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Abstract

The probabilistic theory of information retrieval in-

volves the construction of mathematical models based

on statistical assumptions of various sorts. One of the

hazards inherent in this kind of theory construction

is that the assumptions laid down may be inconsis-

tent with the data to which they are applied. An-

other hazard is that the stated assumptions may not

be the real assumptions on which the derived mod-

elling equations or resulting experiments are actually

based. Both kinds of error have been made repeat-

edly in research on probabilistic information retrieval.

One consequence of these lapses is that the statistical

character of certain probabilistic IR models, including

the so-called ‘binary independence’ model, has been

seriously misapprehended.

Introduction

Probability theory provides a powerful platform on

which to construct theories of information retrieval and

inductive searching. It is of course desirable that a

formalism be logically powerful; however, such power

comes at the price of a certain risk of accidental mis-

use and abuse. One of the hazards that an IR sys-

tem designer should be aware of is that it is possible

to become ensnared in statistical simplifying assump-

tions that are logically inconsistent. Another danger is

that the fundamental assumptions underlying a theory

might be incorrectly stated, and the merits of the the-

ory misjudged for that reason. I should like to discuss
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both of these hazards - inconsistency and misidentifi-

cation of underlying assumptions – in the light of the

history of probabilistic IR.

The Independence Assumptions

The fundamental modelling assumptions most com-

monly adopted in probabilistic retrieval theory have

consisted of various combinations of the following three

statistical independence assertions. The first is an as-

sumption of absolute independence of document or in-

formation need properties; for the special case of just

two properties A and B it is

11. P(A, B) = P(A) P(B).

The second and third assumptions are assertions of

conditional independence, given relevance or its ab-

sence. Letting R denote the event of relevance, their

formal statements are

12. P(A, B /R) = P(A I R) P(B I R);

13. P(A, B1 -R) = P(AIw R) P(BI -R).

These three assumptions are interpreted differently

in different contexts, depending upon whether the

clues A and B are regarded as properties of documents

or of users (<information needs’). Assumption 12 was

first introduced in the pioneering paper by Maron &

I<uhns (1960) as the basis of their proposed system

of probabilistic indexing. They interpreted properties

A and B as user properties. Assumptions 12 and 13

were used in combination by Yu and Salton (1976), and

also by Robertson & Sparck Jones (1976) to develop

what later became well known as the ‘binary indepen-

dence’ IR model. In that application, A and 1? were

regarded as document properties. All three assump-

tions – 11, 12 and 13 – were adopted by Robertson,

Maron & Cooper (1982) as the assumptions underly-

ing their ‘unified’ probabilistic IR model. There one

of the clues was taken to be a document property and

the other a user property.
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The ‘I 1 + 12’ Inconsistency

When II and 12 are used together, logical inconsis-

tencies can and do arise. The problem is not that 11

and 12 directly contradict each other. However, as a

pair, they are jointly inconsistent with much of the em-

pirical data to which one would want to apply them.

They overconstrain the probability measure in such a

way as to exclude the kinds of probability distributions

that arise in the IR application.

To see the nature of the inconsistency, suppose the

empirical data that is available concerning a certain

pair of properties A and B indicates that

P(A) = P(B) = P(R) = 0.1

P(R I A) = P(R 11?) = 0.5

These hypothetical data are perfectly consistent

among themselves. However, there is no probability

distribution in which 11,12, and the data could all be

true simultaneously. As a result, when one attempts

to use 11 and 12 to draw inferences from such data,

strange things can happen. For instance, probability

values much larger than 1.0 are calculated for certain

conditional events.

The logical inconsistency that lurks here can be

demonstrated formally by deriving an absurdity. As-

sume 11,12, and the foregoing empirical data. Then

P(A, B) = P(A) P(B) [byll]

— .1 x .1 [from the data]

= .01

On the other hand

P(A, B, 1?) = P(A, BIR) P(R) ~dentity]

= P(AIR) P(BIR) P(R) [by12]

= P(RIA) P(A) P(ltll?)

P(B)/P(R) [identity]

= .5 x .1 x .5 x .1/.1 [from the data]

= .025

So we have P(A, 1?, R) > P(A, B). But this contra-

dicts the elementary laws of probability theory, for the

probability of a conjunction of several events can never

be made smaller – only larger – by removing one of the

events from the conjunction. This anomaly was first

noticed, and correctly classified as a logical inconsis-

tency, by Robertson (1974).

The logical indiscretion that is at issue here – I shall

call it the ‘1 1 + 12 inconsistency’ – has been commit-

ted by a number of investigators, including myself. An

early instance of it occurs in the work of Miller (1971),

as was pointed out by Robertson shortly thereafter

(1974). A further example of the same type of inconsis-

tency was cited by Robertson and Sparck Jones (1976).

The properties A and B were in these instances doc-

ument properties. The 11 + 12 inconsistency would

appear to be present also in the interesting work re-

ported recently by Fuhr and Buckley (1990). In that

case the properties were user properties (query terms).

Still another instance of the 11 + 12 inconsistency,

with a mixture of document and user properties in-

volved this time, appeared in the already-mentioned

unified theory of Robertson, Maron, & Cooper (1982).

These authors were aware of the inconsistency, pointed

it out explicitly, and discussed an alternative develop-

ment of their theory that would get around it. Never-

theless they let stand a modelling formula derived with

the help of these inconsistent premises.

The ‘I 1 + 13’ Inconsistency

Just as 11 and 12 are inconsistent in the presence of

typical data, so 11 and 13 can yield inconsistencies.

Robertson, Maron, and Cooper (1982), who adopted

all of 11,12, and 13, thereby simultaneously commit-

ted not only the 11 + 12 inconsistency but also the

11+13

tion was

admitted

offending

inconsistency. However, their double infrac-

mitigated somewhat by the fact that they

to it, and discussed a way of removing the

inconsistencies.

Effective Retrieval From Fault y

Theory?

Interestingly enough, in most of these historic cases of

inconsistent premises the faulty theory was used as the

basis of experimental work that was on the whole suc-

cessful. The early 11 + 12 inconsistencies noted by

Robertson & Spark Jones occurred in the course of the

design of probabilistic systems that produced accept-

able retrieval results. The experimental methods of

Fuhr and Buckley, though also derived from a theoret-

ical basis contaminated by the 11 + 12 inconsistency,

resulted in high levels of retrieval effectiveness. And

the double inconsistency in the theory of Robertson,

Maron, & Cooper did not prevent a later experimen-

tal system based on that theory from performing ade-

quately (Maron, Curry, & Thompson 1986).

This apparent experimental success in the face of in-

consistent premises is curious. A logically inconsistent

theory is supposed to be worse than no theory at all.

It is a well-known metatheorem of logic, provable for

all standard systems of deductive inference, that an

inconsistent theory implies any proposition whatever.

Since one can derive all possible assertions from an in-

consistent theory, such a theory must be meaningless –
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entirely lacking in significance or predictive power. It

makes no sense that good experimental results could

come out of an inconsistent theory.

It is tempting to explain this conundrum by suggest-

ing that the inconsistencies in question were only mi-

nor ones. However, there is no such thing as a theory

that is just ‘a little bit’ inconsistent. A theory can-

not be just a little bit inconsistent, any more than the

scientist proposing it can be just a little bit pregnant.

A logical inconsistency, if its implications are followed

out, destroys a theory utterly. It is a disaster, and is

totally unacceptable. If rationality is to be preserved,

inconsistencies simply cannot be tolerated.

How then are we to explain the fact that the experi-

mental systems worked, and worked well, even though

their stated theoretical basis was inconsistent? I think

the answer to this puzzle lies in the other kind of

logical error mentioned earlier, namely, the misiden-

tification of fundamental assumptions. Although the

authors in question laid down assumptions that were

logically inconsistent, their experiments were in fact

founded upon somewhat different assumptions – upon

unstated theories that were consistent after all. The

investigators were saved from their self-contradictory

postulates by the fact that they did not actually apply

them as they stood, but instead did something else that

made more logical sense. Their precepts were flawed,

but they were astute enough not to follow out all the

implications of these precepts in practice.

Repairing the Inconsistencies

In the case of at least some of the 11 + 12 inconsis-

tencies, the explanation of the successful experimental

results would seem to be that assumption 11 was not

actually needed. The required probability rankings of

the document collection can be achieved on the basis of

12 alone (plus of course the empirical data). A mathe-

matical basis for probabilistic indexing using 12 alone

was set forth by Maron & Kuhns (1960) when they

showed how, by working with proportionalities instead

of equalities, one could obtain from 12 all the needed

probability comparisons. So we may view the later au-

thors who used 11 + 12 as having added assumption

11 gratuitously and inconsistently, but in such a way

that it affected only their formal theory and not their

actual output rankings.

In the case of the 11 + 12 and 11 + 13 double-

inconsistency occurring in the Robertson, Maron, &

Cooper theory, the explanation of the successful fol-

lowup experiment is different. Assumption 11 really

is essential to their unified model, but neither 12 nor

13 is needed in full strength. On examining the de-

tails of their derivation (p. 14), it becomes clear that

12 and 13 can be replaced by the single assumption

14.
P(A, B ] R) P(A I R) P(B [ R)

P(A, B [ N R) = P(A I NR)P(BINR)

Their modelling equation (Eq. (8), p. 13) is easily de-

rived from this considerably weaker assumption. Since

14 is consistent with 11, using it in place of 12 and

13 gets rid of the 11 + 12 and 11 + 13 inconsis-

tencies. So their fundamental modelling formula was

not really contaminated by the 11 + 12 and 11 + 13

inconsistencies after all.

This is an interesting case because the authors recog-

nized the presence of the inconsistencies and admitted

to them in print. What they failed to notice at the

time was that they had at the same time misidenti-

fied their underlying assumptions, so the inconsisten-

cies they confessed to did not really have anything to

do with their end result.

‘Binary Independence’ a Mis-

nomer

The Robertson, Maron, & Cooper theory is not the

only context in which 12 and 13 should be replaced

by 14. The same substitution is also needed to clarify

the basis of the popular ‘binary independence’ model.

Although that model is ordinarily presented as though

it required 12 and 13, on examining its derivation one

finds that 14 serves just as well, and more economi-

cally. 12 and 13 are indeed sufficient for the model,

but they are stronger than necessary and so are mis-

leading.

The mathematical point involved here is worth

spelling out. The binary independence model, so-

called, can be derived very simply from the odds form

of Bayes Rule of Inference. (The ‘odds’ in favor of an

event X, denoted by the expression O(X), is by defi-

nition P(X) / P(* X). ) For the case of two document

properties A and B, Bayes Rule of Inference states that

O(RI A, B) =
P(A! B I R) O(R).

P(A, B I w R)

That is to say, the posterior odds O(R I A, B) in favor

of relevance given the two clues A and B is equal to

the prior odds of relevance O(R) times the fractional

expression in the right hand side, known as the ‘like-

lihood ratio’ (Eels 1982). This identity follows imme-

diately from the definition of odds and of conditional

probability.

In the ‘binary independence’ IR model, Bayes Rule
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is modified so that in application it becomes

P(A ] R) ‘(B I ‘) O(R).

‘(R t “ ‘) = P(A I ~R)P(BIw R)

In other words, a simplifying assumption is invoked in

order to break up the single likelihood ratio appear-

ing in the original Bayesian identity into the product

of two separate likelihood ratios for the two proper-

ties A and B. Traditional accounts of the model have

claimed that the simplifying assumptions needed to ef-

fect this are 12 and 13. These assumptions are indeed

sufficient, but obviously they are not necessary, for the

weaker assumption 14 will do.

Now, 14 is not an independence assumption at all.

It is more of an assumption of linked dependence, in

which the degree of statistical dependence between A

and B in the relevant set is asserted to be associated

in a certain way with their degree of dependence in the

nonrelevant set. Since 14 expresses the essence of the

model more accurately than 12 + 13, the term ‘binary

independence model’ is a misnomer.

This is no mere academic quibble about nomencla-

ture. In attempting to evaluate the validity of a proba-

bilistic IR model, one is naturally led to study the plau-

sibility of the assumptions on which it is based. As ev-

eryone seems to agree, the independence assumptions

12 + 13 are not especially plausible, so it is important

to understand that these are not the assumptions that

actually underlie the model. The simplifying assump-

tion on which it is really founded is assumption 14,

which is weaker and more plausible than 12 + 13.

Less Need for Dependency Data

The belief that the so-called ‘binary independence

model’ is founded on strong independence assumptions

is an error that has wrought mischief. One issue into

which it has injected an unfortunate element of con-

fusion is the question of how important it is to make

use of empirical term co-occurrence data. Under the

misimpression that they were otherwise faced with the

necessity of relying on highly artificial independence

assumptions, researchers have been led to reason that

it is important to make use of empirical dependency

information. In this vein Robertson and Sparck Jones

wrote (1976, p. 140) “The use of any independence

assumptions at all is suspect, since they certainly do

not hold universally. The alternative would be to look

for term co-occurrence information . ..”

But as we have seen, this is a false dichotomy.

The true alternative to introducing term co-occurrence

data is not the use of the strong independence as-

sumptions 12 + 13, but only the weaker and more

acceptable balanced-dependence assumption 14. It is

fallacious to argue that, because the independence as-

sumptions are very bad, we very badly need empirical

term dependency information to get around them. In

fact, the independence assumptions do not really bear

on the matter at all, having insinuated themselves into

the discussion only as a result of a misidentification of

modelling postulates.

Considerable research effort has been expended on

the question of how best to exploit term co-occurrence

information (van Rljsbergen 1977, 1979; Harper & van

Rljsbergen 1978; Cooper & Huizinga 1982; Robertson

& Bovey 1982; Cooper 1983; Yu, Buckley, Lam, &

Salton 1983; Kantor 1984; Lee & Kantor 1990). But

when it is recognized that it is not independence, but

linked dependence, that the so-called binary indepen-

dence model really assumes, the need for introducing

empirical dependency information is less keenly felt.

This is not to say that using co-occurrence data is a

bad idea. The point is merely that co-occurrence data

is not so important as had been generally thought, that

the improvement in retrieval effectiveness to be won

from its use could well be slight, and that the strength

of the theoretical argument in favor of introducing it

needs to be re-evaluated.

Conclusions

The various inconsistencies and misidentified mod-

elling assumptions that we have perpetrated on our-

selves as IR researchers have not halted the progress

of probabilistic IR. However, they have surely obscured

to some extent the true character of our theories. On

clearing away some of the confusion, we find that the

standard models are different, and in some cases ac-

tually better, than we had thought; for our real mod-

elling assumptions are more plausible than the ones we

thought we had adopted. And our logical sins, black

as they may be, lay only in what we said our theories

were, not in what they really were.
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