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ABSTRACT
Text-based social media channels, such as Twitter, produce torrents
of opinionated data about the most diverse topics and entities. The
analysis of such data (aka. sentiment analysis) is quickly becom-
ing a key feature in recommender systems and search engines. A
prominent approach to sentiment analysis is based on the applica-
tion of classification techniques, that is, content is classified ac-
cording to the attitude of the writer. A major challenge, however, is
that Twitter follows the data stream model, and thus classifiers must
operate with limited resources, including labeled data and time for
building classification models. Also challenging is the fact that
sentiment distribution may change as the stream evolves. In this
paper we address these challenges by proposing algorithms that se-
lect relevant training instances at each time step, so that training
sets are kept small while providing to the classifier the capabilities
to suit itself to, and to recover itself from, different types of senti-
ment drifts. Simultaneously providing capabilities to the classifier,
however, is a conflicting-objective problem, and our proposed al-
gorithms employ basic notions of Economics in order to balance
both capabilities. We performed the analysis of events that rever-
berated on Twitter, and the comparison against the state-of-the-art
reveals improvements both in terms of error reduction (up to 14%)
and reduction of training resources (by orders of magnitude).

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis;
I.5.2 [Pattern Recognition]: Classifier Design and Evaluation

General Terms
Algorithms, Experimentation, Measurement, Performance
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Sentiment Analysis; Economic Efficiency; Streams and Drifts
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1. INTRODUCTION
The need for real-time text analytics is clear and present given

the ubiquitous reach of social media sites like Facebook and Twit-
ter. Specifically, recognizing customer sentiment in real-time and
enabling advertising on-the-fly have the potential to be a break-
through technology [20]. Early examples of such technology in
use were demonstrated in this year’s National Football League’s
Superbowl (a premier sporting event in the USA) where a well
known manufacturer of Oreo cookies took advantage of a third
quarter blackout (and associated Twitter sentiment) to embed a con-
textual advertisement. Another example at the same event was the
advertisement for a Hollywood movie, where, based on the initial
advertisement which happened before the start of the first quarter
(and associated Twitter sentiment), the decision on which of several
possible advertisements to run later on in the program was appar-
ently taken as a runtime decision. Examples like these are likely
to occur more frequently due to lightweight and easy communi-
cation mechanisms, such as Twitter microblogging, which makes
people eager not only to exchange information, but also to convey
their opinions and emotions. People watch events together on tele-
vision, while tweeting out about things happening around them. As
a result, opinionated content is created almost at the same time the
event is happening in the real world, and becomes available shortly
after. The analysis of such content (aka. sentiment analysis) in
order to exploit the aggregate sentiment of the online crowd goes
beyond advertising, and is becoming crucial to recommender sys-
tems and search engines.

There is a growing trend in performing sentiment analysis us-
ing classification-related techniques: a process that automatically
builds a classification model by learning, from a set of previously
labeled data (i.e., the training-set), the underlying characteristics
that distinguish one sentiment from another (i.e., happiness, mad-
ness, surprise, suspicion). The success of these classifiers rests on
their ability to judge attitude by means of textual-patterns present
in the data, which usually appear in the form of (idiomatic) expres-
sions and combinations of words. Sentiment analysis over Twitter
real-time messages, however, is particularly challenging, because:
(i) Twitter follows the data stream model1, requiring classifiers to
operate with limited computing and training resources, and (ii) ei-
ther sentiment distribution or the characteristics related to certain

1There are three main source streams in Twitter. The Firehose pro-
vides all status updates from everyone in real-time. Spritzer and
Gardenhose are two sub-samples of the Firehose. The current sam-
pling rates are 5% and 15%, respectively.
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sentiments may change over time in almost unforeseen ways (i.e.,
sentiment drift).

Our Approach to Sentiment Stream Analysis
A possible strategy to cope with the aforementioned challenges is
to employ selective sampling algorithms in order to focus only on
the most relevant training examples/messages at each time step and
to creating training sets from which classifiers are built. Such train-
ing sets are kept as small as possible to ensure fast learning times,
since a new classifier must be built at each time step, after a new
target message arrives. Also, messages should be selected so that
the resulting training set provides sufficient resources to enable the
resulting classifier to be effective under the occurrence of drifts.
In order to provide sufficient training resources while keeping sets
small, our algorithms select training messages by taking into ac-
count two important properties, that we define as adaptiveness and
memorability. Informally, adaptiveness enables the classifier to
adapt itself to drifts, and thus, improving adaptiveness involves in-
corporating fresh messages into the current training set, while dis-
carding obsolete ones. Memorability, on the other hand, involves
retaining messages belonging to pre-drift distributions, therefore
enabling the classifier to recover itself from drifts.

We hypothesize that adaptiveness and memorability are both nec-
essary to make classifiers robust to drifts. However, given their an-
tagonistic natures, improving both properties may lead to a conflicting-
objective problem, in which the attempt to improve memorabil-
ity further may result in worsening adaptiveness. Thus, we tackle
the problem by proposing selective sampling algorithms based on
multi-objective optimization, that is, we propose to select training
messages so that the resulting classifier achieves a proper balance
between memorability and adaptiveness. Our algorithms are based
on central concepts in Economics, namely Pareto and Kaldor-Hicks
efficiency criteria [19,22,28]. The Pareto Efficiency criterion infor-
mally states that “when some action could be done to make some-
one better off without hurting anyone else, then it should be done.”
This action is called Pareto improvement, and a system is said to be
Pareto-Efficient if no such improvement is possible. The Kaldor-
Hicks criterion is less stringent and states that “when some action
could be done to make someone better off, and this could compen-
sate those that are made worse off, then it should be done.”

Contributions and Findings
The main contribution of this paper is to exploit the intuition behind
the aforementioned concepts for devising new algorithms for senti-
ment stream analysis. In practice, we claim the following benefits
and contributions:

• We formulate simple-to-compute yet effective utility mea-
sures that capture the notions of adaptiveness and memora-
bility. For instance, the similarity between messages that are
candidate to compose the current training set and the target
message, as well as the freshness of the candidate messages,
are measures that tend to privilege adaptiveness. In contrast,
candidate messages are also randomly shuffled, thus privi-
leging memorability. These utility measures result in a utility
space, and the extent to which each candidate message con-
tributes to adaptiveness and memorability depends on where
it is placed in this space.

• We exploit the concept of Pareto Efficiency by separating
messages (viewed as points in the utility space) that are not
dominated by any other message. These messages compose
the Pareto frontier [28], and messages lying in this frontier

correspond to cases for which no Pareto improvement is pos-
sible. These messages privilege either adaptiveness or mem-
orability, and thus they are selected to compose the current
training set from which the classifier is built.

• We exploit the concept of Kaldor-Hicks Efficiency by select-
ing an additional set of messages that, although not lying in
the Pareto frontier, correspond to a positive trade-off between
adaptiveness and memorability. These messages are selected
to compose the current training set from which the classifier
is built.

• Our algorithms may operate either on an instance-basis or
in batch-mode, by employing classification models based on
sentiment rules that are kept incrementally as the stream evolves
and training sets are modified.

To evaluate the effectiveness of our algorithms, we performed
experiments using Twitter data collected from three important events
in 2010, spanning different sentiments expressed in different lan-
guages. Results show that our algorithms make classifiers extremely
effective, with gains in prediction performance that are up to 14%
when compared against the state-of-the-art. Further, the amount of
training resources needed is decreased by two orders of magnitude.

2. RELATED WORK
In the data stream model, data arrives at high speed and algo-

rithms must work in real time and with limited resources. Further,
in some domains, algorithms must deal either with burst detec-
tion [42] and concept drift (i.e., data which nature or distribution
change over time). Žliobaitė [35] categorizes such drifts as sudden,
gradual, incremental and recurring. When data distribution or na-
ture change over time, its relevance must be recalculated to avoid
harming the model. This kind of data stream is known as evolving
data streams.

Many techniques have been proposed to allow accurate classi-
fication in evolving data streams. Núñez et al. [27] proposed a
method for keeping a variable training window by adjusting inter-
nal structures of decision trees. An ensemble of Hoeffding trees
have been proposed in [5], each tree is limited to a small subset
of attributes. Gama et al. [17] proposed a mechanism to discard
old information based on sliding windows. Bifet et al. [6, 7] pro-
posed an adaptive sliding window algorithm, called ADWIN, suit-
able for data streams with sudden drifts. The approach presented
in [24] suggests that a time-based forgetting function, which makes
more recent observations more significant, provides adaptiveness
to the classifier. Klinkenberg [23] compares example selection, of-
ten used in windowing approaches with example weights. Experi-
ments show that both approaches are effective. In [30] the authors
proposed an approach based on a training augmentation procedure,
which automatically incorporates relevant training messages into
the training-set.

Some works have focused on feature similarity, such as Torres
et al. [31] that studied different methods for data stream classifi-
cation and proposed a new way of keeping the representative data
models based on similarity measures. Feng et al. [16] extracted the
concept from each data block using feature similarity probabilities.
Masud et al. [25] proposed a novel technique to overcome the lack
of labeled examples by building models from unlabeled instances
and a small amount of labeled ones. Zhu et al. [41] employed ac-
tive learning to produce a classifier ensemble that selects labeled
instances from data streams to build classifiers. Also, in [37, 38]
active learning approaches are presented for data streams that ex-
plicitly handle concept drifts. They are based on uncertainty [21],
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dynamic allocation of labeling efforts over time, and randomization
of the search space. Žliobaitė et al. [36] proposed a system that im-
plements active learning strategies, extending the Massive Online
Analysis (MOA) framework [8].

Works above cited attempt to face concept drift in data stream
through manipulation of classifiers, with mechanisms such as train-
ing windows and decay functions, active learning and sampling. In
this paper we present new algorithms that select high-utility ex-
amples in order to provide adaptiveness and memorability to the
classifier. In order to balance adaptiveness and memorability, we
formalized this issue as a multi-objective problem. The sample se-
lection is performed using economic efficiency criteria: Pareto and
Kaldor-Hicks. We did not find in the recent literature approaches
that employ multi-objective models based on economic efficiency
criteria to deal with issues in the data stream environment.

3. ALGORITHMS
In this section we present novel selective sampling approaches

for learning classifiers to distinguish between different sentiments
expressed in Twitter messages. We start by discussing models based
on specialized association rules. Then we present measures for
adaptiveness and memorability, and describe the message utility
space. Finally, we discuss Pareto and Kaldor-Hicks criteria, and
algorithms that select training messages using these criteria.

3.1 Sentiment Stream Analysis
In our context, the task of learning sentiment streams is precisely

defined as follows. At time step n, we have as input a training
set referred to as Dn, which consists of a set of records of the
form < d, si >, where d is a message (represented as a list of
terms), and si is the sentiment implicit in d. The sentiment vari-
able s draws its values from a pre-defined, fixed and discrete set of
possibilities (e.g., s1, s2, . . ., sk). The training set is used to build
a classifier relating textual patterns in the messages to their corre-
sponding sentiments. A sequence of future messages referred to
as T = {tn, tn+1, . . .}, consists of messages for which only their
terms are known, while the corresponding sentiments are unknown.
The classifier obtained from Dn is used to score the sentiments for
message tn in T . Messages in T are eventually incorporated into
the next training set.

There are countless strategies for devising a classifier for sen-
timent analysis. Many of these strategies, however, are not well-
suited to deal with data streams. Some are specifically devised for
offline classification [12, 14], and this is problematic because pro-
ducing classifiers on-the-fly would be unacceptably costly. In such
circumstances, alternate classification strategies may become more
convenient [33].

3.2 Sentiment Rules and Classifiers
Next we describe classifiers composed of association rules, and

how these rules are used for sentiment-scoring. Such classifiers are
built on-the-fly [32,34], being thus well-suited for sentiment stream
analysis, as shown in [30].

Definition 1. A sentiment rule is a specialized association rule
X −→ si, where the antecedent X is a set of terms (i.e., a termset),
and the consequent si is the predicted sentiment. The domain for
X is the vocabulary of the training set Dn. The support of X is de-
noted as σ(X ), and is the number of messages in Dn having X as
a subset. The confidence of rule X −→ si is denoted as θ(X −→ si)

and is given as
σ(X ∪ si)
σ(X ) .

Sentiment Scoring
We denote as R(tn) the classifier obtained at time step n, by ex-
tracting rules from Dn. Basically, the classifier is a poll of rules,
and each rule {X −→ si} ∈ R(tn) is a vote given for sentiment si.
Given message tn, a rule is a valid vote if it is applicable to tn.

Definition 2. A rule {X −→ si} ∈ R(tn) is said to be applicable
to message tn ∈ T if all terms in X are in tn.

We denote as Ra(tn) the set of rules in R(tn) that are applica-
ble to message tn. Thus, only rules in Ra(tn) are considered as
valid votes when scoring sentiments in tn. Further, we denote as
Rsi

a (tn) the subset of R(tn) containing only rules predicting sen-
timent si. Votes in Rsi

a (tn) have different weights, depending on
the confidence of the corresponding rules. The weighted votes for
sentiment si are averaged, giving the score for si with regard to tn:

s(tn, si) =
∑ θ(X −→ si)

|Rsi
a (tn)|

(1)

Finally, the scores are normalized, thus giving the likelihood of
sentiment si being the attitude in message tn:

p̂(si|tn) =
s(tn, si)

k∑
j=1

s(tn, sj)

(2)

Rule Extraction
The simplest approach to rule extraction is the offline one. In this
case, rule extraction is divided into two steps: support counting
and confidence computation. Once the support σ(X ) is known, it
is straightforward to compute the confidence θ(X −→ si) for the
corresponding rules [40]. There are several smart support-counting
strategies [1,18,40], and many fast implementations [3] that can be
used. We employ the vertical counting strategy, which is based on
the use of inverted lists [39]. Specifically, an inverted list associated
with termset X , is denoted as L(X ), and contains the identifiers of
the messages in Dn having termset X as a subset. An inverted
list L(X ) is obtained by performing the intersection of two proper
subsets of termset X . The support of termset X is given by the
cardinality of L(X ), that is, σ(X ) = |L(X )|.

Usually, the support for different sets of terms in Dn are com-
puted in a bottom-up way, which starts by scanning all messages
in Dn and computing the support of each term in isolation. In the
next iteration, pairs of terms are enumerated, and their support val-
ues are calculated by performing the intersection of the correspond-
ing proper subsets. The search for sets of terms proceeds, and the
enumeration process is repeated until the support values for all sets
of terms in Dn are finally computed. Obviously, the number of
rules increases exponentially with the size of the vocabulary (i.e.,
the number of distinct terms in Dn), and computational cost re-
strictions have to be imposed during rule extraction. Typically, the
search space for rules is restricted by pruning rules that do not ap-
pear frequently inDn (i.e., the minimum support approach). While
such restrictions make rule extraction feasible, they also lead to
lossy classifiers, since some rules are pruned and therefore are not
included intoR(tn).

Online Rule Extraction. An alternative to offline rule extraction
is to extract rules on-the-fly. Such alternative, which we call on-
line rule extraction, has several advantages [30]. For instance, it
becomes possible to efficiently extract rules from Dn without per-
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forming support-based pruning. The idea behind online rule extrac-
tion is to ensure that only applicable rules are extracted by project-
ingDn on a demand-driven basis. More specifically, rule extraction
is delayed until a message tn ∈ T is given. Then, terms in tn are
used as a filter which configuresDn in a way that only rules that are
applicable to tn can be extracted. This filtering process produces
a projected training-set, denoted as D∗n, which contains only terms
that are present in message tn.

Lemma 1. All rules extracted from D∗n are applicable to tn.

Proof. Since all training messages in D∗n contain only terms that
are present in message tn, the existence of a rule X −→ si extracted
from D∗n, such that X * tn, is impossible. �

Lemma 1 implies that online rule extraction assures thatR(tn) =
Ra(tn). The next theorem states that search space for rules in-
duced by D∗n is much narrower than the search space for rules in-
duced by Dn. Thus, rules can be efficiently extracted from D∗n, no
matter the minimum-support value (which can be arbitrary low).

Theorem 1. The number of rules extracted from D∗n increases
polynomially with the number of distinct terms in Dn.

Proof. Let k be the number of distinct terms inDn. Since an arbi-
trary message tn ∈ T contains at most l terms (with l � k), then
any rule applicable to tn can have at most l terms in its antecedent.
That is, for any rule {X −→ si}, such that X ⊆ tn, |X | ≤ l. Con-
sequently, the number of possible rules that are applicable to tn is
l+
(
l
2

)
+ . . .+

(
l
l

)
= O(2l)� O(kl). Thus, the number of appli-

cable rules increases polynomially in k. �

Extending Classifiers Dynamically. Let R = {R(t1) ∪ R(t2)
∪ . . . ∪ R(tn)}. With online rule extraction, R is extended dy-
namically as messages ti ∈ T are processed. InitiallyR is empty;
a classifier Rti is appended to R every time a message ti is pro-
cessed. Producing a classifierR(ti) involves extracting rules from
the corresponding training-set. This operation has a significant
computational cost, since it is necessary perform multiple accesses
to Di. Different messages in T = {t1, t2, . . . , tm} may demand
different classifiers {Rt1 ,Rt2 , . . . ,Rtm}, but different classifiers
may share some rules (i.e., {Rti ∩ Rtj} 6= ∅). In this case, mem-
orization is very effective in avoiding work replication, reducing
the number of data access operations. Thus, before extracting rule
X −→ si, the classifier first checks whether this rule is already inR.
If an entry is found, then the rule inR is used instead of extracting
it from the training-set. If it is not found, the rule is extracted from
the training-set and then it is inserted intoR.

3.3 Utility Space and Selective Sampling
Our approach to sentiment stream analysis is based on select-

ing high-utility messages to compose the training set at each time
step. Training sets must provide adaptiveness and memorability to
the corresponding classifiers. Improving adaptiveness and mem-
orability simultaneously, however, is a conflicting-objective prob-
lem. Instead, our approaches create training sets that balance be-
tween adaptiveness and memorability. Specifically, at each time
step, candidate messages are placed into an n-dimensional space,
in which each dimension corresponds to a utility measure which is
either related to adaptiveness or memorability.

Utility Measures
At each time step, the classifier must score sentiments that are ex-
pressed in the target message. Some of the utility measures we are
going to discuss next are based on the distance to the target mes-
sage. By minimizing such distance we are essentially maximizing
adaptiveness, since the selected messages are similar to the target
message. As for memorability, we are going to discuss a utility
measure based on randomly shuffling candidate messages:

• Distance in space − The similarity between the target mes-
sage tn and an arbitrary message tj is given by the number
of rules in the classifier Ra(tn) that are also applicable to
tj . Differently from traditional measures such as cosine and
Jaccard [2], the rule-based similarity considers not only iso-
lated terms, but also combination of terms. Thus, the utility
of message tj is given as:

Us(tj) =
|Ra(tn) ∩Ra(tj)|
|{Ra(tn)}|

(3)

• Distance in time − Let γ(tj) be a function that returns the
time in which message tj arrived. The utility of message tj
is given as:

Ut(tj) =
γ(tj)

γ(tn)
(4)

• Memorability− In order to provide memorability, the train-
ing set must contain messages posted in different time peri-
ods. A simple way to force this is to generate a random per-
mutation of the candidate messages, that is, randomly shuf-
fling the candidate messages [15]. Let α(tj) be a function
that returns the position of message tj in the shuffle. The
utility of message tj is given as:

Ur(tj) =
α(tj)

|Dn|
(5)

Each candidate message is judged based on these three utility
measures. The need to judge one situation better than another moti-
vates much of Economics, and next we discuss concepts from Eco-
nomics and how they can be applied to select messages to compose
the training set.

3.4 Economic Efficiency
When the society is economically efficient, any changes made to

assist one person would harm another. The same intuition could be
exploited for the sake of selecting messages to compose the training
set at each time step. In this case, a training set is economically
efficient if it is only possible to improve memorability at the cost
of adaptiveness, and vice-versa [26, 29].

There is an alternative, less stringent notion of efficiency, which
is based on the principle of compensation [13]. Under new ar-
rangements in the society, some may be better off while others may
be worse off. Compensation holds if those made better off under
the new set of conditions could compensate those made worse off.
Next we discuss algorithms that exploit these two notions of eco-
nomic efficiency in order to select messages to compose the train-
ing sets.
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Figure 1: Illustrative example. The 3D utility space.

Pareto Frontier
Messages that are candidate to compose the training set at time step
n are placed in a 3-dimensional space, according to their utility
measures, as shown in Figure 1. Thus, each message a is a point in
such utility space, and is given as < Us(a), Ut(a), Ur(a) >.

Definition 3. Message a is said to dominate message b iff both of
the following conditions are hold:

• Us(a) ≥ Us(b) and Ut(a) ≥ Ut(b) and Ur(a) ≥ Ur(b)

• Us(a) > Us(b) or Ut(a) > Ut(b) or Ur(a) > Ur(b)

Therefore, the dominance operator relates two messages so that the
result of the operation has two possibilities as shown in Figure 2:
(i) one message dominates another or (ii) the two messages do not
dominate each other.

a
◦

b
◦

◦

◦

◦

◦

◦

c
◦

◦
◦

◦◦

◦

◦

◦
◦

Figure 2: The dominance operator: neither a or b dominates
each other, but b dominates c.

Definition 4. Training set Pn = {d1, d2, . . . , dm} is said to be
Pareto-efficient at time step n, if Pn ⊆ Dn and there is no pair of

•
•

•

•

•

•

◦

◦

◦
◦

◦◦

◦

◦

◦
◦

Pareto frontier

Figure 3: Points lying in the Pareto frontier.

messages (di, dj) ∈ Pn for which di dominates dj .

Messages that are not dominated by any other message, lie on the
Pareto frontier [28]. Therefore, by definition, the Pareto-efficient
training set at time step n, Pn, is composed by all the messages
lying in the Pareto frontier that is built fromDn. There are efficient
algorithms for building and maintaining the Pareto frontier, and we
employed the algorithm proposed in [11] which ensures O(|Dn|)
complexity. We denote the process of exploiting Pareto-efficient
training sets as Pareto-Efficient Selective Sampling, or simply PESS.
Figure 3 shows an illustrative example of a Pareto frontier built
from arbitrary points in the utility space.

Kaldor-Hicks Region
The PESS strategy follows a stringent criterion, which tends to se-
lect only few messages to compose the training sets. As a result, the
training sets may become excessively small and prone to noise. The
Kaldor-Hicks criterion, on the other hand, follows a cost-benefit
analysis and circumvents the small training set problem by stating
that efficiency is achieved if those that are made better off could in
theory compensate those that are made worse off. Thus, under the
Kaldor-Hicks criterion, an utility measure can compensate other
utility measures, and therefore, this criterion selects messages that
are located inside a region which is below the Pareto frontier. To
define this region we must first define the overall utility of a mes-
sage.

Definition 5. Assuming that all measures are equally important,
the overall utility of an arbitrary message di ∈ Dn is:

U(di) = Us(di) + Ut(di) + Ur(di) (6)

That is, the overall utility of a message is given as the sum of its
utility measures. Also, the baseline message, which is denoted as
d∗, is defined as:

d∗ = {di ∈ Pn|∀dj ∈ Pn : U(di) ≤ U(dj)} (7)

That is, the baseline is the message lying in the frontier for which
the overall utility assumes its lowest value.

The Kaldor-Hicks region is composed of messages for which the
overall utility is not smaller than the baseline overall utility. Such
baseline utility is the utility associated with the message lying in
the Pareto frontier for which the overall utility is the lowest.
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Definition 6. Training set Kn = {d1, d2, . . . , dm} is said to be
Kaldor-Hicks-efficient at time step n, if Pn ⊆ Kn ⊆ Dn, and
there is no message di ∈ Kn such that U(d∗) > U(di).

We denote the process of exploiting Kaldor-Hicks-efficient train-
ing sets as Kaldor-Hicks-Efficient Selective Sampling, or simply
KHSS. Figure 4 shows an illustrative example of a Kaldor-Hicks
region built from arbitrary points in the utility space.

•
•

•

•

•

•

•

•

◦
◦

◦◦

◦

◦

•
•

Kaldor-Hicks region

Figure 4: Points inside the Kaldor-Hicks region.

4. EXPERIMENTAL EVALUATION
In this section we empirically analyze the performance of our

classifiers. We employ the mean squared error (MSE) as the basic
evaluation measure in our experiments, since we are primarily in-
terested in evaluating sentiment scoring given by Equation 2. The
MSE measure is given as:

MSE =
1

|T |
∑
∀ti∈T

(1− p̂(si|ti))2 (8)

where si is the correct sentiment associated with message ti ∈
T , and p̂(si|ti) is the sentiment score assigned by the classifier to
message ti ∈ T .

To evaluate the amount of computing resources used as the stream
evolves, we employ the RAM-Hours measure [9], where every RAM-
Hour equals a GB of RAM deployed for 1 hour of execution. We
also evaluate the amount of training resources used over time, as
the number of messages labeled during the process. We used Ho-
effding Adaptive Trees [4, 10] (abbreviated as HAT), Active Clas-
sifier [37, 38] (abbreviated as AC), and Incremental Lazy Associa-
tive Classifier [30] (abbreviated as ILAC) as baselines. All datasets
used in our experiments were manually labeled by three to five
human annotators. We expended significant time, effort, and re-
sources to obtain high quality (labeled) data from Twitter streams,
which shall be made available at publication time.

All experiments were performed on a 1.93 GHz Core i7 ma-
chines with 8GB of memory, using the MOA system [8], an envi-
ronment for running experiments with evolving data streams. Our
evaluation follows the Test-Then-Train methodology, in which each
individual message in T is used to test the classifier and then it be-
comes available for training. Finally, we consider three possible
settings:

• Instance Processing − Once processed, message tn is in-
cluded into Dn+1, and then a new classifier is built. Under
this setting, message tn is mandatorily labeled.

• Batch Processing − After a batch of b messages B = {tn,
tn+1, . . . , tn+b} is processed, only a subset ofB is included

intoDn+b, since some messages inB may be similar to each
other. Under this setting, not all messages inB need to be la-
beled, since only a subset ofB is included intoDn+b. There-
fore, there is a trade-off between batch size and labeling ef-
fort, and a similarity threshold, denoted as δ, controls the
messages in the batch that must be labeled.

In the following we describe our evaluation scenarios and discuss
the performance of the classifiers.

4.1 Brazilian Presidential Elections
The presidential election campaigns were held from June to Oc-

tober 2010. the candidate Dilma Rousseff launched a Twitter page
during a public announcement, and she used Twitter as one of the
main sources of information for her voters. The campaign attracted
more than 500,000 followers and as a result Dilma was the second
most cited person on Twitter in 2010. The election came to a sec-
ond round vote, and Dilma Rousseff won the runoff with 56% of
the votes.

Dilma Rousseff Election Campaign
We collected 66,643 messages in Portuguese referencing Dilma
Rousseff in Twitter during her campaign. We labeled these mes-
sages in order to track the population sentiment of approval during
this period. As shown in Figure 5 (a), approval varied significantly
over the time due to several polemic statements and political at-
tacks, and our goal is to score approval during her campaign.

Figure 5 (b) shows the results in terms of MSE obtained for the
evaluation of the classifiers in this dataset. All classifiers evalu-
ated in this experiment operate on an instance basis. The x-axis
represents different time steps (i.e., each message that passes in
the stream), while the y-axis shows the MSE so far. As it can be
seen, a better approximation is obtained using our proposed algo-
rithms, namely PESS and KHSS. AC and ILAC were very com-
petitive during all the campaign. Both PESS and KHSS algorithms
started much better than the other competing algorithms, but slowly
converges to the baseline numbers as the stream evolves.

Figure 5 (c) shows results concerning the proposed algorithms
when operating in batch mode. The figure shows the number of
messages that were labeled during the process as a function of δ,
the minimum similarity threshold discussed in Section 3.1. Basi-
cally, we calculate the Jaccard coefficient associated with each pos-
sible pair of messages in the batch, and if the coefficient is greater
than δ, the corresponding messages are merged into a new one.
The process continues merging similar messages until no pair of
messages are similar enough, and the process stops. At the end,
only the merged messages are labeled. Clearly, higher values of δ
implies that less messages are merged, and thus incurring more la-
beling effort. Further, as the figure shows, the dependence between
labeling effort and δ tends to be linear.

By varying δ, we also study the trade-off between labeling ef-
fort and MSE. As shown in Figure 5 (d), MSE decreases if more
labeling effort is spent during the process. Specifically, best results
are achieved when about 40% of the messages in the stream are la-
beled during the process. Although both PESS and KHSS require
the same amount of training resources, KHSS provides slightly bet-
ter MSE numbers. Furthermore, smaller batch sizes incur in less
labeling effort for this dataset.

We assume that HAT requires only the target message for updat-
ing its tree model, and thus we consider that the training set is com-
posed only by the target message. The AC algorithm requires much
more messages within each training set. An abrupt decrease in the
number of training messages is always observed after drifts. The
proposed PESS algorithm requires very small training sets, since
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Figure 5: Brazilian Presidential Elections. Tweets are in Portuguese.

the Pareto frontier at each time step is composed by few messages,
but these messages are still able to make the classifier robust to
drifts as the stream evolves. Further, despite being less stringent
than PESS, the proposed KHSS algorithm also requires small train-
ing sets, as shown in Figure 5 (e).

Figure 5 (f) shows RAM-Hours numbers for the algorithms. AC,
as well as PESS (instance) and KHSS (instance), are clearly the
best performers in terms of amount of computing resources re-
quired. Also, resources required during the process significantly
increases when PESS and KHSS operate on batch mode, but still,
ILAC is the worst performer.

4.2 TIME’s Person of the Year
Every year, TIME magazine selects the person (or a group of per-

sons) that has mostly influenced during the year. The chosen person
for 2010 was Mark Zuckerberg. The reader choice, however, was
Julian Assange, with an overwhelming superiority of votes.

Zuckerberg and Assange
We collected 5,616 messages in English referencing Julian As-
sange and Mark Zuckerberg from 1-15-2010 to 12-21-2010. We la-
beled them in order to track diverse sentiments regarding the mag-
azine’s decision. Sentiments include (dis)approval, surprise (since
the reader choice was pointing to Julian Assange), and even fury.

Figure 6 (a) shows the results in terms of MSE. As it can be
seen, a better approximation is obtained by HAT and ILAC. For
this dataset, AC was not effective in the first time steps. At the end
of the process, both PESS (instance) and KHSS (instance) algo-
rithms achieved competitive numbers when compared against the
best performers.

Figure 6 (b) shows the trade-off between labeling effort and MSE.

Again, MSE numbers decrease as more labeling effort is spent dur-
ing the process. This trend is particularly evidenced for smaller
batch sizes. Further, the KHSS algorithms shows a better trade-
off between labeling effort and MSE. Finally, Figure 6 (c) shows
RAM-Hours numbers for the evaluated algorithms. The AC algo-
rithm, as well as PESS (instance) and KHSS (instance) are, again,
extremely competitive in terms of amount of computing resources
required. Further, the amount of resources required during the pro-
cess significantly increases when PESS and KHSS operate on batch
mode, but still, ILAC is the worst performer.

4.3 FIFA World Cup
The 2010 Soccer World Cup involved 32 teams. The Brazilian

team was defeated by the Dutch team on 07-02-2010, after a con-
troversial match. The Brazilian team scored first, but soon after the
Dutch team scored twice and won the match. A specific player,
Felipe Melo, had decisive participation (for better and worse) in all
three goals. Specifically, Figure 7 (a) shows how the appreciation
for Felipe Melo varied during the match.

The Brazilian Defeat
We collected 3,214 messages in Portuguese referencing Felipe Melo
that were posted in Twitter as the match was happening. We labeled
them in order to track the appreciation for the participation of Fe-
lipe Melo.

Figure 7 (b) shows the results in terms of MSE.As it can be
seen, the AC algorithm achieved the worst MSE numbers for this
dataset. On the other hand, HAT, ILAC, as well as PESS (in-
stance) and KHSS (instance) showed extremely competitive num-
bers. This is expected, since this dataset contains three sudden
drifts (as shown in Figure 7 (a)), and HAT, ILAC, PESS (instance)
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Figure 6: Person of the Year. Tweets are in English.

and KHSS (instance) were all able to ensure adaptiveness. For this
dataset, memorability is not mandatory (as the sentiment distribu-
tion never returns to a pre-drift distribution), and thus PESS (in-
stance) and KHSS (instance) were not able to provide significant
improvements, although being the best performers overall.

Figure 7 (c) shows a X-Y scatter plot correlating δ and label-
ing effort. The correlation is almost linear. The trade-off between
labeling effort and MSE is shown in Figure 7 (d). Clearly, MSE de-
creases with the effort spent to label messages. Figure 7 (e) shows
the number of messages composing the training set at each time
step. As in previous cases, AC and ILAC require much more train-
ing resources than other competing algorithms. PESS (instance)
as well as KHSS (instance) require much less training messages,
again, showing that the selective sampling strategy is effective in
producing small and effective sets at each time step.

Finally, Figure 7 (f) shows RAM-Hours numbers. In this case,
AC, as well as PESS (instance) and KHSS (instance), are clearly
the best performers in terms of amount of computing resources re-
quired. Further, the amount of resources required during the pro-
cess significantly increases when PESS and KHSS operate on batch
mode, but still, as in other datasets, ILAC is the worst performer.

5. CONCLUSIONS
This paper focused on sentiment analysis on Twitter streams. We

have introduced new algorithms for active training-set formation,
which we denote as Pareto-Efficient Selective Sampling (PESS)
and Kaldor-Hicks Selective Sample (KHSS). The proposed algo-
rithms provide the resulting classifier with memorability and adap-
tiveness. We formalized the selective sampling process as a multi-
objective optimization procedure, which finds a proper balance be-
tween adaptiveness and memorability. Adaptiveness is assessed by
computing the distance in time and space between the target mes-
sage and the candidate ones. Also, candidate messages are ran-
domly shuffled, thus providing memorability to the resulting clas-
sifier. The message utility space is composed by such dimensions,
and we compute the Pareto Frontier in this space in order to pick
up messages satisfying the Pareto improvement condition, find-
ing a proper balance between adaptiveness and memorability. The
Kaldor-Hicks criterion enables memorability to compensate adap-
tiveness, or vice-versa. A systematic evaluation involving recent
events demonstrated the effectiveness of our algorithms.

As future work, we intend to extend our strategies for algorithms
that do not depend on manual labeling.
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