can see that in quite a few prop-
erties there are distinguishable differences between clicked
and non-clicked titles. These differences suggest that ex-
cessive term weighting may improve if syntactic properties
will be considered. As an example we look at verbs, which
are important terms in a query (usually capturing the main
activity asked about). The syntactic roles that are often
associated with verbs in the bottom chart are ‘aux ’, ‘cop’,
‘root ’ and sometimes ‘conj ’. These roles can be partitioned
into two groups. The first group contains ‘aux ’ and ‘cop’,
whose excessive probability is higher in non-clicked titles.
The second group contains ‘root ’ and ‘conj ’, which are more
likely to be excessive in clicked titles. This shows that syn-
tactic properties can provide more fine-grained distinctions
between similar terms or even for the same term when as-
suming different roles.

As another example, the charts in Fig. 3 also show that
nouns (POS tags: NN*, Dep roles: conj, nsubj, dobj, pobj,
nn) are more likely to be excessive in non-clicked documents.
As nouns typically contain the main participants of a ques-
tion, it is important to match all (or most) of them to align
the exact semantics of the query to that of a title. There-
fore, directly assessing both matched and unmatched nouns
could improve retrieval. In Fig. 3 the only reverse case is
with ‘conj ’, which is more likely to be excessive in clicked
titles. Yet, conjunctive nouns, such as in the example “good
websites that stream movies and tv shows”, may be skipped
(and become excessive terms) while maintaining the same
semantic gist of the question.

The analysis in this section suggests that modeling statisti-
cal properties as well as syntactic properties of unmatched
title terms may lead to better assessment of document rele-
vance for CQA queries. We next explicitly construct features
for unmatched terms, within a Learning To Rank (LTR)
framework, which take these properties into consideration.

5. MODELING UNMATCHED TERMS
The task of our ranking algorithm is to rank a set of can-

didate documents D given a CQA query q. We follow a stan-
dard LTR scheme [19, 20, 9] and define a mapping function
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Feature Formulation

L1
∑

t∈q c(t, d)× δ(t ∈ d)

L2
∑

t∈q log(c(t, d) + 1)× δ(t ∈ d)

L3
∑

t∈q
c(t,d)
|d| × δ(t ∈ d)

L4
∑

t∈q log
(

c(t,d)
|d| + 1

)
× δ(t ∈ d)

L5
∑

t∈q log
(
|C|
df(t)

)
× δ(t ∈ d)

L6
∑

t∈q log
(

log(
|C|
df(t)

)
)
× δ(t ∈ d)

L7
∑

t∈q log
(
|C|

c(t,C)
+ 1
)
× δ(t ∈ d)

L8
∑

t∈q log
(

c(t,d)
|d| log(

|C|
df(t)

) + 1
)
× δ(t ∈ d)

L9
∑

t∈q c(t, d) log
(
|C|
df(t)

)
× δ(t ∈ d)

L10
∑

t∈q log
(

c(t,d)
|d|

|C|
c(t,C)

+ 1
)
× δ(t ∈ d)

G1(p)
∑

t∈d∧POS(t)=p c(t, q)

G2(p)
∑

t∈d∧POS(t)=p idf(t)× c(t, q)
G3(p)

∑
t∈d∧CPOS(t)=p c(t, q)

G4(p)
∑

t∈d∧CPOS(t)=p idf(t)× c(t, q)
G5(sr)

∑
t∈d∧SR(t)=sr c(t, q)

G6(sr)
∑

t∈d∧SR(t)=sr idf(t)× c(t, q)
H1 BM25 score
H2 log(BM25 score)
H3 LMIR with Dirichlet smoothing parameter β

Table 1: Matched term features used in [9]; c(t,X) –
term frequency of t in X; df(t) – document frequency

of t in our corpus C; idf(t) = log
(
|C|
df(t)

)
; |X| – total

number of terms in X; POS(t), CPOS(t) and SR(t)
are the POS tag, coarse-POS tag and syntactic role
of t respectively; δ() is the indicator function.

Φ(q, d) ∈ Rn from pairs of a query q and a candidate docu-
ment d to the vector space Rn. Our algorithm uses a weight
vector w to compute a score for each d ∈ D via the inner
product s(q, d) = w · Φ(q, d). Finally, the candidate docu-
ments are ranked according to the value of s(q, d), where the
higher the score for some document d, the higher its rank in
the retrieved list. The goal of the learning algorithm is to
find weights w such that more relevant documents will have
high score compared to less relevant ones.

Our work focuses in the design of a new feature mapping
Φ(q, d) that captures both missing and excessive terms. We
build on the work of Carmel et al [9] who proposed only fea-
tures that consider matched terms and extend their mapping
in two ways: (1) taking into account unmatched terms; (2)
relaxing the notion of matched/unmatched terms, and al-
lowing soft-matching between terms in the query and the
candidate, based on distributional similarity.

We describe in Sec. 5.1 the state-of-the-art features pro-
posed by Carmel et al [9], which are our baseline and starting
point. Additionally, we present in Sec. 5.2 an abstraction of
these features having in mind our goal to introduce their
corresponding new features for unmatched terms. Finally,
in Sec. 5.3, we incorporate soft-matching into all features
presented until then. We use a previous weight learning
scheme [9] (Sec. 5.4) in order to replicate their work as a
baseline and have a fair comparison of our new features.

5.1 Matched Term Features
Carmel et al [9] also addressed the task of vertical search

for CQA queries within an LTR framework (see Sec. 2).
They proposed two types of features that analyze matched
terms: standard statistical features [20], such as TF-IDF,
and new syntactic-based features that collect matched term
statistics for each POS tag and syntactic role separately. All
these features are summarized in Tab. 1.

Carmel et al mainly analyzed the performance of the doc-
ument title for matching the query, arguing that in CQA
content, the title is a good summary of the question be-
ing answered within the document. Therefore, all statistics
are derived only from the document’s title, except for the
BM25-related features (H1−2) which are computed over the
whole document. Under this formulation, which we follow,
q and d represent the list of terms in the query and the doc-
ument’s title respectively. Features L1−10 and H1−3 refer to
standard statistical features, while G1−4(p) and G5−6(sr)
are feature families that are generated for each POS tag p
and syntactic role sr, respectively. For example G1(IN) is
the feature generated for the IN (preposition) POS tag and
G5(root) is the feature generated for the root syntactic role.

Each of the features L1−10 and G1−6 can be viewed more
abstractly as (possibly conditional) term summing of a prod-
uct of two terms: (1) a count (or a function of it) of some
event, denoted by fFi ; and (2) a boolean predicate or a nu-
meric value indicating some matching between q and d:

Li(q, d) =
∑
t∈q

fLi(t, d)× δ(t ∈ d) (1)

Gi(q, d) =
∑

t∈d∧condGi
(t)

fGi(t, d)× c(t, q) (2)

The matching indication part in Li is δ(t ∈ d) – whether
the query term appears in the document. The indication
part of Gi is c(t, q) – the occurrence count of the title term
in the query, which is 0 for unmatched. Examples for in-
stantiating these abstractions with specific statistics are: a)
for L2, fL2 := log(c(t, d) + 1); and b) for G1, fG1 := 1 and
condG1 := (POS(t) = p).

5.2 Unmatched Term Features
We now introduce our novel features, which induce the fFi

signals in parallel to their counterpart matched term features
L1−10 and G1−6. Yet, instead for the matched terms, the
new feature families do so for the set of excessive terms, de-
noted by EXL and EXG, and for the set of missing terms,
denoted by MIL and MIG. We present the generic repre-
sentations of these feature families similarly to (1) and (2):

EXLi(q, d) =
∑

t∈u(d)

fLi(t, d)× (1− δ(t ∈ q))

EXGi(q, d) =
∑

t∈d∧condGi
(t)

fGi(t, d)× (1− δ(t ∈ q))

and,

MILi(q, d) =
∑

t∈u(q)

fLi(t, q)× (1− δ(t ∈ d))

MIGi(q, d) =
∑

t∈q∧condGi
(t)

fGi(t, q)× (1− δ(t ∈ d))
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Figure 4: Percentage of queries by length

The differences between these new feature families and
their matched term counterparts are in: a) the matching
indicators, which turn into unmatching indicators; and b)
the term sets over which the summation is performed. For
example, the unmatching indicator in the excessive feature
family EXLi is (1− δ(t ∈ q)), which is 1 only if the docu-
ment term is not in the query. In addition, the summation
in EXLi is over u(d), which stands for the set of unique4

terms in d from which we pick the excessive terms.
We note that for MIGi, syntactic analysis of the query is

required. We used the Stanford parser for query parsing as
well, but found that the query dependency trees were of low
quality. Therefore, in our experiments we only use the POS
tags for queries, and hence only features MIG1−4, leaving
the reliable generation of features MIG5−6 for future work.

5.3 Soft Matching Formulation
As discussed in Sec. 2, some mismatches in exact matching

scheme should actually be accounted as (at least partial)
matches, such as in the case of synonyms or related words,
e.g. ‘guitar ’ and ‘riff ’. We extend our proposed features and
present a novel soft matching formulation of all our matched
and unmatched features (except BM25-related H1−2). To
the best of our knowledge, this is the first formulation in
the context of the standard set of LETOR features [20].

We start with a lexical similarity function sim(tq, td) ∈
[0, 1] between a query term tq and a document term td. The
closer the function’s value is to 1 the more similar the two
terms are. We follow recent successes with word embedding
similarity and use in this work:

sim(tq, td) := max(cos(sg(tq), sg(dq)), 0) ,

where sg(t) is the word embedding vector of term t learned
by the SkipGram algorithm [23]. We define sim(t, t) = 1 for
every word similarity with itself and sim(t, u) = 0 if t 6= u
and either t or u are not in the lexicon.

To incorporate the similarity score sim(tq, td) into our fea-
tures we find the best matching counterpart term for each
query term and for each document term:

bmd(tq) = arg max
td∈d

sim(tq, td)

bmq(td) = arg max
tq∈q

sim(tq, td)

δs(t, d) = sim(t, bmd(t))

δs(q, t) = sim(bmq(t), t) ,

4Term repetition is avoided since the number of occurrences
of the term t in d is already counted in fLi .

where δs(t, d) and δs(q, t) are soft indicator functions that
capture how well a query (document) term is matched against
the document (query) via its similarity score with its best
match. We note that if sim() would only return 1 for exact
match and 0 otherwise, δs() would become δ().

Finally, we extend our features using bm() and δs():

Ls
i (q, d) =

∑
t∈q

fLi(bmd(t), d)× δs(t, d)

Gs
i (q, d) =

∑
t∈d∧condGi

(t)

fGi(t, d)× c(bmq(t), q)× δs(q, t)

EXLs
i (q, d) =

∑
t∈u(d)

fLi(t, d)× (1− δs(q, t))

EXGs
i (q, d) =

∑
t∈d∧condGi

(t)

fGi(t, d)× (1− δs(q, t))

MILs
i (q, d) =

∑
t∈u(q)

fLi(t, q)× (1− δs(t, d))

MIGs
i (q, d) =

∑
t∈q∧condGi

(t)

fGi(t, q)× (1− δs(t, d)) ,

where we simply replace (or augment where necessary) the
indicator function with the soft indicator variant, and in-
stead of gathering statistics from exact match occurrences,
we gather them from the occurrences of the best-match. If
a query term appears as-is in the document (exact match),
our feature scores are exactly as for exact matching. Yet,
when a query term does not exactly appear in the docu-
ment (or vice versa) instead of returning a matched feature
value of zero, we resort to counting with respect to its best
soft match instead. We note that a similar formulation us-
ing best-matches is utilized by Liu et al [21] for computing
similarity between short documents.

5.3.1 Language Model with Soft Matching
Prior work showed that extending LMIR with some sim-

ilarity notion between terms improves retrieval results [39,
14]. We therefore extend our language model feature H3 in
a similar way, following the formalism of Xue et al [39]:

Hs
3(q, d) =

∑
t∈q

log(P (t|d))

P (t|d) =
|d|
|d|+β

(
(1− α)

c (t, d)

|d| + αPtt (t|d)

)
+

β

|d|+β Pc (t)

Ptt(t|d) =
∑
td∈d

sim(t, td)

Z(t, d)
× c (td, d)

|d| Z(t, d) =
∑
td∈d

sim(t, td) ,

where q is the query term list; d is the document term list
and |d| is its length; c(t, d) is the term-frequency of t in d;
Pc(t) is maximum likelihood estimation (MLE) of t in our
corpus; Z is a probability normalizer; and α and β are hyper
parameters to be tuned.

We note thatHs
3 is a variant of Xue et al’s language model.

Instead of using a translation table as Ptt, we followed Gan-
guly et al [14], who suggested a variant of Ptt based on a
similarity function sim() (normalized into a probability dis-
tribution). Note, when sim() represents exact matching, Hs

3

becomes H3.
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5.4 Model Weight Learning
We learned the weights w of our ranking algorithm in a

semi-supervised manner based on clickthrough data. The
goal of the learning algorithm is to find a vector w such
that for each query in the training data, the corresponding
clicked document will be ranked as high as possible. We used
the online variant of SVMRank [8] with the AROW update
[11] as done before [9]. Specifically, for each training query
the algorithm first re-ranks the top 100 documents retrieved
by Lucene using the currently learned ranker. Then, it se-
lects the top K ranking documents, excluding the clicked
document. The algorithm then updates w such as for this
query the clicked document would increase its ranking score
compared to the selected K documents.

We split our query collection (see Sec. 3) into a 61,000
query training-set, a 14,000 query validation-set and a 61,000
query test-set. The validation-set was used to tune the
various hyper-parameters for each tested model separately,
namely, the number of training rounds, the value of K, and
the AROW hyper-parameter r. The only hyper parameters
that were tuned once for all models are β = 1, α = 0.5 for the
H3 and Hs

3 LMIR features. Specifically, β was tuned on the
LETOR model and α was then tuned on a soft version of the
LETOR. See Sec. 6.1 for details on the configuration of each
tested model. Finally, to compute term similarity we used
publicly available5 pre-trained word embedding vectors.

6. EXPERIMENTS
We evaluated our proposed models against several base-

lines via two settings: first, based on a large scale click-
through data, and second, based on manual judgments.

6.1 Tested Models
We consider six baseline models:

• LSI: Latent Semantic Indexing [12], where ranking score
is computed as the dot product between the LSI rep-
resentations of the query and the document title. We
utilized the top 200 dimensions of the SVD decompo-
sition of our corpus6 as the latent space.

• BIM: Binary Independence Model [22] with unmatched
probability estimation using pseudo relevance, taking
the ’Relevant set’ as 1, 3 or 5 top ranking documents
by BM25.

• BM25: Using only the relevance score as provided by
Lucene (feature H1 in Tab. 1).

• LETOR: Using only statistical features associated with
matched terms (features L1−10 and H1−3 in Tab. 1).

• Matched: Using all the features associated with matched
terms (all features in Tab. 1).

• SoftMatched: Using soft-matching formulation for the
matched features, i.e. feature families Ls

i , Gs
i and fea-

ture Hs
3 (as in Sec. 5.3), and H1−2 from Tab. 1.

We compare the baselines to our proposed models:

• Full: Combining unmatched and matched features un-
der exact matching formulation, i.e. all features in
Tab. 1 as well as feature families EXLi, EXGi,MILi

and MIGi (described in Sec. 5.2).
5https://code.google.com/p/word2vec/
6Using RedSVD: http://code.google.com/p/redsvd/

• SoftFull: Combining unmatched and matched features
under soft-matching formulation, i.e. feature families
Ls

i , Gs
i , EXLs

i , EXGs
i , MILs

i , MIGs
i and feature Hs

3

(described in Sec. 5.3), and features H1−2 in Tab. 1.

We trained separately each of the LTR-based models using
the algorithm in Sec. 5.4.

6.2 Automatic Evaluation
We conducted a large scale automatic evaluation using

our 61,000 query test-set (see Sec. 5.4). For each query we
retrieved the top 100 results from the document collection
using Lucene, and then re-ranked the top results using each
of the tested models. We report Mean Reciprocal Rank
(MRR) and Binary Recall at position K (R@K), all derived
from the rank position of the clicked document associated
with each query. Fig. 4 depicts the query length distribution
of our test-set. We remind the reader that CQA queries are
usually longer than typical Web queries.

6.3 Manual Evaluation
We randomly sampled 1,000 queries of length 3 or more

words from our test-set (shorter queries are scarce in our
query collection - see Fig. 4). For each query we collected
the top 10 documents as ranked by each of the tested models.
Professional editors assessed the relevance of each document
in the pool on three Likert-scale levels: (1) non-relevant, (2)
partially-relevant, and (3) highly-relevant. Inspecting the
evaluations, we found that usually only highly-relevant doc-
uments refer to relevant content. Hence, we report NDCG
with weights of 0 for non-relevant, 1 for partially-relevant
and 10 for highly-relevant. We also report Precision at K
(P@K) taking only highly-relevant documents as relevant.

7. RESULTS
The results for the automatic and manual evaluations are

summarized in Tab. 2 and Tab. 3, respectively. All sta-
tistical significance figures are computed using t-test. The
results in both tables indicate a trend similar to the one re-
ported by Cramel et el [9]. Namely, LETOR outperforms
BM25 by a large margin (e.g. 10.5% increase in MRR) and
adding syntactic features (Gi) on top of statistical features
(Li, Hi) in the Matched model consistently provides addi-
tional improvement, e.g. 1.5% increase in MRR across all
query lengths (Fig. 5). We thus refer to Matched as our
main baseline. We note in passing that the performance of
the LSI and BIM models was significantly lower than the
LTR models (e.g. MRR of 0.202 for LSI, 0.164 for BIM)
and adding them as additional features did not help either.
We therefore excluded their performance report.

We next observe that adding soft term-matching to ad-
dress the lexical gap between queries and documents (Soft-
Matched model) shows a nice improvement under the click-
through automatic evaluation. For example, MRR is in-
creased by 2.1% compared to Matched. In addition, manual
evaluation also shows some improvement using soft match-
ing, specifically at high rank positions. For example, P@3
is increased by 2.9% compared to Matched. On the other
hand, the results for P@5 and P@10 are comparable to
Matched. Analyzing our soft matching model, we found
quite a few queries where exact matching provided better
ranking than soft matching. For example, under the au-
tomatic evaluation setting, SoftMatched ranked the clicked
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Model MRR R@1 R@3 R@5 R@10

BM25 0.465 (-10.9%) 0.339 (-13.3%) 0.525 (-11.9%) 0.605 (-11.0%) 0.709 (-9.5%)
LETOR 0.514 (-1.5%) 0.386 (-1.3%) 0.581 (-2.5%) 0.663 (-2.5%) 0.763 (-2.6%)
Matched 0.522 0.391 0.596 0.680 0.783
Full 0.537 (2.9%) 0.405 (3.6%) 0.609 (2.2%) 0.692 (1.8%) 0.792 (1.1%)
SoftMatched 0.533 (2.1%) 0.401 (2.6%) 0.604 (1.3%) 0.690 (1.5%) 0.790 (0.9%)
SoftFull 0.543 (4.0%) 0.411 (5.1%) 0.616 (3.4%) 0.700 (2.9%) 0.800 (2.2%)

Table 2: Automatic evaluation results (and percentage of change compared to Matched model). All differences
are statistically significant at p < 0.001.

Model NDCG P@1 P@3 P@5 P@10

BM25 0.685 (-3.9%) 0.522 (-7.9%) 0.396 (-5.5%) 0.336 (-7.9%) 0.268 (-5.6%)
LETOR 0.711 (-0.3%) 0.562 (-0.9%) 0.417 (-0.5%) 0.357 (-2.2%) 0.280 (-1.4%)
Matched 0.713 0.567 0.419 0.365 0.284
Full 0.714 (0.1%) 0.567 (0.0%) 0.423 (1.0%) 0.366 (0.3%) 0.287? (1.1%)
SoftMatched 0.716 (0.4%) 0.575 (1.4%) 0.431† (2.9%) 0.366 (0.3%) 0.284 (0.0%)
SoftFull 0.719 (0.8%) 0.577 (1.8%) 0.431† (2.9%) 0.369 (1.1%) 0.289† (1.8%)

Table 3: Manual evaluation results (and percentage of change compared to Matched model). Values marked
with ?/† indicate differences that are statistically significant at p < 0.05 and p < 0.01, respectively, compared
to the Matched model.

query: stick a fork in it
Full:
what does the phrase stick a fork in it mean?
Matched:
is it time to stick a fork in Angels and Dodgers?

query: doctorate vs phd
Full:
what is the difference between phd and doctorate?
Matched:
phd in nutrition or naturopathic doctorate?

query: my family in french
Full:
how do you say my family in french
Matched:
describe a family member in french?

Table 4: Examples where Full promoted better con-
tent at the top compared to Matched

document higher than Matched on 25% of the queries but
that Matched ranked the clicked document higher than Soft-
Matched on 18.3% of the test-set. This may indicate that our
current similarity function is noisy and could be improved in
future work. While soft matching for retrieval was studied
before, this is the first time it is applied in the CQA vertical
search scenario. In addition, we are not aware of prior work
that directly applies it to a large set of standard LTR fea-
tures, specifically using similarity between word embedding
vectors for lexical semantics (compared to the well studied
translation models for this usage).

We now get to our main result, which is split into two
parts, corresponding to the exact matching and soft match-
ing settings. Under the exact matching setting, when adding
features that directly address unmatched terms (Full model)
we see a significant improvement in performance in the au-
tomatic evaluation compared to only using matched term
features (Matched model). For example, MRR is increased
by 2.9%, and similar trends occur for R@K. In Fig. 5 we
plot MRR vs query length from which we observe that the
MRR gap is maintained across all query lengths. The gap is

slightly decreasing towards longer queries, perhaps because
matching many of the terms for longer queries within a ques-
tion title contains enough information to indicate relevant
content. Under the manual evaluation, some improvement
is shown. Specifically P@3 and P@10 show an increase of
∼ 1% compared to Matched while P@1 and P@5 show com-
parable results. Tab. 4 shows examples where Full promoted
better content at the top compared to Matched. These ex-
amples demonstrate how Full downgrades titles containing
excessive information that changes the meaning of the title,
such as ‘Angles’ and ‘Dodgers’ in the first example.

Both unmatched term features (Full) and soft matched
term features (SoftMatched) provide a rather similar im-
provement over exact matching (Matched). However, they
capture different aspects of query/document ranking, one is
addressing the lexical gap between the two and the other is
addressing the importance of terms that were not matched
from either side. Combining both model approaches to-
gether (SoftFull model) shows that they convey somewhat
complementing elements for ranking. Indeed, SoftFull is the
best performing model under all metrics. Under automatic
evaluation the improvement is rather additive with a nice
gap in performance maintained across all query lengths from
both SoftMatched and Matched. Under manual evaluation
the improvement is more significant. It seems that under all
metrics, but P@3, the combination of soft matching with di-
rect unmatched term assessment is more powerful than each
of its parts. This result may indicate that soft matching
helps pinpointing the “true” unmatched terms and therefore
improves the modeling of their contribution to ranking.

7.1 Excessive vs Missing Features
Our unmatched term features are composed of two types:

a) those that address excessive terms, which occur only in
the document (EX{L,G}i); and b) those that address miss-
ing terms, which occur only in the query (MI{L,G}i). We
evaluated the contribution of each feature type indepen-
dently by constructing two auxiliary models, both augment-
ing all matched term features (Matched). The first model
adds only EX{L,G}i features, denoted MatchedAndExces-
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Figure 5: MRR by query length

Query Document Title

what is candys
american dream

the story ”Of Mice and Men”, how
does the excerpt from Candy relate
to the American Dream and Garden
of Eden?

no virgin birth No Virgin birth? Was the Virgin
Mary really a virgin or was this a
mistranslation of the Greek?

92 accord misfire My ’92 Accord misfires and loses
power at about 2500 rpm. Possible
causes?

Table 5: Examples where Full ranked a relevant
clicked document low due to many excessive terms

sive, and the second model adds only the MI{L,G}i fea-
tures, denoted MatchedAndMissing.

Fig. 6 presents the performance of the two new models
compared to Matched and to Full on the automatic evalu-
ation setting, measured via the MRR metric. The graph
shows that while missing term features are not as strong in-
dicators for irrelevance compared to excessive term features,
they still directly improve MRR compared to Matched. In
addition, while excessive term features contribute more to
detecting irrelevant documents, a small improvement in MRR
is gained when excessive and missing features are combined
in the Full model.

Another observation from Fig. 6 is that MatchedAndEx-
cessive improves over Matched for short queries much more
than for long queries. One reason may be that for short
queries there are more candidates in the corpus that contain
the query terms, but many of them may have a lot of exces-
sive information. As opposed to short web queries, in which
the information need is generally wide, CQA queries tend to
refer to very specific information needs even in such short
queries, e.g. “characteristics of enzymes”. If this hypothesis
is true and our algorithm learned that a lot of excessive in-
formation indicates an irrelevant candidate, we expect the
model to be particularly effective in filtering out such candi-
dates. We note that for short queries of length 1-2 there is no
improvement using missing features. This is not surprising,
since there are no missing terms when matching queries of
length 1, and the amount of missing information in queries
of length two is at most a single term.

Figure 6: MRR by query length with the addition
of Excessive vs. Missing Features

7.2 Error Analysis
To better understand the performance of our features, we

conducted error analysis on cases in which Full, which con-
siders both matched and unmatched term features, ranks
a clicked document significantly lower than Matched, which
employs only matched term features. To this end, we con-
sidered queries from our validation set in which Matched
ranked the clicked document for the query in one of the top
3 positions while Full ranked it far below. We sorted the ex-
amples by the rank margin between Matched and Full and
analyzed the 100 queries with the largest rank margin.

We found out that in 35 of the analyzed queries the top
document ranked by Full was relevant and in 46 queries at
least one of the top 3 documents was relevant. This is a
known issue when using clickthrough logs as proxy to doc-
ument relevance, as some unclicked documents may also be
relevant to the query. Thus absolute model performance
under such evaluation is biased. Yet, comparing ranking al-
gorithms over a large-scale click-based gold labeling is useful
for differentiating between their ranking performance [27].

Out of the 65 queries where the top candidate by Full was
not relevant, we recognized two main reasons for this rank-
ing failure. The most prominent reason, which occurred in
36 cases, is that some terms in the document title were not
matched due to the exact-matching scheme used in Full, but
would have considered matched under proper soft matching.
Out of these 36 case, 13 queries had spelling errors and other
phenomena, such as unigram/bigram variations (e.g. ‘coun-
tertop’ vs. ‘counter top’). Such lexical variations are not
recognized by our current soft term matching which uses
word embedding.

The second phenomenon occurred in 16 out of the 65
queries. The clicked document title contains a lot of ex-
cessive terms, yet still fulfills the information need behind
the query. Tab. 5 presents such examples. While our results
show the potential in directly modeling unmatched terms,
and specifically excessive terms as negative signals, a large
number of such terms may accumulate into an unnecessary
downgrading of the ranking score, and further research is
required to develop more robust models.
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8. CONCLUSIONS
In this work we proposed novel features in a Learning

To Rank framework that directly assess the importance of
missing and excessive terms within the task of term weight-
ing for vertical search on CQA content. To better model
truly unmatched terms we also presented a “soft matching”
variant of all our features, basing it on distributional sim-
ilarity between terms, where similar terms are considered
partially both matched, and unmatched. Our experiments
show improvement in document retrieval in all settings when
unmatched information is taken into account.

In future research we plan to test whether our approach
may contribute to other types of Web documents. One di-
rection could be to explore how unmatched terms can be
modeled in other parts of the document, which may require
different features than the ones used in this paper.
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