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ABSTRACT
Relevance feedback, which traditionally uses the terms in
the relevant documents to enrich the user’s initial query,
is an effective method for improving retrieval performance.
The traditional relevance feedback algorithms lead to over-
fitting because of the limited amount of training data and
large term space. This paper introduces an online Bayesian
logistic regression algorithm to incorporate relevance feed-
back information. The new approach addresses the overfit-
ting problem by projecting the original feature space onto a
more compact set which retains the necessary information.
The new set of features consist of the original retrieval score,
the distance to the relevant documents and the distance to
non-relevant documents. To reduce the human evaluation
effort in ascertaining relevance, we introduce a new active
learning algorithm based on variance reduction to actively
select documents for user evaluation. The new active learn-
ing algorithm aims to select feedback documents to reduce
the model variance. The variance reduction approach leads
to capturing relevance, diversity and uncertainty of the un-
labeled documents in a principled manner. These are the
critical factors of active learning indicated in previous litera-
ture. Experiments with several TREC datasets demonstrate
the effectiveness of the proposed approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Relevance
Feedback

General Terms
Algorithms

1. INTRODUCTION
In information retrieval, it is well known that the original

query formulation does not always capture user’s seman-
tic search intent. Relevance feedback [7, 17] can improve
retrieval performance significantly. The relevance feedback
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approaches model the following retrieval process: user first
sends an initial tentative query, which retrieves some use-
ful documents for user to evaluate. Based on the relevance
evaluation, the retrieval system modifies the query to re-
trieve more relevant documents in the next retrieval round.
Query expansion [23, 14], which extracts terms relevant to
the search topic from feedback documents to reformulate the
original query, is an essential element in traditional relevance
feedback.

“An inductive algorithm overfits the dataset if it models
the given data too well and its predictions are poor[13].” The
problem of overfitting has attracted attention in the machine
learning community [13, 8] for a long period, but has not
been as well studied in the context of the relevance feedback
problem. Traditional relevance feedback algorithms which
rely on query expansion suffer from a crucial drawback: In
relevance feedback the size of feedback (training) documents
is much smaller than the size of the term space. Conse-
quently, learning from limited feedback documents with many
features will cause the overfitting problem [13]. Because of
the existence of noise, some terms including the background
noise terms can only discriminate between the relevant and
non-relevant feedback documents, but cannot generalize to
rank the relevancy of the remaining unlabeled documents,
which is the overfitting problem. Overfitting is closely related
to the bias-variance trade-off: if the algorithm is optimized
to fit the training data too well, the variance term becomes
too large. In the case where training data is limited, the vari-
ance term becomes even larger. The existing query expan-
sion algorithms implicitly alleviate the overfitting problem
[23] by filtering out the background noise terms that have a
poor generalization power and only choosing the terms with
largest probabilities in the feedback model, although they
do not explicitly discuss the overfitting problem. Neverthe-
less, relevance feedback algorithms using the complete term
space cannot avoid the overfitting problem completely.

We propose a Bayesian logistic regression model[6] to pre-
dict the probability of relevance of the retrieved documents.
Bayesian logistic regression extends the logistic regression
model to a Bayesian framework by adding a prior distri-
bution of the parameters to the model. To address the
overfitting problem, we reduce the term space to three fea-
tures: retrieval score, distance to relevant documents and
distance to non-relevant documents. The new algorithm re-
estimates the probability of relevance for the initial retrieved
documents by considering their retrieval score, distance to
the relevant feedback documents and distance to the non-
relevant documents. One notable distinction between the
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logistic regression relevance feedback model and the tradi-
tional relevance feedback model is the abstraction in the
term feature space. Query expansion based on term space
expands the original query with noisy terms from feedback
documents, which could then impair the retrieval perfor-
mance. The noisy terms come either from general English
words or some document specific words. Reducing the fea-
ture space in the logistic regression model will significantly
reduce the overfitting problem. The distance features in the
logistic regression model update as more documents are se-
lected for evaluation. If relevance feedback is processed in
a batch setting, because we do not have labeled documents
initially, the distance measure for the feedback documents
cannot be calculated until all the feedback documents in
the batch have been evaluated. Therefore, we propose to
use online Bayesian logistic regression. In the online set-
ting, the user evaluates feedback document one at a time,
and then the algorithm updates the distance measures, as
well as the regression parameters, upon the user’s feedback.
We also impose a strong Bayesian prior, which captures our
prior belief of the model parameters, to further mitigate the
overfitting problem.

How to actively choose good documents to present to the
user for evaluation is another challenging problem, whose
resolution further improves the performance of the relevance
feedback process. The active choice of unlabeled data be-
longs to the broad area of active learning problems in super-
vised learning. Choosing uncertain data close to the decision
boundary has been the primary active learning strategy in
most kinds of machine learning tasks [3, 5, 18, 21]. On the
other hand, this problem has not been well studied in the
information retrieval community. Several efficient and ef-
fective heuristics [22, 19] have been proposed to focus on
increasing the diversity of the chosen document set. In this
paper, we propose a new active learning algorithm for the
Bayesian logistic regression model. In order to reduce the
overall prediction error, the new active learning algorithm
tends to select documents which minimize the variance of
the parameter posterior distribution. Our variance reduc-
tion approach for the active learning algorithm leads to cap-
turing the elements which have been addressed in previous
literature, such as relevance[22], diversity [22, 19] and uncer-
tainty [3, 5, 18, 21] of the unlabeled documents, in a more
principled and integrated manner. In [22], an effective ac-
tive learning algorithm, which chooses documents based on
their relevance score, diversity measure and density, achieves
good performance.

The remainder of this paper is organized as following. In
section 2, we review the related literature on the Bayesian lo-
gistic regression and active learning. In section 3, we first in-
troduce the Bayesian logistic regression model for relevance
feedback. In section 4, we present the new active learning
approach. In section 5, we discuss the experimental setting
and the experimental results. In Section 6, we conclude with
a description of our current research, and present several fu-
ture research directions.

2. RELATED WORK
Logistic regression [8] is one of the most widely used dis-

criminative models in data mining. Regularization methods
express our prior belief in the parameters, and penalize the
estimate for deviating from the prior belief. In practice, we
need to regularize the logistic regression model to avoid over-

fitting caused by limited number of training data with large
feature size. For the Bayesian approach, regularization is
achieved by specifying a prior distribution over the parame-
ters and subsequently averaging over the posterior distribu-
tion. Genkin et al. [6] proposed Bayesian logistic regression
to perform large scale text categorization and demonstrated
good predictive capabilities. Dayanik et al. [4] incorporated
domain knowledge by constructing informative prior distri-
bution for the Bayesian logistic regression model. Bayesian
logistic regression has also been applied in adaptive filtering
[25] to learn the filtering threshold.

Active feedback is essentially an application of active lear-
ning in the Ad hoc information retrieval area. Active learn-
ing has been extensively studied in the supervised learning
scenarios. Active learning algorithms can be categorized into
two classes: those which choose unlabeled data based on the
uncertainty of the data and those which choose unlabeled
data based on the expected utility of the data.

Lewis and Gale [3] proposed an uncertainty sampling met-
hod for active learning. The Query by Committee (QBC)
algorithm [5, 18] measures the uncertainty of a test example
by employing the disagreement among different classification
models as an effective score. Tong’s support vector machine
active learning approach [21] aims to select unlabeled docu-
ments to reduce the version space as much as possible. To
summarize, these three approaches select documents close
to the decision boundary, and belong to the first category.

Cohn et al. [2] proposed one of the first statistical analysis
of active learning, demonstrating how to construct queries
that maximize error reduction by minimizing the learner’s
variance. Roy and McCallum [15] proposed an active learn-
ing algorithm which reduces the expected log loss. Both of
the above two algorithms calculate the expected loss, and
belong to the second category of utility based approaches.
The ideal loss function is the difference between the true
model and the learned model. Because we do not know the
true model in advance, we typically develop a surrogate ob-
jective function that approximates the model quality.

Active learning strategies have also been studied for the
logistic regression model. Zhang and Oles [24] analyzed the
value of the unlabeled data and presented a framework of
active learning based on the maximization of the Fisher in-
formation matrix, given that the Fisher information repre-
sents the overall uncertainty of the classification model. Hoi
et al.[9, 10] extended the framework of [24] to a batch learn-
ing setting. The first algorithm [9] solves the combinato-
rial optimization problem with an efficient greedy algorithm
that approximates the objective function by a submodu-
lar function. The second algorithm [10] relaxes the integer
value constraints to continuous value constraints, and thus
the NP hard combinatorial optimization problem becomes a
semidefinite programming (SDP) problem.

Active learning has not been well studied in the context
of relevance feedback. Shen et al. [19] proposed several
heuristic algorithms to stress the diversity of the feedback
document set. Xu et al. [22] proposed an active learning
algorithm which comprehensively considers the relevance,
diversity and density of the feedback document set. Both
of these two active learning approaches are based on the ex-
isting language model based relevance feedback algorithms
[23], while the new active learning approach proposed in this
paper is based on the Bayesian logistic regression relevance
feedback model which addresses the overfitting problem. Be-
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Figure 1: Procedure of Active Bayesian Logistic Re-
gression Relevance Feedback Model

cause the overfitting problem is caused by large variance in
the prediction achieved by the model, our new active learn-
ing approach chooses the feedback document which reduces
the expected variance of the classification model the most.
The variance reduction approach captures relevance, diver-
sity and uncertainty of the unlabeled documents in a princi-
pled manner. Those factors have been identified as critical
factors of active learning in the previous literature[19, 22, 3,
5, 18, 21].

3. BAYESIAN LOGISTIC REGRESSION
FOR RELEVANCE FEEDBACK

The new relevance feedback algorithm is setup in an on-
line setting, where the feedback documents are evaluated
one at a time. We model the active relevance feedback in
a Bayesian logistic regression framework, where the origi-
nal term feature space is reduced to three features: retrieval
score, distance to relevant feedback documents and distance
to non-relevant feedback documents. We first use an ac-
tive learning algorithm to select a feedback document for
user evaluation. Based on the user’s evaluation, we update
the parameters of the logistic regression model, as well as
the distance features since the feedback document sets are
increasing. Based on the current model parameters and fea-
ture values, we select the second feedback document using
the active learning algorithm. The above procedure is iter-
ated until we have evaluated K documents. The procedure
is illustrated in Figure 1. In the following sections, we will
present the Bayesian logistic regression model, its applica-
tion to relevance feedback, and the active learning algorithm
in detail.

3.1 Bayesian logistic Regression Model
The goal of the logistic regression model is to predict the

probability of relevance of the unevaluated documents. Sup-

pose we have a set of training examples

D = {(d1, y1), . . . , (di , yi), . . . (dn , yn)}

The vectors di are the features of the training examples, and
the values yi ∈ {+1,−1} are the class labels encoding rele-
vant (+1) or non-relevant (−1) of the vector in the category.
Thus, the probability of relevance has the form

p(yi|β, di) = π(yi, di , β) =
1

1 + exp(−βT diyi)
(1)

The key of the logistic regression is to estimate parame-
ters β. The training documents are limited in relevance
feedback, and thus the logistic regression model is likely to
overfit the training data. Regularization is an effective way
to reduce overfitting. Taking a Bayesian point of view, we
apply the Bayesian regularization approach [6] which con-
structs prior distributions on β. The Gaussian distribution
is a commonly used prior distribution. We impose a N di-
mensional multivariate Gaussian prior distribution for pa-
rameters β with mean µ and variance Σ.

p (β|µ,Σ) ∝
1

|Σ|N/2
exp

(

−
1

2
(β − µ)T Σ−1 (β − µ)

)

(2)

Ideally, we integrate over the posterior distribution of β to
predict the probability of being relevant for the unlabeled
documents. The ideal approach faces the following com-
putational problem. The Gaussian distribution is not the
conjugate prior for the logistic regression model, and mul-
tidimensional integration over the posterior distribution is
intractable. Therefore, we are not able to derive a closed-
form posterior distribution. Instead, we propose to apply
the Laplace approach [11] to approximate the posterior dis-
tribution, and use the posterior mean to estimate class prob-
ability.

The Laplace method [11] approximates the posterior dis-
tribution by a scaled Gaussian distribution. The mean of the
Gaussian distribution is the Maximum a posteriori (MAP)
estimate of the posterior mean, and the variance matrix is
the Hessian of the log posterior distribution.

The likelihood function ℓ(β), which is also the posterior
density p(β|D) with the logistic regression model, is shown
in Equation (3).

ℓ(β) = p(β|D) ∝ p(D|β)p(β) (3)

∝
exp

(

− 1

2
(β − µ)T Σ−1 (β − µ)

)

1 + exp(−βT diyi)

where p(β) is the prior distribution as in Equation(2). The
Maximum a posteriori estimate (MAP) is a point estimate
which maximizes the log of the posterior likelihood func-
tion (3). Thus, the MAP estimate is the maximum of the
following likelihood function.

β̂map = arg max
β

ln ℓ(β) (4)

= arg max
β

− ln(1 + exp(−β
T
diyi)) −

−
1

2
(β − µ)T Σ−1(β − µ)

We cannot derive a closed-form solution for the above op-
timization problem. it can be computed by any gradient
descent method. The first derivative and second derivative
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of the log-likelihood function can be derived as

∂l(β)

∂β
=

diyi

1 + exp(βT diyi)
− Σ−1(β − µ) (5)

∂l2(β)

∂β2
=

−didi
T

(1 + exp(βT diyi))(1 + exp(−βT diyi))
− Σ−1

The covariance matrix of the posterior distribution can be
approximated by the Hessian matrix of the log-likelihood at
β̂map using the Laplace approach. Thus, we plug βmap into
Equation (5).

Σnew
−1 = Σold

−1

+
didi

T

(1 + exp(β̂map

T
diyi))(1 + exp(−β̂map

T
diyi))

(6)

We update the posterior mean and variance after evaluat-
ing a feedback document, then the posterior distribution
becomes the prior distribution for the next feedback docu-
ment. After we have evaluated all the feedback documents,
we can simply predict the probability of relevance for the
remaining unlabeled documents using Equation (1), where

the parameter β is the posterior mean β̂map.

3.2 Applying Bayesian Logistic Regression to
Relevance Feedback

We usually do not have enough training data in the rele-
vance feedback application. With limited training data, tra-
ditional relevance feedback algorithms which use the whole
term space as feature space, face the overfitting problem.
For example, the overfitting problem can be caused by ex-
panding the query with some off-topic terms occurring in the
relevant feedback documents. Consequently, non-relevant
documents containing these terms will be ranked highly.
Various techniques have been proposed to reduce overfit-
ting, such as deleting general English terms occurring in
the collection[23]. To alleviate the overfitting problem, we
project the whole term space into three features: retrieval
score, distance to the relevant feedback documents and dis-
tance to the non-relevant feedback documents. Intuitively,
a relevant document should have high retrieval score, small
distance to the relevant documents, and large distance to the
non-relevant documents. Thus, these three features consti-
tute a new space, which captures the significant elements
influencing the relevance ranking.

To normalize all the features in the overall metric to be of
comparable values, we normalize the retrieval score and use
cosine distance measure. Thus, the values of all the three
features range from 0 to 1. We apply standard normalization
to normalize the retrieval score of document di .

(RScorei − RScoremin) / (RScoremax − RScoremin) (7)

There are several ways to measure the distance of a docu-
ment to a set of documents. Single linkage defines this dis-
tance as the minimum distance between the document and
any document in the set; Complete linkage is the opposite of
single linkage in that it defines this distance as the maximum
distance between them; Average linkage takes the mean dis-
tance between the document and all the documents in the
set. Because the distance measured by the single linkage
method decreases with the number of documents that have
been selected and the distance measured by the complete

linkage method increases with the number of documents,
we use the average linkage approach, which offers a smooth
distance measure.

Initially, we set both the distance measures to some ini-
tial values, and dynamically update the distance measures
as each feedback document is evaluated sequentially. We
cannot obtain valid distance measures unless we have la-
beled documents in both classes. Thus, we do not start to
train the logistic regression model until we have at least one
relevant and one non-relevant feedback document.

Intuitively, the probability of relevance is correlated with
the retrieval score and the distance to the non-relevant doc-
uments, and inversely correlated with the distance to the
relevant documents. Thus, we set the prior mean for the
parameters β as µ = {µ0, µ1, µ2}, where µ0 and µ2 are pos-
itive, and µ1 is negative. We set the variance of the prior
distribution as Σ = diag {σ, σ, σ}. In the experiments, we
will discuss how to initialize these values.

4. ACTIVE LEARNING FOR BAYESIAN
LOGISTIC REGRESSION

We now derive an objective function for active learning in
the context of the Bayesian logistic regression. The mean
square error of the logistic regression model can be decom-
posed to three terms.

err =
∑

i

E
[

yi − π(yi, di , β̂)
]

2

(8)

= σ2

ǫ “Noise”

+[E(π(yi, di , β̂)) − π(yi, di , β)]2 “Bias”

+E[π(yi, di , β̂) − E(π(yi, di , β̂))]2 “Variance”

A similar error decomposition is discussed in [8]. The goal
of the active learning algorithm is to select unlabeled data
which minimize the expected mean square error. The first
term σ2

ǫ is the variance of the target around its true mean,
and cannot be avoided no matter how accurately we esti-
mate parameter β; the second term is the squared bias, the
amount by which the average of our estimate deviates from
the true mean; the last term is the variance. Since we do
not know the true parameter β, calculating the bias term is
infeasible. Thus, our active learning algorithm only focuses
on minimizing the variance term.

We approximate the parameters of the posterior distribu-
tion by a Gaussian distribution using the Laplace method.
The inverse of the covariance matrix can be approximated
by −∂l2(β)/∂β2. Consequently, we shall favor an unlabeled
document that decreases the variance significantly. Recall
from Equation (6) that we will choose document di which
maximizes

Scorei =
1

(1 + exp(βT di))(1 + exp(−βT di))
didi

T (9)

In the above score function, the first term is maximized when
βT di = 0, which indicates that the data are on the decision
boundary. Uncertainty is a commonly used unlabeled doc-
ument quality measure in active learning. The underlying
principle of uncertainty sampling [3], query by committee
[5, 18] and version space reduction [21] is to choose uncer-
tain data which are close to the decision boundary. The
second term increases with the norm of the feature vector.
The intuition is that a document with large retrieval score
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and large distance to the previously selected documents is
preferable. Relevant documents are more useful than non-
relevant documents in relevance feedback, and retrieval score
is the only indicator of the relevance before user evaluation,
so documents with high retrieval score is more favorable. A
large distance to the previously selected documents implies
the diversity of the feedback document set, which helps to
avoid similar and duplicate documents. An effective heuris-
tic active learning selection approach that explicitly focuses
on relevance, diversity and density was proposed in [22].
The new active learning algorithm in this paper, however,
follows from principled analytics. We formally derive our ac-
tive learning approach to minimize the variance of posterior
distribution. The new active learning approach implicitly
captures several widely applied heuristics in the previous
work in active learning.

The Fisher information for logistic regression is defined by
the same expression as Equation(9). It is well-known from
the standard Cramer-Rao lower bound [12] that the covari-
ance of any unbiased estimator of β is ≥ 1

n
I(β)−1. Here

I(β) is the Fisher information of parameter β. Zhang and
Oles [24] proposed an active learning scheme which maxi-
mizes the Fisher information. Our variance reduction active
learning approach is coincident with the fisher information
active learning approach, but is derived from a new perspec-
tive. We summarize the computational procedure for active
Bayesian regularization in Table 1.

Furthermore, instead of directly selecting documents with
highest score, we propose an sampling scheme. Earlier work
[16] has demonstrated that sampling from a distribution of
effectiveness scores is preferable to direct selection. It re-
duces the chance of selecting outliers and allows the algo-
rithm to balance exploration and exploitation. We propose
two methods to convert the absolute score to a distribution.
For the first approach, the sampling distribution weight for
document di is given by

P (di) = scorei/
∑

i

scorei (10)

For the second approach, we applied the softmax action se-
lection rules. The most common method uses a Gibbs, or
Boltzmann distribution. It chooses document xi with prob-
ability

P (di) = exp(scorei/T )/
∑

i

exp(scorei/T ) (11)

where T is a positive parameter called the temperature.
High temperatures equalize the actions, while low tempera-
tures differentiate the actions. Randomized algorithms are
effective and popular to balance between exploration and
exploitation[20].

5. EXPERIMENTAL METHODS AND RE-
SULTS

5.1 Experimental Dataset and Procedure
To evaluate our active Bayesian logistic regression algo-

rithm described in the previous section, we experimented
with three TREC datasets. The first one is the TREC
2003 HARD track, which use part of the AQUAINT dataset
plus two additional datasets (Congressional Record (CR)
and Federal Register (FR)). We do not have the additional

Table 1: Pseudo code for active Bayesian logistic
regression algorithm

FUNCTION: Predict probability of relevance
INPUT: D = d1, d2, . . . , dN

OUTPUT: probability of relevance
SET relDoc to 0
SET nonRelDoc to 0
FOR k = 0 to K − 1

Score a document di using Equation (9).
IF (yi = 1) THEN

relDoc ++
Update distRel of the unselected documents.

ELSE
nonRelDoc ++
Update distNonRel of the unselected documents.

END IF
IF(relDoc > 0 and nonRelDoc >0 ) THEN

Update posterior mean β̂map using Equation (4).
Update posterior variance using Equation (6).

END IF
k++

END FOR
Predict probability of relevance for the remaining

documents using Equation (1) with β̂map .

datasets in the TREC 2003 HARD track. Our results are
still comparable to other published TREC 2003 HARD re-
sults, although the data are a little different. The second
one is the TREC 7 dataset, which contains data from the
TREC Disk 4 and 5 (excludes Congressional Record). The
last one is the TREC 8 dataset, which contains the same
document set as TREC 7 dataset. Because the topic titles
are most similar to the user’s practical search behavior, we
use only the topic titles as queries on all the 50 topics. Data
pre-processing is standard: terms were stemmed using the
Porter Stemming and stop words were removed by using
standard stop word list.

To measure the performance of the logistic regression rel-
evance feedback algorithms, we use two standard ad hoc re-
trieval measures: (1) Mean Average Precision (MAP), which
is calculated as the average of the precision after each rele-
vant document is retrieved, reflects the overall retrieval accu-
racy. (2) Precision at 10 documents (Pr@10): this measure
does not average well and only gives us the precision for
the first 10 documents. It reflects the utility perceived by a
user who may only read up to the top 10 documents on the
first page. In the experiments, we include all the feedback
documents for evaluation, and this evaluation scheme is also
applied in [19].

We employed the Lemur Toolkit [1] as our retrieval sys-
tem and the KL-Divergence language retrieval model as our
baseline retrieval model. We first compared the Bayesian
logistic regression algorithm with other relevance feedback
algorithms such as the mixture model algorithm [23] and the
divergence minimization algorithm [23]. The mixture model
algorithm models the feedback documents as a mixture of
feedback topic model and background collection model. It
uses EM algorithm to estimate the feedback topic model and
interpolates with the original query model. The divergence
minimization algorithm models the relevance feedback in an
optimization framework, and tends to minimize the diver-
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gence between the feedback topic model and the feedback
documents, and in the same time maximize the divergence
between the feedback topic model and the background col-
lection model. It also interpolates the original query model
with the feedback topic model. We then applied the vari-
ance minimization active learning algorithm to the logistic
regression model, and compared the result with other ac-
tive learning algorithms, including the TOP K [19], cluster
Centroid [19], Active RDD algorithm [22], and random se-
lection.

5.2 Comparison of Relevance Feedback Algo-
rithms

In the experiments, we used TREC 2003 HARD as train-
ing data and optimized the MAP performance by tuning
parameters µ1, µ2, µ3 and σ. We set the Bayesian regres-
sion prior parameters µ1 = 2, µ2 = −4, µ3 = 2 and σ = 1.
Thus, the logistic regression model (LogReg) put a larger
weight on the relevant documents than the non-relevant doc-
uments since the relevant documents are more indicative of
relevance than the non-relevant documents. We also choose
the parameters for the mixture models relevance feedback
algorithm (Mixture) and the divergence minimization rele-
vance feedback algorithm (DivMin) [23] in the same way.
We set the weighting parameter λ = 0.8 and the interpola-
tion parameter α = 0.8 for the mixture model algorithms,
and λ = 0.8 and α = 0.4 for the divergence minimization
algorithm. We applied the same parameter setting for the
other two datasets. In the experiments, we set the number
of feedback documents K = 6. To reduce the computa-
tion, we only selected feedback documents from the top 100
documents and re-ranked the top 1000 retrieved documents.
To validate the effectiveness of non-relevant feedback docu-
ments, we reduce the feature space in the logistic regression
model by eliminating the feature of distance to non-relevant
documents. We also include this approach (LogReg-2) in
the comparison.

Table 2 shows the performance comparison. When com-
pared with the model based feedback results, which them-
selves are actually very strong when compared with the pub-
lished official TREC results, the Bayesian logistic regression
algorithm performs significantly better than the divergence
minimization model in terms of both MAP and PR@10 with
a 8% − 28% margin. The logistic regression algorithm also
performs significantly better than the mixture model ap-
proach with a upto 20% margin. When compared with the
logistic regression algorithm without non-relevant feedback,
the logistic regression algorithm with both relevant and non-
relevant feedback performs better with upto 7% improve-
ment. This shows that the non-relevant feedback documents
help to improve the retrieval accuray by lowering the rank
of the documents similar to the non-relevant feedback doc-
uments.

5.3 Comparison of Active Learning
Algorithms

We used the Bayesian logistic regression as our relevance
feedback baseline, and compared our variance reduction ac-
tive learning algorithm (Variance) and its random sampling
extensions (Variance-sampling and Variance-softmax) with
the existing active learning algorithms, such as top K, clus-
ter centroid[19], random selection and Active-RDD [22]. We
tuned parameter values for these active learning algorithms

based on the TREC 2003 HARD dataset. We set the rel-
evance parameter equal to 0.3 and the diversity parameter
equal to 0.3 for the Active-RDD algorithm [22]. We set the
temperature parameter T = 1 in the softmax algorithm.

Table 3 shows the comparison results. From the results,
we conclude that the variance reduction algorithm performs
consistently well among all the active learning approaches.
The Variance-sampling algorithm and Variance-softmax al-
gorithm perform better than the basic variance reduction
method on TREC 2003 HARD dataset, and perform worse
on the other two datasets. The TREC 2003 HARD dataset
is considered as a dataset with easy queries, because it has a
better baseline retrieval performance than the TREC 7 and
TREC 8 datasets without feedback. Since the probability
of selecting similar relevant documents from the top ranked
list is high for easy queries, selecting a diversified feedback
document set helps to improve the retrieval performance for
the dataset with easy queries. Randomized approaches bring
more exploration to the document selection scheme and tend
to choose more diversified documents. Therefore, the ran-
domized approaches benefit the datasets with easy queries
(TREC 2003 HARD). By contrast, datasets with difficult
queries (TREC 7 and TREC 8) do not benefit from the
randomness in the Variance-sampling and Variance-softmax
algorithms.

All the results shown so far were obtained by fixing the
feedback document size K = 6. We also examined how the
value of K may affect our conclusions. We compared the
top K, random selection and variance reduction algorithm
by varying K in Figure 2. From Figure 2, we conclude that
our variance reduction active learning algorithm consistently
performs better than all the other active learning algorithms
for the TREC 7 and TREC 8 datasets, and performs better
than Top K and random selection algorithm on the TREC
2003 HARD dataset.

As we discussed before, selecting a diversified feedback
document set is helpful to the dataset with easy queries,
because the chance of selecting similar relevant documents
from the top ranked list is high for easy queries. There-
fore, the cluster centroid algorithm, which clusters the re-
trieved documents and selects the centroid documents from
each cluster, emphasizes only diversity, and achieves a better
performance than the variance reduction algorithm on the
TREC 2003 HARD dataset. When the feedback document
size becomes larger, the advantage of our active learning al-
gorithm over the TOP K algorithm on all the three datasets
becomes more obvious. The active learning problem in rel-
evance feedback is a cold start problem, which is different
from the traditional active learning problem in the super-
vised learning problems. For a cold start learning problem,
positive training data are more valuable than the negative
training data for the first a few documents. Consequently,
when the feedback document size is small (fewer than 4 doc-
uments), the top K algorithm performs almost as well as the
variance reduction active learning algorithm.

6. CONCLUSIONS
To address the overfitting problem in relevance feedback,

we have proposed a principled active Bayesian logistic re-
gression model for the relevance feedback in information re-
trieval. The new model reduces the original feature set to
three features: retrieval score, distance to relevant docu-
ments and distance to non-relevant documents, and online
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Table 2: Average performance of relevance feedback approaches. A single star(*) indicates that the perfor-
mance of our Bayesian logistic regression relevance feedback algorithm is significantly better than the existing
methods used in the corresponding column according to Wilcoxon signed rank test at the level of 0.1.

Baseline Mixture DivMin LogReg-2 LogReg
Improv. Improv. Improv. Improv.

Method over over over over
Baseline Mixture DivMin LogReg-2

HARD 2003
MAP 0.3198* 0.3817* 0.3553* 0.3832 0.3851 20.42% 0.89% 8.39% 0.50%
Pr@10 0.5000* 0.5420* 0.5200* 0.6140 0.6140 22.80% 11.33% 18.08% 0.00%

TREC 7
MAP 0.1868* 0.2476* 0.2253* 0.2401* 0.2574 37.79% 3.96% 14.24% 7.20%
Pr@10 0.4220* 0.4980* 0.4660* 0.5560* 0.5980 41.71% 20.08% 28.33% 7.55%

TREC 8
MAP 0.2488* 0.3240 0.2892* 0.3018* 0.3160 27.01% −2.4% 9.34% 4.71%
Pr@10 0.4560* 0.5860* 0.5240* 0.5800* 0.6180 35.53% 5.46% 17.94% 6.55%

Table 3: Average performance of active learning approaches, A single star(*) indicates that the performance
of our variance reduction active learning algorithm is significantly better than the existing methods used in
the corresponding column according to Wilcoxon signed rank test at the level of 0.1.

Top K Random Cluster RDD Variance Var-sampling Var-softmax

HARD 2003
MAP 0.3851 0.3792* 0.3932 0.3951 0.3891 0.3936 0.3946
Pr@10 0.6140 0.6180 0.6300 0.6300 0.6100 0.6280 0.6340

TREC 7
MAP 0.2574* 0.2268* 0.2325* 0.2541* 0.2608 0.2263 0.2346
Pr@10 0.5980 0.5060* 0.5120* 0.5900* 0.6020 0.5200 0.5400

TREC 8
MAP 0.3160* 0.2865* 0.3110* 0.3056* 0.3268 0.2805 0.2818
Pr@10 0.6180 0.5340* 0.5660* 0.5860* 0.6060 0.5520 0.5560
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Figure 2: Sensitivity of average performance of different active learning approaches on K.

233



updates the distance measures as more documents are se-
lected for feedback. The feature reduction approach effec-
tively reduces overfitting. A Bayesian logistic regression ap-
proach is applied to learn the parameters of the model. The
new active learning algorithm chooses unlabeled documents,
so as to minimize the expected variance. Experimental re-
sults show significant performance improvement against the
existing active relevance feedback algorithms.

There are several interesting research directions that may
further improve the effectiveness of active Bayesian logistic
regression model. First, an optimal stopping policy can stop
the feedback evaluation process optimally, and we would
term this as an adaptive algorithm. Second, the current
active learning scheme is a greedy algorithm. Consequently,
designing a new active learning algorithm which considers
the trade-off between exploration and exploitation, will ben-
efit the retrieval performance. Third, the average linkage
used in distance measure loses information in higher mo-
ments, and thus designing richer feature set that contains
more information will benefit the overall performance.
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