
Parallel Text Searching In Serial Files
Using A Processor Farm

Janey K. Cringean’, Roger England3,
Gordon A. Manson* and Peter Willett1s4

Departments of Information Studies’ and Computer Science2, University of
Sheffield, Western Bank, Sheffield SlO 2TN, U.K. and National Transputer

Support Centre 3, Sheffield Science Park, Arundel Street, Sheffield Sl 2NS, U.K.

4 to whom ail correspondence should be addressed.

Abstract. This paper discusses the implementation of a parallel text retrieval sys-
tem using a microprocessor network. The system is designed to allow fast searching
in document databases organised using the serial file structure, with a very rapid
initial text signature search being followed by a more detailed, but more time-
consuming, pattern matching search. The network is built from transputers, high
performance microprocessors developed specifically for the construction of highly
parallel computing systems, which are linked together in a processor farm. The
paper discusses the design and implementation of processor farms, and then reports
our initial studies of the efficiency of searching that can be achieved using this ap-
proach to text retrieval from serial files.

1 Introduction
The last few years have seen a proliferation of interest in the use of pareIfel pressing
techniques, where some or many processors operate together so as to reduce the
elapsed time required for a computational task. The use of multiple processors
can bring about substantial increases in performance, as well as providing some
degree of fault tolerance (and hence graceful degradation in the case of a system
malfunction) and a facile upgrade path (since increased computational demands can
be met simply by acquiring additional processors).

There have been several attempts to classify the many ways in which parallelism
may be implemented in a computer system (Flynn, 1972; Handler, 1977; Hackney
& Jesshope, 1988; Sh ore, 1973; Skillicorn, 1988). Of these, the most common is that
developed by Flynn (1972), which classifies computer systems in terms.of the multi-
plicity of thejnstruction stream and of the data stream. Four possible architectures
are recognized:

Permission to copy without fee all part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

(cl 1990 ACM 0-89791-408-Z 90 0009 429 $1.50

429

l SISD, or single instruction stream, single data stream.

l STMD, or single instruction stream, multiple data stream.

a MISD, or multipIe instruction stream, single data stream.

a MIMD, or multiple instruction stream, multiple data stream.

Of the four classes, MISD is difficult to conceptualize and is usually regarded as a
null class, while SISD represents the serial architecture that has formed the basis
for nearly all computers since their initial development over forty years ago. SIMD
machines are computers in which the same instruction is executed in parallel across
some, or many, processors simultaneously. Examples include pipelined vector pro-
cessors and array processors (Hackney & Jesshope, 1988; Sharp, 1987). The latter
type of machine, which contains thousands of simple, bit-serial processing elements,
is particularly well suited to the processing of large databases and there have been
many reports of the use of two types of array processor, the Distributed Array Pro-
cessor and the Connection Machine, for database processing applications (see, e.g.,
Carroll et al., 1988; Waltz et al., 1987): a review of this work is presented by Willett
and Rasmussen (1990).

MIMD computers are characterised by multiple processors capable of independent
operation; this allows a greater architectural variation than is the case with SIMD
machines, and requires a greater range of organisational problems to be overcome
if efficient computation is to be achieved (Dubois et al., 1988; Gajski & Peir, 1985;
Patton, 1985). The most widely applied sub-categorisation of MIMD computers
depends on the degree to which the processor memories are coupled. In tightly
coupled systems, all of the processors share a globa memory through some central
switching network or a high-speed bus that links the processors together. In loosely
coupled systems, conversely, each of the processors in the network has a local mem-
ory and communicates with other processors by passing messages; thus facilities
for highly efficient inter-processor communication itre required. There are several
ways in which message passing MIMD computers can be built: we are interested
here in what are often referred to as multicomputers, multicomputer networks or
micropnxessor-based multiprocessors. A multicomputer consists of a.large number
of low-cost, high-performance microprocessors, each of which has some local memory
and which can communicate with other such processors over some type of network
(Athas & Seitz, 1988; Fox et al., 1988; Reed & Fujimoto, 1987):

.

There have been a few reports of the use of multicomputers for text retrieval
(Cringean et al., 1988; Cringean et al., 1989a; Sharma, 1989; Stewart & Willett,
1987; Walden & Sere, 1989). Cringean et al. (1989b, 1990) review the work to
date and give a detailed specification of a multicomputer system that is designed
for text scanning in serial files and that is intended to be used in conjunction with
conventional PC-based equipment. The system uses an initial text signature search

430 I

to reduce the number of documents that need to undergo the detailed and time-
consuming pattern matching search. It is in the pattern matching stage that the
parallel processing capabilities of the multicomputer come most obviously into play,
using the processor farm approach to distributed processing (as described in Section
3 below). The present paper reports the results of initial experiments using this
multicomputer system for serial text scanning.

2 The Transputer

The multicomputer networks considerecl here are based on the INMOS Transputer.
A transputer is a high-performance processor developed especially for use in multi-
processor systems (Hey, 1988; Pritchard et al., 1987). Each transputer consists of a
processor with its own memory and links to connect it to other transputers, all on
a chip less than a centimetre square. In fact, the transputer is a generic name for a
family of devices. Each device contains some selection of the following architectural
features capable of operating concurrently with other features:

a high performance (up to 20 MIPS) 16-bit or 32-bit RISC central processor,
including hardware support for simulated concurrency on a single processor;
this special hardware facilitates fast process-switching which is orders of mag-
nitude faster than time-slicing facilities on conventional non-parallel machines.

very fast RAM, typically of size 4 Kbytes.

external memory interface, with either multiplexed address and data buses for
economy of device pins and price, or non-multiplexed for performance.

some number (typically two or four) of serial communication link processors,
for bi-directional communication between pairs of devices within the family.
The links operate at speeds of 5, IO or 20 Mbits/set., and can achieve data
transfer rates up to 1.7 Mbytes/set. unidirectionally, and 2.3 Mbytes/set. bidi-
rectionally.

further special function co-processors, currently including a floating point pro-
cessor and disk controller.

The most important of these features are the links, which enable transputer devices
to be used as building blocks in the construction of low-cost, high performance mul-
tiprocessing systems. Communication takes place only between pairs of devices and
is distributed throughout a multiprocessing system, thus overcoming the classic von
Neumann bottleneck of limited bandwidth which is often encountered in bus-based
multiprocessing systems. It should be noted that even simple, single processor ap-
plications can make use of the concurrent operation of the CPU and link processors;

431

at any one instant, the CPU might be processing one item of data, one link trans-
ferring from disk to memory the next item of data, and a further link transferring
from memory to disk the previous calculated result.

There are several different classes of transputer device. The two of most importance
in the context of this paper are:

0 T414 - this is a 32-bit processor, containing 2 Kbytes of RAM and four links
operating at up to the maximum data rates previously quoted.

l T800 - this is a T414 processor with the addition of a concurrent 64-bit floating
point processor that has been formally verified to conform to the ANSI IEE
785 standard and can sustain up to 2.3 Mflops/sec.

The particular transputer equipment that we have been working with is a model
M40 Meiko Computing Surface. This is a modular transputer system that allows
the network topology to be determined by the user. A Computing Surface may be
configured as a general purpose computing resource or be optimised to a specific
function using any mixture of subsystem boards to p,opulate the expansion slots of
the M40. Our work has used the following subsystem boards:

l MK014: Local Host board, incorporating a T414 transputer with 3 MBytes
of external RAM, IEEE 488 and dual RS232 IbO interfaces.

l MK021: Mass Store, incorporating a T800 transputer with 8 MBytes of fast
parity-checked RAM.

l 4xMKO09: An MK009 Quad Computing Element system incorporates 4 T800
transputers, each with 256 Kbytes of external RAM; thus 4 boards provide 16
T800 t ranspu ters.

Transputer systems are designed in terms of an interconnected set of presses, i.e.,
subcomponents of the overall computational task. These processes are executed us-
ing one or more pfmessors, i.e., individual transputers in the present context. Each
process can be regarded as an independent unit of design, which communicates with
other processes along point-to-point links called charrnels. The internal structure of
each process can be in terms of & set of communicating processes. In fact, a complete
program can be considered as a process made up of tither commupi>ating processes.
This is reflected in the design of the language occm”, which has been developed in
conjunction with the transputer (May 8z Taylor, 1984) and which has been used for
all of the work described in this paper. Programs cau be developed in occarn to run
on an individual transputer or a network of transputers. When occdm is used to pro-
gram an individual transputer, all program code is placed on one transputer and the

‘occzll is a trademark of the INMOS Group of Companies.

432

processor shares its time between the concurrent processes; channel communication
is implemented by moving data within memory. When occam is used to program a
network of transputers, one or several processes may be allocated to each processor;
communication between processes on different transputers is implemented directly
by transputer links.

Having introduced the transputer and the process model of computation, the next
section describes the processor farm approach to distributed computing that we have
adopted for our studies of serial text retrieval.

3 Implementation Of Processor Farms

Database searching involves accepting an input stream of data records, D, and then
carrying out some sort of matching operation, M(D,R), which outputs a results
stream, R, containing the records from I3 which match the query. Cringean et al.
(1988) discuss several different ways of distributing thse matching operations across
a multicomputer network and conclude that the processor farm, or processor pool,
approach to distributed computation (Hey, 1988; Pritchard et al., 1987) is the most
appropriate for this type of application.

The farm approach involves decomposing the input da.tastream, D, into n sub-
streams,

where rz is the number of processors. The matching operation, M, is then replicated
to give a series of identical processes, i.e., sub-components of the overall computa-
tional task,

each of which outputs a result stream, Ti. Two main processes are required: one
to decompose the datastream and to replicate Al and the other to combine the n
individual sets of results; in what follows, we shall refer to these as the disfributor
and the coZZector processes, respectively.

We can represent a processor farm logically by the Aow diagram of Figure 1. Each
worker process requests a data packet from the distributor process, performs the
matching operation on that data, and sends the results to the collector process.
The distributor process sends a data packet to an individual worker process when-
ever that process requests work. However, the network shown in Figure 1 cannot be

433

implemented directly using transputers because there are only four links per trans-
puter at present. Networks must therefore be designed to allow this logical model to
be mapped onto a feasible physical network. One of:the simplest physical networks
that can be implemented with transputers is the single linked chain. In a single
linked chain, the transputers are linked to each other in a simple, linear array, so
that some transputer, Tj7 in the body of the chain of n transputers is connected to
two other transputers, Tj,1 and T. J+1 (1 < j < n), as depicted in Figure 2.

If we wish to implement a processor farm based on a single chain, then data must
be passed down the chain in one direction and results must be passed up the chain
in the opposite direction along the transputer’s bi-directional links. The distributor
and collector processes are often executed on a single controlling processor, as in
Figure 2. This processor is connected uia one of its four links to the transputers
which make up the farm and by another link to a host machine (typically a PC or a
workstation) that provides terminal and file system support. Because it is attached
to the host machine, this processor is called the root processor.

This physical network is not as simple as the logical model of the farm, where the
distributor and collector have direct access to every worker process. In the case
of a single linked chain the distributor and collector have direct access only to the
worker process at the top of the chain, as is shown in Figure 2. Therefore, additional
processes are required to allow a message to be forwarded from one transputer to
another via other transputers in the network. The workers must therefore be able
to do more than request some work, input a work packet, perform some work and
output a result. They have to be able to input a work packet, decide whether it is
intended for them, then either perform some work and output a result or pass the
message further down the chain. Because all the functions of a single transputer
can work independently of the others, it is possible to allow communication and
decision making to be performed on one work packet at the same time as work is
being performed on another.

A slightly more complicated network is the triple chain, as shown in Figure 3. In
this case, instead of having just a single chain attached to the root processor there
are three chains, thus using all available links on the root processor. This network
has the advantage that messages have a smaller average distance to travel without
the network being too complicated.

434

4 System Design

4.1 Introduction

Our work in Sheffield seeks to evaluate the efficiency of nearest neighbour searching
in transputer networks, using $ezb signature representations to increase the efficiency
of scanning in files of documents that are organised using the serial file structure,
rather than the inverted fiIe structure that provides the basis for the great majority
of current text retrieval systems. A text signature is a fixed-length bit string in
which bits are set to describe the contents of a document or query. These bit
strings are created by applying some hashing-like operation to each of the terms
describing a document or query, each such operation causing one or more bits in the
string to be set (Faloutsos, 1985). Signature matching operations are probabilistic
in character since a match at the bit string level is a necessary, but not sufficient,
condition for a match at the word level. Thus, false drops, i.e., matches at the bit
level that do not correspond to matches at the word level, can always occur. The
elimination of such mis-matches requires the use of a second-level, pattern matching
search which is carried out for just those documents that match at the signature
level (so that the computationally demanding text scanning is applied only to small
numbers of documents). There is a further problem with text signatures, this being
the fact that the setting of a particular bit in a signature indicates merely the
possible presence of a term in a document or query, this giving no information about
the location of the word in the document or query or of how frequently the word
occurs (Salton & Buckley, 1988). Thus, the specification of proximity or adjacency
information in a query or the use of some types of frequency-based weighting schemes
will again require the use of a second-stage search. For these reasons, we believe
that it is imperative that retrieval systems based on text signatures should include
the second-stage pattern matching search after the signature search; if this is not
the case, then the undoubted efficiency of text signatures will be achieved only at
the cost of reductions in effectiveness. Since pattern matching is very demanding
of computational resou&es, it is thus an obvious candidate for the application of
parallel processing techniques, as discussed in the remainder of this paper.

4.2 Implementation of nearest neighbour searching

In brief, the problem tackled is that of searching in a serial file for a query using a
nearest neighbour retrieval algorithm. In common with most such retrieval systems,
we will allow the query to be input at a keyboard as a natural language statement of
need. The words in the query are compared with a stopword list and the remaining,
content bearing words are then stemmed to conflate morphological variants. The
stems are hashed into a bit string to form the query signature and this is then
matched with a set of analogous signatures that represent each of the documents in

435

the database. The documents are ranked in order of decreasing similarity with the
query and the most similar documents then passed on for the second-stage pattern
matching search, which is carried out using Horspool’s version of the Boyer-Moore
algorithm (Horspool, 1980). This search is used to ,produce the final ranking that
is presented to the user. The similarity is calculated by means of the vector dot
product, with the query terms being weighted using inverse document frequency
(IDF) weighting. A basic data flow diagram for this process is shown in Figure 4.

The IDF-based similarity calculation that forms the basis for the final ranking is
based on the matching of the actual stems that are present in the document and
query texts. An analogous calculation can a&o be carried out during the signature
search, although the calculated similarity value cannot be as accurate because less
information is. available (Mohan & Willett, 1983). If the bit or bits that are set
in the query signature for some stem are also set in the document signature then
the similarity is incremented by the IDF weight for that query stem; note that this
procedure assumes the availability of a dictionary that contains the frequencies of
occurrence of all of the words in the database (Croft & Savino, 1988). However, the
many-to-one nature of the hashing procedures that are used in signature generation
means that a match at the bit level indicates only the possible presence of the query
stem in the document. Hence, the similarity which 1s calculated corresponds to the
maximum possible similarity between the query and the document; the actual value
will be somewhere between zero and this upperbound value.

We can then compare this calculated upperbound value with the actual similarity
values that have already been calculated for earlier documents in the text scanning
part of the search process. If the user wishes to see, e.g., twenty documents and
the similarity value of the twentieth document in the ranking at that moment is
higher thari the upperbound calculated from the bit string of the document currently
being considered, then there is no possibility that the current document can have a
similarity value which would bring it into the ranking. There is therefore no need to
send it forward for the pattern matching search. In order to implement this analysis
of the bit strings, the threshhold value of similarity for the number of documents
the user wishes to see must be passed back to the bit string search process, as shown
in Figure 4, at intervals during the searching process.

4.3 Parallel implementation

As has already been stated, although the text sigpature search is very rapid, the
second-level text searching stage is very time-consuming. It is this stage, therefore,
for which we require a parallel solution. We have already stated that the processor
farm model of distributing the computation is the most appropriate for this type
of application. Therefore, the parallel implementation of text searching in a serial
file can be represented by simply replacing the process called Compare texts’ in

436

Figure 4 by the processor farm shown in Figure 1. Here, the two inputs to the farm
are the required documents and the query stems, the work packet is the query and
a document with which it is to be compared, and the required result is the text of

’ a document for which the calculated similarity value is sufficiently large for it to be
considered for inclusion in the final list of documents that is presented to the user at
the end of the search. A physical implementation using a single chain processor farm
is shown in Figure 5. The process ‘Read required dots.’ of Figure 4 is done before
any processing takes place and the documents are stored in memory on a separate
transputer board, which acts as the distributor and collector for the farm. All other
processes are performed on the root transputer, with the text signatures also being
read and stored in memory before the processing starts. The reader is referred to
the papers by Cringean et cd (1989b, 1990) f or a more detailed description of the
logical processes required for serial text scanning and of the way in which these
processes are implemented using a physical processor farm.

5 Efficiency Of Searching

The previous sections have described the implementation of serial text scanning
on a transputer-based multicomputer system. This system is now operational in
our laboratory and has been demonstrated at the Thirteenth International Online
Information Meeting in London in December, 1989. In this section, we present
the initial results from an ongoing study into the efficiency of retrieval that can be
obtained from this system.

5.1 Measurement of performance

The measurement of computer performance is a controversial subject (even on con-
ventional, serial processors) since the observed performance for an application is
strongly affected by both the algorithm and the architecture (Hackney & Jesshope,
1988). Probably the most widely used measure of performance for parallel proces-
sors, and the one which is used in the following results, is an application-dependent
one, the speed-up. The speed-up for P processors, Sp, is defined as

Tl
Sp = -

TP'

where Tl *and Tp are the times to carry out an algorithm on one and P processors
respectively. In the ideal case, Sp = P; all of the processors are fully utilized and
the system is said to exhibit a &near speed-up, i.e., the speed-up varies directly with
the number of processors that are available.

It must be emphasised that linear speed-up represents an upperbound to the per-
formance of a parallel system: the actual degree of speed-up that can be obtained

437

is controlled, at least in part, by Amdahl’s law (Amdahl, 1967; Gustafson, 1988;
Quinn, 1987). This states that if a given problem has a fraction f of sequential
operations, then the maximum speed-up which can be-achieved-with a paraUe1 com-
puter of P processors is

1
SP I

(f+l&q
This suggests that, unless very little serial processing is required, the running time
for a system with both serial and parallel operations will be dominated by the serial
processing.

In the context of the transputer-based document retrieval system considered here,
the requisite computation can be sub-divided as follows:

l Serial processing. The main serial component is the initial preprocessing of
the query. Two other serial components are the first-stage scan of the text
signatures, which is carried out on the root transputer, and the communica-
tion of the texts of the documents passing this scan over the network to the
transputers in the farm. However, the fact that they are performed at the
same time as the main parallel processing element makes it difficult to specify
whether these are important as serial componepts.

l Parallel processing. This is the second-stage pattern matching search, where
many document texts can be processed in parallel by the transputers in the
farm.

The observed level of performance will thus be determined in large part by the
relative proportions of these two types of processing,

The speed-up is a system-oriented measure of performance. Of more interest to
the actual user of a retrieval system is the response time, i.e., the time that elapses
between the submission of a query and the display of (hopefully) relevant documents
at the terminal. It is thus of importance to note not only the speed-up relative to a
single transputer but also the absolute time for a search.

5.2 Experimental results to date

The dataset used in our experiments contains the titles and abstracts of the 6,004
documents that formed the input to the 1982 issues of Libmry and Informa2ion
Science Abstracts (LISA) database. Associated with these documents is a set of
35 natural language queries, which were collected ‘from students and staff in the
Department of Information Studies, University of Sheffield by Ms. A. Davies as part
of her 1982 MSc dissertation project.

438

Timing figures were obtained for searches in the LISA dataset with the 35 queries.
Four sets of runs were carried out with the single chain processor farm as shown in
parts (a) to (d) of Table 1. The first of these used text signatures in which all of the
bits in the document bit strings had been set to ‘l’, so that none of the documents
were eliminated in the first stage of the search and so that the maximum possible
amount of work was done by the network. The other runs used 128-bit, 256-bit and
512-bit text signatures, so that progressively less pattern matching would need to
be carried out by the farm, as shown by the figures at the bottom of the tables,
giving the number of documents that matched the query at the signature level and
were passed on for text searching. The text signatures were created by hashing the
stem of each non-stopword in a document or query onto a single bit position in the
bit string, The number of documents shown to the user at the end of the search also
determines how much pattern matching needs to be done; this number was set at
1, 5, 10 or 20. When aJ1 of the documents undergo the text search, i.e., when all of
the bits are set to ‘l’, the run times are little affected by the number of documents
that are displayed and thus just a single figure has been listed in Table l(a), that
for 10 documents.

It is clear from an inspection of the figures in Table 1 that the search time reduces as
the number of transputers is increased. More importantly, the response times for the
best results obtained here are consistent with the basic assumption underlying our
work, uiz. that parallel processing can provide a mechanism for interactive access
to serial files of documents. A comparison of the figures in parts (b), (c) and (d)
with those in part (a) demonstrates the great decrease in times when text signatures
are used. This is not only because documents are eliminated in the first stage of
the search but also because, even when documents are sent for text searching, some
processing can be eliminated. This is possible because it is not necessary to search
in the text of a particular document for query terms whose bit position is set to
‘0’ in the text signature of that document. This effect can be observed in Table 2,
which shows the reductions in the number of documents searched and in the search
times compared with the searches in which all the bits were set to ‘1’. The greater
reductions in search times compared to the reductions in the number of documents
searched can be attributed to the fact that the second-stage text searching has
been optimised to make as much use of the information in the text signatures as
possible. This is a particularly effective strategy when large numbers of documents
are required by the user; the reduction in search time is nearly twice the reduction
in documents searched when 20 documents are required by the user.

A rather less satisfactory state of affairs is evident if we consider the speed-ups,
rather than the response times. When no signatures are used, i.e.,, when the maxi-
mum amount of text searching takes place, then near-linear speed-up behaviour is
observed for networks containing up to around eight or twelve transputers; there-
after, there is very little further increase in speed-up. This is somewhat disappoint-
ing since our previous simulation studies had suggested that near-linear speed-ups

439

should be obtainable with much larger farms than those used here (Cringean et
al., 1988). The speed-up behaviour becomes still more disappointing as longer and
longer text signatures are used; indeed, there is very Little speed-up at all when the
512-bit text signatures are used (although the actual response times here are very
f&st indeed). .

It was thought that the problem could be a bottleneck in distributing the documents
to the farm and that this might be alleviated by using the triple chain farm to reduce
the average distance travelled by the messages, i.e., having three chains attached to
the document store transputer instead of just the one shown in Figure 5. Four sets
of runs were therefore carried out with a triple chain farm as shown in parts (a) to
(d) of Table 3. Th e same parameters were used as for the previous runs except that
the number of worker transputers was chosen so that all three chains were of equal
length.

When all of the documents undergo the text search, i.e., when all of the bits are set
to ‘l’, the run times are longer with small numbers of transputers than in the case of
the single chain because the use of the triple chain introduces overheads associated
with the distribution of the documents. However, the response times when the farm
is large are a considerable improvement on the single chain results. In this case,
the speed-up is much more satisfactory than before. With a network of 15 worker
transputers it is possible to get a speed-up of nearly 13, which is fairly close to the
ideal linear speed-up. This verifies our assumption that the previous disappointing
results had been due to a distribution bottleneck.

However, the speed-up behaviour is still disappointing when long text signatures are
used; when the 512-bit text signatures are used there is again very little speed-up
at all and little improvement in the response times over the single chain farm.

One point that should be made about these results is that they have been obtained in
nearest neighbour searches where the natural language queries have been converted
to a set of right-hand truncated word stems. The signature generation method used
has been optimised for efficient searching using this particular type of query repre-
sentative, and the signature search is thus very succgssful in eliminating documents
from the pattern matching search. However, these signatures could not be used to
eliminate documents if other types of pattern matching needed to be carried out,
e.g., searches for left-hand truncated terms, embedded don’t care characters and
arbitrary substrings, Accordingly, very many more documents would have to be
passed on for pattern matching, with a consequent substantial improvement in the
speed-up behaviour. The results in Table 1 thus represent a lower bound for the
speed-up which can be obtained when such text signatures are used.

We would also expect to obtain greater speed-up than those obtained to date if a
more appropriate type of signature for these sorts of pattern matching operations
were to be used, e.g., one based on the presence of trigrams. Text signatures based

440

on the trigrams of non-stopwords were created by hashing each trigram to a single bit
position in the bit string. A bit was also set for each word stem, as before. The length
of the bit string was chosen so that approximately half of the bits were set to ‘I’,
since this is theoretically the most efficient arrangement; thus, the bit string length
was 352. Searches were then performed using the original queries and modified
queries in which wildcard characters were inserted at appropriate places, usually at
the end of query terms. For words which did not contain wildcard characters, the
appropriate IDF weighting was calculated as before: for words containing wildcard
characters, an estimated IDF weight was calculated by assuming the term frequency
was the average frequency of the terms in the document collection. This means that
there is a graceful degradation in retrieval effectiveness from the case when no terms
contain wildcards to the case when all terms contain them.

Table 4 contains the results of searches using these trigram text signatures. It is
evident from comparison of Tables 4(a) and 4(b) that, as expected, both the response
times and the speed-ups increase when wildcards are used in queries. It can also
be observed that the response times are much greater than with the previous text
signatures and the speed-ups are much lower. This was, at first, surprising because
we had expected at least an improvement in speed-up because more text searching
is being carried out (as is shown by a comparison of the numbers of documents
searched here and in Table 3(c), where X&bit signatures are used). However, it has
now been realised that, by using text signatures, we have created another bottleneck.
The original bottleneck was caused by a problem in distributing the documents from
the document store transputer. Now we have a bottleneck in getting the document
numbers sent out from the root transputer to the document store transputer quickly
enough. With the trigram signatures, many more bit positions have to be checked
for each term than previously. Thus, there is a greater delay between sending
out the document numbers of those documents which need to be searched by the
processor farm. Accordingly, the farm cannot be used to full effect. This could
only be counteracted by having several processors searching the text signatures
simultaneously and feeding document numbers into the document store transputer.
A method of distributing text signature searching over several processors has been
described by Walden and Sere (Walden & Sere, 1989).

A further unexpected, and possibly related, result is that there is no consistent trend
in the variation of speed-up as the number of documents shown to,‘the user is varied.
This was again rather surprising, since, as more documents need to be displayed, so
more documents need to be sent for text searching, and previous experience would
have suggested to us that the speed-up should increase. However, with all the above
results, as expected, the search time reduces as the number of documents required
by the user decreases; this is because there is a higher threshhold similarity value
when fewer documents are required.

441

6 Conclusions

The main conclusions of our experiments are as follows:

l The use of a transputer-based system allows very rapid searches based on
serial files to be carried out, with response times that are comparable to those
obtainable from PC-based inverted file systems.

l At least some speed-up has been obtained using parallel hardware under all
the conditions investigated here.

l If no documents are eliminated at the first stage of the search, near-linear
speed-up can be achieved with up to fifteen transputers.

l Large text signatures significantly reduce the search time, but there is also a
marked reduction in the speed-up that can be achieved.

l The use of a single chain processor farm resulted in a bottleneck in the distri-
bution of documents to the farm; this was alleviated by use of a triple chain
network.

l The use of trigram signatures increases the response time and reduces the
speed-up because it introduces a delay and thus creates a new bottleneck in
the system.

Our results would thus suggest that transputer networks have at least some potential
for allowing PCs to be used for interactive nearest neighbour searching in serial
document files. That said, much further work is required to identify how such
networks should be used to maxim&e the efficiency of searching. At present, we are
investigating alternative ways of distributing the processes over the transputers at
the top of the farm.

Acknowledgements. We thank the British Library for funding this work un-
der grant number SI/G/814, the Library Association for the provision of the LISA
data, and Mr. Andy Jackson, Mr. Glenn Miller,: Mr. Geraint Jones and Dr. Jon
Kerridge of the National Transputer Support Ceutre for technical support.

References

Amdahl, G+ (1967). The validity of the single processor approach to achieving large scale
computing capabilities. APIPS Conference Proceedings, 30, 483-485.

Athas, W.C. & Seitz, C.L. (1988). Multicomputers: message-passing concurrent computers.
Computer, 21(8), 9-24.

Carroll, D.M., Pogue, C+A. & Willett, P. (1988). Bibliographic pattern matching using the
ICL Distributed Array Processor. Journal of the American Society.for Information Science,
39, 390-399.

Cringean, J.K., Manson, G.A., Will&t, P. & Wilson, G.A. (1988). Efficiency oftext scanning
in bibliographic databases using microprocessor-based multiprocessor networks. Journal of
Information Science, 14, 335-345.

Cringean, J .K., Lynch, M.F., Manson, G-A., Willett, P. & Wilson, G.A. (1989a). Parallel
processing techniques for information retrieval. Searching of textual and chemical database
using transputer networks. Proceedings of the Thirteenth International Online Information
Meeting, 447-462.

Cringean, J.K., England, R., Manson, G.A. & Willett, P. (1989b). Best Match Searching in
Document Retrieval Systems Using rtnnsputer Networks. London: British Library Research
and Development Department.

Cringean, J.K., EngIand, R., Manson, G.A. & Willett, P. (1990). Implementation of text
scanning using a multicomputer network. Part I. System design. Submitted for publication.

Croft, W.B. & Savino, P. (1988). Implementing ranking strategies using text signatures.
ACM 7bansactions on Ofice Information Systems, 6, 42-62.

Dubois, M., Scheurich, C. & Briggs, F.A. (1988)- Synchronisation, coherence and event
ordering in multiprocessors. Computer, 21(2), 9-21.

Faloutsos, C. (1985). Access methods for text. A CM Computing Surveys, 17, 49-74.

Flynn, M.J. (1972). Some computer organisations and their effectiveness. IEEE tinsac-
tions on Computers, C-21, 948-960.

Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K. 8 Walker, D.W.
(1988). Solving Problems on Cvncurxnt processors. Volume I. General Techniques and
Regular Problems Englewood Cliffs: Prentice Ball.

Gajski, D.D. & Peir, J.K. (1985). Essential issues in multiprocessor systems. Computer,
18(6), 9-27.

Gustafson, J.L. (1988). Reevaluating Amdahl’s Law. Communications of the AC., 31,
532-533.

Handler, W. (1977). The impact of classification schemes on computer architectures. In
Proceedings of the 1977 International Conference on Parallel Processing (pp. 7-15). New

443

York: IEEE.

Hey, A.J.G. (1988). Reconfrgurable transputer networks: practical concurrent computation.
Proceedings of the Royal Society, A326, 395-410.

Hackney, R.W. k Jesshqpe, C.R. (1988). P arallel Computers 2. Atrchitecture, Programming
and Algorithms. Bristol: Adam Hilger.

Horspool, R.N. (1980). P ractical fast matching in strings. Softwam - Practice and Experi-
ence, IO, 501-506.

May, D. & Taylor, R. (1984). occam - an overview. iUicroprvccssors and Microsystems, 8,
73-79.

Mohan, K.C. dt- Willett, P. (1985). Nearest neighbour searching in serial files using text
signatures. Journal of Informafion Science, II, 31-39.

Patton, P.C. (1985). Multiprocessors: architecture and applications. Computer, 18(6),
29-40.

Pritchard, D.J., Askew, C.R., Carpenter, D.B., Glendinning, X., Hey, A.J.G. & Nicole,
D.A. (1987). P ractical parallelism using transputer networks. Lecture Notes in Computer
Science, 258, 278-294.

Quinn, M.J. (1987). Designing Eficient Algorithms for Parallel Computers. New York:
McGraw-Hill.

Reed, D.A. & F’ujimoto, R.M. (1987). Multicomputer Networks: Message-Based Parallel
Processing. Cambridge, MA: MIT Press.

Sdton, G. (1989). Automatic Text Processing: the lhtnsformafion, Analysis and Retrieval
of Information by Computer. Reading, MA: Addison-Wesley.

Salton, G. & Buckley, C. (1988). Parallel text search methods. Communications of the
ACM, 91, 202-215.

Sharma, R. (1989). A generic machine for parallel information retrieval. Information Pro-
cessing and Management, 25, 223-235.

Shore, J-E. (1973). Second thoughts on paralIeI procegsing. Computers and Elecfrical En-
gineering, 1, 95-109..

Skillicorn, D.B. (1988). A taxonomy for computer architectures. Computer, aI(46-57.

Stewart, M. & Willett, P. (1987). Nearest neighbour searching in binary search trees:
simulation of a multiprocessor system. Journal of Documentation, 43, 93-111.

Walden, M. & Sere, K. (1989). F’r ee text retrieval on transputer networks. Microprocessors
and Microsystems, I.?, 179-187.

Waltz, D., Stanfill, C., Smith, S. & Thau, R. (1987). Very large database applications of
the Connection Machine system. AFIPS Conference Pruceedings, 56, 159-165.

444

Willett, P. & Rasmussen, E.M. (1990). Parallei Database Processing. Tetf Retrieval and
Ciusier Analysis using the Disfribuied Array Pmcessor, London: Pitman.

445

-kJ

Distributor

I Collector 1

J required results

Figure 1: Flow diagram of processor farm with five worker processors. Rounded
boxes indicate processes.

F- root

P.C. .B

Figure 2: Single linked chain network with both the distributor process (D) and the
collector process (C) on the root processor. Rounded boxes indicate processes and
squares indicate physical processors.

446

P.C. ‘I r

Figure 3: Triple chain network with both the distributor process (D) and the col-
lector process (C) on the root processor. Rounded boxes indicate processes and
squares indicate physical processors.

447

FROM KEYBOARD

I query statement [I]

‘*t ement [I]

(Process query 1

w-y
stems

PI

\
query sigs. [l]

Read dot sigs. Dot. 0 sigs.

dot. nos. [P(l 5 P

ead required dots.
dots.

PI

required dots. [P]

+

Compare texts

1 required dots. [Q(1 5 Q 5 P)]

c Update restits /

1 final required dots. [S(l < S 5 Q)]

TO SCREEN

updated
threshhold
rimilarity
value

Figure 4: Basic flow diagram of two-level text searching in a serial file. Circles
indicate disk storage media, rounded boxes indicate processes, and the rectangle
indicates data input to the system from external sources; numbers in square brackets
represent the number of times data units are transferred from one process to another.

448
I
I

I I I

I * 4

Worker

t

Worker P

Figure 5: Physical implementation of parallel text searching using a single chain pro-
cessor farm with processes placed on processors in a transputer network. Rounded
boxes indicate processes and rectangles indicate processors.

449

Number
I of workers Tp

++A-
2 63.5
4 32.8
8 18.3

12 14.9
18 14.2

SP

2.0
3.8
6.9
8.4
8.8

(a) No text signatures used (100% of 6004 documents searched)

Number Number of documents shown to user
of workers

(P)
1
2 12.5 1.9
4 6.8 3.6 9.5 3.4
8

12
16

Doca. searched 1976 (33%) 2934 (49%) 3307 (55%) 1 3680 (61%) ~

(b) 128-bit text signatures

Number Number of documents qhown to user
of workers 3 1 20

(PI TP SP TP SP TP, S TP S
1 6.8 - 12.0 - 14.7 -7 18.7 _’
2 4.0 1.7 6.8 1.8 8.6 1.7 11.7 1.6
4 3.1 2.2 4.7 2.6 6.1 2.4 8.9 2.1
8 3.1 2.2 4.6 2.6 6+0 2.4 8.8 2.1

12 3.1 2.2 4.6 2.6 6.0 2.4 8.8 2.1
16 3.1 2.2 4.7 2.6 6.1, 2.4 8.9 2.1

Dots. searched 613 (10%) 1222 (20%) 1321 (25%) 1883 (31%)

(c) 256-bit text signatures

Number Number of documents shown to user
of workers 1 5 10 20

(P) T. SP TP SP T. SP TP SP
1 2.8 - 4.5 - 6,U - 9.0 -
2 2.6 1.1 3.7 1.2 4,Q 1.2 7.3 1.2
4 2.6 1.1 3.6 1.2 4,7 1.3 7.1 1.3
8 2.6 1.1 3.6 1.2 4,? 1.3 7.1s 1.3

12 2.7 1.0 3.6 1.2 4+7 1.3 7.x 1.3
16 2.7 1.0 3.6 1.2 4,8 1.2 7.2 1.2

Doca . marched 149 (2%) 387 (6%) 540 (9%) 751 (12%)

(d) 512-bit text signatures

Table 1: Mean search time in seconds, Tp, and speedyup, Sp, for searching the LISA
dataset using a single chain processor farm (averaged over 35 queries).

450

Number of dots. shown RD RT 1
1 67% 81%
5 51% 74%

10 45% 7270
20 39% 69%

Table 2: Mean percentage reduction in documents searched, RD, and reduction in
time, RT, for searching with 1 worker transputer in the LISA dataset (averaged
over 35 queries) using 128-bit text signatures (compared to times when aU bits set
to ‘1’).

451

of workers

-+-
2
3
6
9

12
15

Number 1 I
TP

137.0
68.8
46.1
23.9
16.6
13.0
10.9

(a) No text signatures used (100% of 6004 documents searched)

Number Number of documents shown to user
of workers 1 5 10 20

(P) TP SP TP s TP S TP SP
1 28.3 - 37.9 _’ 41.4 _’ 45.5 -
2 14.3 2.0 19.3 2.0 21.4 1.9 24.3 1.9
3 9.7 2.9 13.1 2.9 14.8 2.8 17.4 2.6
6 5.2 5.4 7.2 5.3 8.5 4.9 11.0 4.1
9 3.9 7.3 5.4 7.0 6.6 6.3 9.1 5.0

12 3.6 7.9 4.8 7.9 6.0 6.9 8.5 5.4
15 3.6 7.9 4.8 7.9 5.9 7.0 8.4 5.4 ,

Docs. searched 2010 (34%) 2985 (50%) 336s (56%) 3756 (63%)

(b) 128-bit text signatures

Number Number of documents shown to user
of workers 1 5 10 20

(P) Tp Sp Tp SP TP 1 SP TP SP
1 7.9 - 14.0 - 17.0 ’ - 21.4 -
2 4.4 1.8 7.5 1.9 9.3 1.8 12.6 1.7
3 3.4 2.3 5.5 2.5 6.9 2.5 9.9 2.2
6 2.8 2.8 4.0 3.5 5.1 3.3 7.8 2.7
9 2.8 2.8 3.8 3.7 4.9 3.5 7.6 2.8

12 2.8 2.8 3.8 3.7 4.9 3.5 7.6 2.8
13 2.8 2.8 3.8 3.7 4.9 3.5 7.6 2.8

Dots. searched 613 (10%) 1231 (20%) 1542 (26%) 1910 (32%)

(c) 256-bit text signatures

I Number i Number of documents shown to user
of workers

L
1 5 10 20

(P) TP SP TP SP TP SP TP SP
1 2.9 - 4.9 - 6,5 - 9.8 -
2 2.6 1.1 3.7 1.3 4.8 1.4 7.5 1.3
3 2.6 I.1 3.5 1.4 4+6 1.4 7.1 1.4
6 2.6 1.1 3.5 1.4 4,5 1.4 7.0 1.4
9 2.6 1.1 3.5 1.4 4,5 1.4 7.0. 1.4

12 2.6 1.1 3.5 1.4 4,5 1.4 7.0 1.4
15 2.6 1.1 3.5 1.4 4,5 1.4 7.0 1.4 ‘

Dots. searched 149 (2%) _ 390 (6%) . 545 (9%) _ 760 (13%)

(d) 312-bit text signatures

Table 3: Mean search time in seconds, Tp, and speed-up, Sp, for searching the LISA
dataset using a triple chain processor farm (averaged over 35 queries).

452

I Number I Number of 8 documents s hc I
I of workers t 1 I

mm to user
) 20

SP TP SP
- 25.5 -

1.6 15.9 1.6
1.8 14.2 1.8
1.9 14.0 1.8
1.9 14.0 1.8
1.9 14-O 1.8
1.9 14.0 1.8

24%) 1722 (29%)

1
W

1
2
3
6
9

12
15

9.9 1.4 -11.6
9.6 1.4 10.6
9.6 1.4 10.5
9.6 1.4 10.5
9.6 1.4 10.5
9.6 1.4 10.5

1 Dots. searched 1 653 (11%) 1 1172

SP TP
- 21.5

1.6 13.1
1.8 11.7
1.8 11.6
1.8 11.6
1.8 11.6
1.8 11.6

20%) 1421

(a) No wildcards in queries

Number 1 Number of docun ents shown to user
of workers 1 5 10 20

(P) TP SP TP SP TP SP Tp SP
1 15.6 - 21.6 - 24.9 - 29.1 -
2 10.7 1.5 12.7 1.7 14.2 1.8 17.0 1.7
3 10.1 1.5 11.1 1.9 12.2 2.0 14.5 2.0
6 10.1 1.5 10.9 2.0 11.9 2.1 14.1 2.1
9 10.0 1.6 10.9 2.0 11.9 2.1 14.1 2.1

12 l-O.1 1.5 10.9 2.0 11.9 2.1 14.0 2.1

Dots. l,b,hed
10.0 1.6 10.9 2.0 11.9 2.1 14.1 2.1
692 (12%) 1182 (20%) 1438(24%) 1722(29%)

(b) Wildcards in queries where appropriate

Table 4: Mean search time in seconds, Tp, and speed-up, Sp, for searching the LISA
dataset with trigram text signatures using a triple chain processor farm (averaged
over 35 queries).

453

