
Learning to Rank Collections
Jingfang Xu

Department of Electronic Engineering
Tsinghua University

Beijing, 100084, China

Xjf02@mails.tsinghua.edu.cn

 Xing Li
Department of Electronic Engineering

Tsinghua University
Beijing, 100084, China

xing@cernet.edu.cn

ABSTRACT
Collection selection, ranking collections according to user query is
crucial in distributed search. However, few features are used to
rank collections in the current collection selection methods, while
hundreds of features are exploited to rank web pages in web
search. The lack of features affects the efficiency of collection
selection in distributed search. In this paper, we exploit some new
features and learn to rank collections with them through SVM and
RankingSVM respectively. Experimental results show that our
features are beneficial to collection selection, and the learned
ranking functions outperform the classical CORI algorithm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information search
and Retrieval

General Terms: Algorithms

Keywords: Distributed Search, Collection Selection

1. INTRODUCTION
Distributed information retrieval, searching multiple collections in
distributed environments, is an efficient way to integrate the
information in deep web automatically. Given a query, a
distributed search engine ranks the underlying collections and
selects some of them to forward the query (collection selection)
based on their content summaries (resource representation), and
finally merges the results returned from the selected collections
(results merging). Similar to page ranking in general web search,
e.g., Google, collection selection plays a vital role in distributed
search. Considerable efforts have been devoted to collection
selection algorithms, e.g., CORI[2], ReDDE[6], and hierarchical
database selection algorithm[4]. The features used by these
algorithms are limited to terms’ document frequencies and
collection size, which is far different from web search scenario.
The lack of features affects the performance of collection
selection. On the other hand, many machine learning based
ranking algorithms have been proposed in recent years, such as
RankingSVM[5], RankNet[1], and RankBoost[3]. Instead of
tuning ranking function empirically, these methods construct
ranking functions through supervised learning. However, to the
best of our knowledge, none of them has been used in distributed
search.

In this paper, 20 features, including content, link, popularity, etc.,
are exploited for collection selection. Moreover, we learn to
combine these features to rank collections through SVM and
RankingSVM respectively. The learned ranking functions are

evaluated on real web data. Experimental results show that our
features are beneficial to collection selection, and the learned
ranking functions outperform the classical CORI algorithm. The
rest of the paper is organized as follows. First we propose some
new features and learn to rank collections in section 2. Then
section 3 describes the experiments and results. Finally we
conclude in section 4.

2. LEARNING to RANK COLLECTIONS
2.1 Features
As only document frequencies and collection size are exploited in
previous collection selection methods, more features are needed to
represent collections exactly. This paper studies 20 features,
including static features (query-independent) and dynamic
features (query-dependent). While the static features represent the
characteristic of a collection, the dynamic features describe the
relationship between the collection and the query, shown in Table
1. In dynamic features, inter-anchors are the anchor texts from
web pages in different collections, and intra-anchors are that from
web pages in the same collection. Integrating the information of
all the collections, we can acquire the information for inter-
anchors. All the dynamic features have two values: absolute value,
normalized by the total number, and relative value, normalized by
the biggest value across collections. Both the static features and
dynamic features can be exported initiatively by the collections in
cooperative environments, or be estimated through query based
sampling in uncooperative environments.

2.2 Ranking
To combine the features, we employ RankingSVM and SVM to
learn a ranking function respectively, which ranks collections
according to queries. For each query, every collection is
represented as a vector of features, and it is classified into five
categories: "very bad", "bad", "indifferent", "good", and "very
good", according to the relevance between collection and query.
With RankingSVM, ranking is viewed as ordinal regression,
where the cost of misclassifying a good instance into "bad" is
larger than that of misclassifying into "indifferent". With SVM,
ranking is viewed as classification problem, which classifies
collections into different categories for each query. Ignoring
indifferent, SVM considers “good” and “very good” as positive,
and considers “bad” and “very bad” as negative. For each query,
the learned ranking function assigns a score to each collection,
which is used to rank the collections.

3. EXPERIMENTAL RESULTS
We build a distributed search engine, Net Compass
Confederation 1 , which includes a broker and 50 site search

1 Net Compass Confederation, http://www.compass.edu.cn

Copyright is held by the author/owner(s).
SIGIR’07, July 23-27, 2007, Amsterdam, The Netherlands.
ACM 978-1-59593-597-7/07/0007.

SIGIR 2007 Proceedings Poster

765

engines indexing 50 real Chinese web sites. 200 queries are
randomly selected from the query log. For each query, volunteers
are asked to label the collections as "very bad", "bad",
"indifferent", "good", or "very good". The labeled data of 150
queries is used as training set, and the rest is used to test. For the
50 queries in testing set, collections are ranked according to the
scores calculated with the learned ranking function.

Table 1: Features

Static Features
 Size

the number of documents in the collection
PageRank

the pagerank score of the collection's homepage, reported by Google
Popularity

the network traffic of the collection, reported by Alexa
 Homepage Length

the number of terms in the collection's homepage
Dynamic Features

Document Frequency
the number of documents containing the query

 Title Document Frequency
the number of documents whose title contains the query

 Inter-anchor Document Frequency
the number of inter-anchors containing the query

 Intra-anchor Document Frequency
the number of intra-anchors containing the query

Term Frequency in Homepage
the occurring times of the query term in collection's homepage

Term Frequency in Homepage Title
the occurring times of the query term in the title of collection's
homepage

Term Frequency in Inter-anchors
the occurring times of the query term in inter-anchors

Term Frequency in Intra-anchors
the occurring times of the query term in intra-anchors

Kendall's τ distance, measuring the similarity between two
ordered lists, is adopted to evaluate the performance of ranking
functions. Let ra be the list of collections ordered by human,
where “good” collections are in front of “bad” ones. Let rb be the
list of collections ordered by ranking functions. In ra, there is a
strict ordering between each pair of collections in different
categories. Then, for each pair with strict ordering in ra, it is
concordant if their ordering in rb agrees with that in ra, and it is
discordant otherwise. Let P be the number of concordant pairs and
Q be the number of discordant pairs, and then the Kendall's τ
distance of ra and rb is formulated as (P-Q)/(P+Q).
The ranking functions, learned through SVM and RankingSVM,
are evaluated with the testing set. In addition, the classical CORI
collection selection algorithm[2] is used as a baseline. Comparing
to the labeled data, the Kendall's τ distances of the three ranking
functions are shown in Table 2. As we can see, both the functions
learned by SVM and RankingSVM are better than the baseline,
CORI. The ranking function learned through RankingSVM also
outperforms the function learned through SVM, which is due to
the information of the ordering between different categories.
In addition, in order to investigate the importance of features, we
calculate the weights of features in the linear model learned by
RankingSVM, as shown in Figure 1. Feature 1-4 are static features,

feature 5-12 are absolute values of dynamic features, and features
13-20 are relative values of dynamic features. As we can see,
feature 5, 13, absolute and relative values of document frequency
are the most important features, followed by feature 14, the
relative value of title document frequency. Generally, the relative
values of dynamic features are more important than the absolute
ones. Among static features, size and PageRank take a little
advantage over popularity, while HomePage length is almost
useless. To sum up, though the most important features have been
used in previous collection selection methods, there are other
beneficial features, such as relative document frequency and title
document frequency, PageRank, and popularity, can be exploited
to improve the performance of collection selection.

Table 2: Performance of ranking functions
Algorithms Kendall's τ

CORI(baseline) 0.514

Learn by SVM 0.551

Learn by RankingSVM 0.586

0
5

10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature Id

Weight

Figure 1: Weights of Features

4. CONCLUSIONS
In this paper, we propose some new features for collection
selection in distributed search. In addition, SVM and
RankingSVM are adopted to construct ranking functions
combining all the features. Both of the ranking functions are
evaluated on real web data. Experimental results show that both
our functions with these new features outperform the classical
CORI algorithm. It indicates that our features are beneficial to
ranking collections, and the learning based ranking functions
combine these features effectively.

5. REFERENCES
[1] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.

Hamilton, and G. Hullender. Learning to rank using gradient
descent. In Proceedings of ICML’05, 2005, 89-96

[2] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. In Proceedings of
SIGIR ’95, 1995, 21-28.

[3] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences. J.
Mach. Learn. Res., 2003, 4:933-969.

[4] P. G. Ipeirotis and L. Gravano. Distributed search over the
hidden web: hierarchical database sampling and selection. In
Proceedings of VLDB ’02, 2002.

[5] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of SIGKDD ’02, 2002, 133-142.

[6] L. Si and J. Callan. Relevant document distribution
estimation method for resource selection. In Proceedings of
SIGIR’03, 2003, 289-305.

SIGIR 2007 Proceedings Poster

766

