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ABSTRACT 
Collection selection, ranking collections according to user query is 
crucial in distributed search. However, few features are used to 
rank collections in the current collection selection methods, while 
hundreds of features are exploited to rank web pages in web 
search. The lack of features affects the efficiency of collection 
selection in distributed search. In this paper, we exploit some new 
features and learn to rank collections with them through SVM and 
RankingSVM respectively. Experimental results show that our 
features are beneficial to collection selection, and the learned 
ranking functions outperform the classical CORI algorithm. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information search 
and Retrieval  

General Terms: Algorithms 

Keywords: Distributed Search, Collection Selection 

1. INTRODUCTION 
Distributed information retrieval, searching multiple collections in 
distributed environments, is an efficient way to integrate the 
information in deep web automatically. Given a query, a 
distributed search engine ranks the underlying collections and 
selects some of them to forward the query (collection selection) 
based on their content summaries (resource representation), and 
finally merges the results returned from the selected collections 
(results merging). Similar to page ranking in general web search, 
e.g., Google, collection selection plays a vital role in distributed 
search. Considerable efforts have been devoted to collection 
selection algorithms, e.g., CORI[2], ReDDE[6], and hierarchical 
database selection algorithm[4]. The features used by these 
algorithms are limited to terms’ document frequencies and 
collection size, which is far different from web search scenario. 
The lack of features affects the performance of collection 
selection. On the other hand, many machine learning based 
ranking algorithms have been proposed in recent years, such as 
RankingSVM[5], RankNet[1], and RankBoost[3]. Instead of 
tuning ranking function empirically, these methods construct 
ranking functions through supervised learning.  However, to the 
best of our knowledge, none of them has been used in distributed 
search.  

In this paper, 20 features, including content, link, popularity, etc., 
are exploited for collection selection. Moreover, we learn to 
combine these features to rank collections through SVM and 
RankingSVM respectively. The learned ranking functions are 

evaluated on real web data. Experimental results show that our 
features are beneficial to collection selection, and the learned 
ranking functions outperform the classical CORI algorithm. The 
rest of the paper is organized as follows. First we propose some 
new features and learn to rank collections in section 2. Then 
section 3 describes the experiments and results. Finally we 
conclude in section 4. 

2. LEARNING to RANK COLLECTIONS 
2.1  Features 
As only document frequencies and collection size are exploited in 
previous collection selection methods, more features are needed to 
represent collections exactly. This paper studies 20 features, 
including static features (query-independent) and dynamic 
features (query-dependent). While the static features represent the 
characteristic of a collection, the dynamic features describe the 
relationship between the collection and the query, shown in Table 
1. In dynamic features, inter-anchors are the anchor texts from 
web pages in different collections, and intra-anchors are that from 
web pages in the same collection. Integrating the information of 
all the collections, we can acquire the information for inter-
anchors. All the dynamic features have two values: absolute value, 
normalized by the total number, and relative value, normalized by 
the biggest value across collections. Both the static features and 
dynamic features can be exported initiatively by the collections in 
cooperative environments, or be estimated through query based 
sampling in uncooperative environments.  

2.2 Ranking 
To combine the features, we employ RankingSVM and SVM to 
learn a ranking function respectively, which ranks collections 
according to queries. For each query, every collection is 
represented as a vector of features, and it is classified into five 
categories: "very bad", "bad", "indifferent", "good", and "very 
good", according to the relevance between collection and query. 
With RankingSVM, ranking is viewed as ordinal regression, 
where the cost of misclassifying a good instance into "bad" is 
larger than that of misclassifying into "indifferent". With SVM, 
ranking is viewed as classification problem, which classifies 
collections into different categories for each query. Ignoring 
indifferent, SVM considers “good” and “very good” as positive, 
and considers “bad” and “very bad” as negative. For each query, 
the learned ranking function assigns a score to each collection, 
which is used to rank the collections. 

3. EXPERIMENTAL RESULTS 
We build a distributed search engine, Net Compass 
Confederation 1 , which includes a broker and 50 site search 

                                                                 
1 Net Compass Confederation, http://www.compass.edu.cn 
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engines indexing 50 real Chinese web sites. 200 queries are 
randomly selected from the query log. For each query, volunteers 
are asked to label the collections as "very bad", "bad", 
"indifferent", "good", or "very good". The labeled data of 150 
queries is used as training set, and the rest is used to test. For the 
50 queries in testing set, collections are ranked according to the 
scores calculated with the learned ranking function.  

Table 1: Features 

Static Features 
 Size 

the number of documents in the collection 
PageRank 

the pagerank score of the collection's homepage, reported by Google 
Popularity 

the network traffic of the collection, reported by Alexa 
 Homepage Length 

the number of terms in the collection's homepage 
Dynamic Features 

Document Frequency 
the number of documents containing the query 

 Title Document Frequency 
the number of documents whose title contains the query 

 Inter-anchor Document Frequency 
the number of inter-anchors containing the query 

 Intra-anchor Document Frequency 
the number of intra-anchors containing the query 

Term Frequency in Homepage 
the occurring times of the query term in collection's homepage 

Term Frequency in Homepage Title 
the occurring times of the query term in the title of collection's 
homepage 

Term Frequency in Inter-anchors 
the occurring times of the query term in inter-anchors 

Term Frequency in Intra-anchors 
the occurring times of the query term in intra-anchors 

 

Kendall's τ distance, measuring the similarity between two 
ordered lists, is adopted to evaluate the performance of ranking 
functions.  Let ra be the list of collections ordered by human, 
where “good” collections are in front of “bad” ones. Let rb be the 
list of collections ordered by ranking functions. In ra, there is a 
strict ordering between each pair of collections in different 
categories. Then, for each pair with strict ordering in ra, it is 
concordant if their ordering in rb agrees with that in ra, and it is 
discordant otherwise. Let P be the number of concordant pairs and 
Q be the number of discordant pairs, and then the Kendall's τ
distance of ra and rb is formulated as  (P-Q)/(P+Q).  
The ranking functions, learned through SVM and RankingSVM, 
are evaluated with the testing set. In addition, the classical CORI 
collection selection algorithm[2] is used as a baseline. Comparing 
to the labeled data, the Kendall's τ distances of the three ranking 
functions are shown in Table 2. As we can see, both the functions 
learned by SVM and RankingSVM are better than the baseline, 
CORI. The ranking function learned through RankingSVM also 
outperforms the function learned through SVM, which is due to 
the information of the ordering between different categories. 
In addition, in order to investigate the importance of features, we 
calculate the weights of features in the linear model learned by 
RankingSVM, as shown in Figure 1. Feature 1-4 are static features, 

feature 5-12 are absolute values of dynamic features, and features 
13-20 are relative values of dynamic features.  As we can see, 
feature 5, 13, absolute and relative values of document frequency 
are the most important features, followed by feature 14, the 
relative value of title document frequency. Generally, the relative 
values of dynamic features are more important than the absolute 
ones. Among static features, size and PageRank take a little 
advantage over popularity, while HomePage length is almost 
useless. To sum up, though the most important features have been 
used in previous collection selection methods, there are other 
beneficial features, such as relative document frequency and title 
document frequency, PageRank, and popularity,  can be exploited 
to improve the performance of collection selection.  

Table 2: Performance of ranking functions 
Algorithms Kendall's τ 

CORI(baseline) 0.514 

Learn by SVM 0.551 

Learn by RankingSVM 0.586 
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Figure 1:  Weights of Features 

4. CONCLUSIONS 
In this paper, we propose some new features for collection 
selection in distributed search. In addition, SVM and 
RankingSVM are adopted to construct ranking functions 
combining all the features. Both of the ranking functions are 
evaluated on real web data. Experimental results show that both 
our functions with these new features outperform the classical 
CORI algorithm. It indicates that our features are beneficial to 
ranking collections, and the learning based ranking functions 
combine these features effectively.  
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