
Integrated Information Retrieval in a Knowledge Worker Support System

Gordon McAlpine
FCI Informatics Research Centre

Buddinge Hovedgade 80, 2860 Sgborg, Denmark

Abstract

This paper describes the design of the information retrieval
facilities of an integrated information system called EUROMATH.
EUROMATH is an example of a Knowledge Worker Support
System: it has been designed specifically to support math-
ematicians in their research work. EUROMATH is required to
provide uniform retrieval facilities for searching in a user’s
personal data, in a shared database of structured documents and
in public, bibliographic databases. The design of information
retrieval facilities that satisfy these and other requirements
posed several interesting design issues regarding the integra-
tion of various retrieval techniques. As well as a uniform query
language, designed to be highly usable by the target user
group, the retrieval facilities provide expert intermediary
functions, i.e. sophisticated support for the retrieval of
bibliographic data. This support is achieved using a model of
the user, a model of the user’s information need and a set of
search strategies based on those used by human intermediaries.
The expert intermediary facilities include extensive help
facilities, automatic query reformulation and browsing of a
variety of sources of query terms.

1. Introduction

EUROMATH is an example of a type of system, which we call a
Knowledge Worker Support System, that is likely to
become more common as an application of information
retrieval. It is designed to provide an integrated set of support
tools for a specific target user group, who are characterised by
the tasks they perform. The target users are all persons engaged
in mathematical research. The target tasks for which tools are
to be designed and implemented are the writing of mathematical
documents, communication between mathematicians and the
retrieval of information relevant to mathematical research. The
main aim of the EUROMATH Project, which is being financed
by the Commission of the European Communities, is to
provide a comprehensive set of functions for the support of the
target tasks in a way that is easy to learn und use. The system
must also integrate existing tools, and corresponding data,
with tools specifically implemented for the project.

The EUROMATH System has been designed to run on high-
performance workstations, which have a large, bit-
mapped screen, a powerful CPU and several megabytes of RAM.
This has made it feasible to design an ambitious, advanced
system using powerful user interface techniques. It is also
assumed that, at each user site, a local area network connects
workstations to various servers, including a file server on

Permisaon to copy without fee all OT part of this material is granted provided that

the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for Computing Machinery.

To copy otherwise, or to republish. requires a fee and/or specific permission.

0 1989 ACM O-89791-321-3/89/0006/0048 $1.50

Peter Ingwersen
Royal Danish School of Librarianship

Birketinget 6, 2300 Kprbenhavn S, Denmark.

which a shared database can be stored, and a gateway to a wide
area network, which facilitates electronic mail and access to
public databases.

The aim of our work within the EUROMATH Project has been
to design a common query language, query support facilities
and browsing facilities that can be conveniently used to
retrieve all the different kinds of data that will be available to
mathematicians in the EUROMATH System. Our work has had a
practical, concrete goal and was not aimed at tackling any
specific research issue. In the first half of this paper (section
2), we describe the retrieval functions and user interface that we
have designed to access both internal data generated within
EUROMATH and external data, e.g. public databases. This
description relates our design to the research ideas and state of
the art techniques that we have attempted to apply. The second
half of the paper (section 3) describes the additional expert
intermediary facilities that we have designed to support users in
retrieving bibliographic data from external sources. Our work
in this area has taken a rather novel approach, which concen-
trates on the use of complex search strategies, based on the
techniques used by human intermediaries.

2. Retrieval of Internal Data

The requirements resulting from our aim of providing
comprehensive functionality that are most relevant to
the work described in this paper are:

l powerful document processing facilities based
upon (hierarchically) structured documents, as further
described in [Draper 881, [Horak 841 and [Furuta 881.

l facilities for the filing and retrieval of data from other
systems (i.e. external data).

The most relevant requirement resulting from our aim of ease
of use is the need for tight integration, i.e. for the integra-
tion of both the data and the functions of all the tools to be
provided within the system, hereunder the external, biblio-
graphic databases.

Like so many users of computer technology, a mathematician
who wishes to make comprehensive use of computer-based
support at the present time is faced with a jungle of products
and services, which are often incompatible, and almost never
integrated. In particular, regarding information retrieval, such a
user will typically have to learn the different retrieval facilities
of an operating system, a text editor, a mailing system, each
database system that provides relevant information, etc. In
addition, such a user may have many other kinds of information
needs for which powerful retrieval facilities would be useful, but
are not provided, e.g. searching information on how to use the
system. A major goal of the EUROMATH Project is to provide a
single, uniform set of retrieval facilities that can be used for all
the tasks of a mathematician.

48

We decided that this combination of requirements could best be
fulfilled by basing EUROMATH on an object-oriented
approach [Wegner 871 to both the system design (data
modelling) and the user interface. All data are represented as
objects. An object is some meaningful collection of data that
represents an entity from the application domain, e.g. a
mathematical paper or a formula. Each object is represented as a
set of attribute values, which may be simple values, subordi-
nate objects (called components) or references to other
objects. Each object belongs to a class, which defines both
the attributes and the set of operations that may be applied to
objects of that class. The classes of objects are organised in an
inheritance hierarchy, so that common operations are shared
amongst all objects to which they apply.

As in the Xerox Star [Smith 821 and the Apple Macintosh, the
user interface is based on the principle of direct manipula-
tion: the system displays objects on the screen, e.g. as icons
or windows, and the user manipulates these objects by using a
mouse to firstly select the object of interest and thereafter
select the required operation from a pull-down menu. But the
EUROMATH System is more tightly integrated, since whenever
an object is selected, the system knows which operations are
applicable to objects of that class, and precisely those opera-
tions will be made available through the system’s menus. Thus,
a formula or drawing within a mathematical paper may be
directly modified in the window displaying the paper. Further,
the system is highly orthogonal (or modular), since an
operation that can be applied to one particular object in one
particular situation becomes available for all objects and
situations in which it is applicable. So, for example, the
mailing tool does not need to have its own retrieval facilities:
the general retrieval operations can be used for retrieving
messages, just like any other objects.

2.1. Filing and Browsing

Our approach also facilitates more precise retrieval. The
classification of objects into classes allows a user to narrow
the search space, if he knows the class of the object he is
looking for. The explicit representation of the properties of
objects as a set of attributes allows more accurate querying than
if objects were just represented as unstructured text in operating
system files. The querying facilities that are based on this kind
of filing are described in the next subsection. They are
primarily suitable for retrieval from large data collections,
which are typically shared amongst many users, and whose
contents may be unfamiliar to the individual user.

For retrieving more familiar data, typically created by the user
himself, EUROMATH will provide browsing facilities based on
folders that are similar to those of the Macintosh. A user can
place each object in one or more folders. Each folder may be
placed within another folder, forming a user-defined classifica-
tion hierarchy. The browsing facilities for folders facilitate
retrieval by means of perceptual cues: each object within a
folder will by default be presented as an icon (a small, char-
acteristic picture), which the user can place at a suitable
position within the folder’s window.

To increase the usefulness of the folder classification, we have
integrated it with the querying facilities as follows. The set of
folders in which a particular document is placed is represented
as an attribute of the document. This means that folders also

function as a kind of keyword facility, since search criteria can
also be specified for this attribute.

The remaining browsing facilities of EUROMATH are
primarily made up of a set of flexible information display
facilities, which are designed to make the information relevant
for browsing easily and quickly comprehensible to a user.
Whenever possible, this is achieved by means of perceptual
encoding, in which the relationships between objects that
are known to the system are presented graphically. For
example, the folder classification hierarchy is displayed as an
acyclic, directed graph, which is illustrated in use for another
purpose in subsection 2.3. Browsing is also supported by the
fact that, as in hypertext systems, a reference to an object
displayed on the screen as part of another object can be selected
and the corresponding object displayed in a separate window.
The browsing facilities are more fully described in [Draper 881,
and some general principles for the graphical presentation of
data that are useful in the design of browsing facilities are
described in [McAlpine 881.

2.2. Query by Forms

To satisfy the requirement for ease of use, we have chosen to
base the query language on the concept of query by forms
[Zloof 811. Basically, a query form consists of a set of fields -
one for each attribute. Each field consists of a fixed header and a
vaIue specification. An example of a form for searching in the
Institute class is illustrated below. The corresponding query is
defined by ANDing together the criteria specified in each field.
Within each field, values from the attribute’s domain may be
combined by the AND, OR and NOT operators. Further, each
value may be preceded by a relational operator, e.g. ‘5”, which
is to be applied to the values of the searched documents.

Query form for Institute

Name:
Address: Partal:

corlnfry: BelgiumORNetherlandsOR Luxembourg
Telephone: -

Smff: Name Naricmdiry Dare of birth Position
Spain > 1945

POlNSll > 194s

I I I I I

glndNext) CPrevious) (All) (cance7)

Previous work, e.g. [Greenblatt 781, suggests that a forms-
based query language allowing simple combinations of
criteria composed of constant values is easier to learn and use
than a command-line-based query language. A user does not
need to remember attribute names and, in EUROMATH, filling in
a query form is almost identical to the creation of a new object -
the user can type strings and numbers, he can select values from
option menus and he can paste both values copied from other
objects and references to other objects (as in hypertext
systems). Further, a user may convert an object to a query by

49

simply copying that object and then pasting it onto a query
form, This results in the copying of the values of all the
attributes the object has in common with the query form. Then
the user need only modify those query criteria that differ from
the previously found object. This facility supports iterative

querying based on feedback from the retrieved objects, which is
particularly useful when users have difficulty in formulating a
vague information need as a query.

In EUROMATH, the value of an attribute may also be either
another object, which is called a component, or a reference
to another object, which represents a relationship between two
independent objects. The field value specification for such
attributes is itself an embedded form, e.g. the Address
attribute above. Since a component is also an object, it may
itself contain components, and in this way, hierarchically
structured objects can be built.

The value of an attribute may also be a set. The field value
specification for such attributes is a table. The criteria
specified within each row of a table are ANDed together, and
each of the resulting queries is in turn applied to the set of
values of the corresponding attribute, i.e. retrieved documents
must have a set of values for this attribute such that the query
specified in each row of the table is fulfilled by at least one
member of this set. For example, the query form illustrated
above would retrieve all mathematical institutes in one of the
Benelux countries that have both Portuguese and Spanish
members of staff who were born after 1945.

Components, references and sets are directly represented in our
underlying data model. As well as providing powerful
support for the EUROMATH tools, we believe that this represen-
tation is closer to the way that users conceptualise informa-
tion, and thus simplifies the process of query formulation for
the user, [McAlpine 851 and [Harper 851.

A single query form cannot express certain kinds of complex
information needs that can be expressed in the boolean
command languages of external database hosts, e.g. a predicate
on one attribute ORed with a predicate on another attribute.
However, such complex information needs can be expressed in
EUROMATH by combining the results of several queries using the
standard set operations: union, intersection and difference,
which are provided as general commands.

2.3. Hierarchically Structured Objects

The query form illustrated above showed how the query
language can deal with hierarchically structured
objects by means of nested forms and tables. Other objects in
EUROMATH, especially documents, will tend to have rather
complex hierarchical structures, as described in [Draper SS] and
[Horak 841. For example, a mathematical Paper might include
an Abstract, a set of Sections and a set of Appendices. Each
Section might include Definitions, Proofs and Theorems. Each
of these may include Paragraphs, Figures and Formulae, which
in turn might be composed of basic Text and Graphics
components. Suppose a user wishes to retrieve a report he has
previously read from the shared, internal database, and he
knows that it originates from Copenhagen University, and that
it includes a theorem about local regularity of polyhedra. Then,
using query forms as described above, the user would need to
know and specify whether the theorem was in the main sections

or the appendices, and the form would include all the attributes
of the report, about which the user knows nothing.

To avoid these problems, we provide a more flexible
solution, based on the ideas of Barbie and Rabitti [Barbie
851, in which a user can build up an appropriate query form with
those components about which he can supply some informa-
tion. When a user invokes the Search operation for a class of
objects that have a complex structure, the system will display
both a query form and a component selection window. The
query form will, by default, only display a few of the most
useful first-level attributes of the selected object class, e.g. the
author, title, date and institute of a report. The component
selection window displays the names of all the component
types that can be used to compose objects of the specified
class. The user can select one of three presentation forms for
this window: an alphabetically-ordered list, an acyclic, directed
graph showing inheritance relationships, or an acyclic,
directed graph showing inclusion relationships, as illustrated
below. The latter two are examples of the technique of
perceptual encoding mentioned earlier.

Component Inclusion Relationships
I

From any of these windows, a user can copy the components
about which he can specify information to the query form. The
system will automatically arrange the components in the query
form to reflect the inclusion relationships of the class defini-
tion, e.g. Text will be nested within Theorem, if both are
copied, as illustrated in the diagram below. But note that the
levels of the structure corresponding to those components that
have not been copied by the user, e.g. Paragraph, are missing
from the form. A user may then enter the information he
knows.

Query form for Report

Authors: w

Tiik:
Da&:
Ins&se:

Folders: m

Theorem:

Within sti-uctu~e i -------------------------------
Anywhere

Text: 1

50

In general, this facility is useful in situations in which a
user knows that the information he requires is represented in a
particular way, i.e. as a specific component within a complexly
structured object. In EUROMATH, it is primarily intended for
searching in collections of complexly structured objects that a
user has previously read, i.e. personal collections of papers
concerning the user’s research interests. In other Knowledge
Worker Support Systems, it might also be used for searching
within collections of complexly structured objects in which
certain types of information are represented in a uniform way,
e.g. the conditions for qualifying for a particular kind of social
security benefit in a database of social laws and regulations.

Traditional text-matching queries are handled by letting
all the text within an object belong to a built-in class called
Text, which is treated just like any other component class. In
other words, the user can select Text from the component
selection window if he wants to specify that retrieved
documents contain a given text string, as illustrated in the
example above. By default, the Text component is placed
within any other selected component that can include Text, e.g.
Theorem in the example above. In this case, only reports for
which the given text string occurs within a Theorem are
retrieved. However, users will typically not know within which
component the text they are looking for occurs. To cater for
this, a user can specify that a component may occur
anywhere within the document structure. This is done by
moving that component into the specially marked part of a
query form below the dashed line, which is also illustrated in
the Report form above. A similar idea has previously been
suggested for text-valued attributes only [Bertino 881. We
believe that it is useful to extend this to allow a user to specify
that any component may occur anywhere within the structure.

A consequence of our goal of providing a single uniform set of
retrieval facilities is that they must also be used for searching
within a single document - usually a dedicated function of
a text editor. This is facilitated by introducing the concept of a
,scope. The scope of a query is a set of one or more objects,
typically folders, to which the search is to be restricted. When
the cursor is positioned within an object being edited in a
window, and the Search operation is invoked, then the scope of
the search is implicitly defined to be that object. The search
scope may also be explicitly defined by selecting a part of an
object, a set of objects, or an entire class of objects.

For text and string valued attributes, special symbols (?, #
and !) are provided for truncation and masking. This caused an
inregration problem, since in the external databases, trunca-
tion may only be used at the end of a word, while this restric-
tion is not necessary when searching within a single object,
since it is not implemented with inverted files. We have chosen
to also only allow truncation at the end of words when
searching within a single object - for the sake of uniformity.

2.4. Discussion

The basic EUROMATH retrieval facilities, which have been
described in this section, must fulfill a wide variety of
requirements that cover all retrieval situations that can occur in
the various EUROMATH tools, including complexly structured
objects, uniform access to both external and internal data,
support for both factual and topic queries. The resulting query
language bears greatest similarity to the forms-based query

languages that are present in many fourth generation tools for
Relational Database Management Systems, which have their
roots in Zloofs Query-By-Example. However, the EUROMATH
retrieval facilities differ in several ways: they can handle more
complexly structured documents, they facilitate advanced
browsing, they provide more powerful text retrieval, they do
not support highly complex fact queries and they provide extra
support for retrieving bibliographic data, as described in the
next section.

The design of the query language for a Knowledge Worker
Support System such as EUROMATH has to find a suitable
balance between the requirements for comprehensive function-
ality and ease of use. But what is sufficiently comprehensive
functionality?

One approach is to provide a query language that is “complete”
in the sense that a relational algebra is complete. However,
this kind of completeness is only measured relative to the
mathematical model on which the language is based. For
example, in practice it has been shown that problems occur in
using relational databases because they are not complete with
respect to the application domain: e.g. loss of semantic
integrity due to the lack of an entity concept [Schmid 751, and
the lack of constructs for recursive queries [Heiler 851.

We have therefore taken the approach of evaluating the
querying constructs described in the literature on object-
oriented and semantic databases relative to our understanding of
the requirements of mathematicians. We found no descriptions
of experiences in using advanced systems like EUROMATH that
could help us make these decisions. We suggest that
empirical research into the use of such systems in practice
is of crucial importance to the future design of similar systems
and the identification of related research issues.

We have also investigated whether our design could be extended
to handle a much more comprehensive functionality, including
such constructs as the existential quantifier, aggregate
functions, query variables (as in Query-By-Example) and a
subset operator for set-valued attributes. Most of these
extensions are related to supporting the kind of complex
fact queries which are commonly used in database manage-
ment systems, e.g. how many Russian mathematicians have
never written a paper in English? Although we found that it was
quite feasible to extend our design to handle these constructs,
we have not included them because these kinds of complex fact
queries will rarely be of use in the tasks that the EUROMATH
System is designed to support. This decision might have been
different if our target domain had, for example, been an office
information system including integrated administrative data
processing.

Similarly, we have considered extending our design to allow
queries to be specified in terms of the layout structure
[Horak 841 of objects, e.g. specifying a piece of text to be
retrieved in relation to some “landmark”, such as a figure.
Although we found that it was also quite easy to extend our
approach to cater for these kinds of queries, we decided that
they are not necessary when powerful facilities exist for
searching objects based on their contents.

51

3. Support for Bibliographic Data

According to the results of surveys and interviews carried out
within the EUROMATH Project, very few mathematicians use the
comprehensive, online databases of mathematical literature
that are available. The two main reasons seem to be the rela-
tively high costs and the difficulties of using the system.
However, the hosts’ pricing schemes for the databases of
most relevance to mathematicians have recently been changed
to encourage more usage, and CD-ROMs are also beginning to
become available with bibliographic databases for mathemat-
ics. The usage difficulties are both due to the inherent
characteristics of shared, textual data and to user interface
problems. For example, users may not know the exact structure
of the shared data and the conventions that have been used
when assigning values to certain attributes. Retrieval from
large text databases is a problem in itself, due to the multitude
of possible ways of expressing the same information as text.
Today, most of the difficulties of using the available host
systems can be overcome by using skilled human intermedi-
aries. However, this solution is often inconvenient, especially
if mathematicians are to make more frequent use of these
databases. Our goal within EUROMATH is therefore to provide a
means whereby mathematicians can themselves access biblio-
graphic databases. This section describes the expert intermedi-
ary facilities that we have designed to fulfill this goal.

Although it has been shown that a partial match (e.g. proba-
bilistic) approach provides more effective retrieval [van
Rijsbergen 861, we have chosen to base the query language,
which was described in the previous section, on the exact
match approach of boolean logic. The underlying reasons
for this choice are that it is suitable for supporting the require-
ments for fact queries and retrieval of complexly structured
documents described in the previous section, and that boolean
logic is what is provided by the important external databases.
Regarding the second reason, previous work [Morrissey 821
has shown that it is possible to implement probabilistic
methods on top of boolean query languages. To our knowledge,
however, these techniques have never been proven in a
commercial environment, and would seem to give rather poor
response times. In addition, they do not provide as substantial
gains in retrieval effectiveness as other more sophisticated
probabilistic methods. Considering that our target user group
(mathematicians) do not seem to have the usual difficulties in
understanding boolean logic, we decided that these disadvan-
tages outweighed the advantages of a probabilistic-based front-
end. However, if resources are available, we later propose to
extend the system with probabilistic-based relevance feedback,
e.g. as described in [Morrissey 821.

Having decided not to attempt to hide the weaknesses of the
underlying systems, we have taken the approach that the users
must become aware of them, and, with the help of the system,
learn some of the techniques that can counter them - just as
human intermediaries do. Many of these techniques can in
fact be thought of as pragmatic ways of getting round the
weaknesses of boolean logic by reinterpreting users queries.
Some of these techniques will be built into the EUROMATH
expert intermediary facilities, while we hope that the target
user group will gradually be able to leam the most critical of
the remaining techniques. Evidence to support this assumption
came from a set of field studies performed within the project, in
which the use of the external databases by mathematicians was

observed, and from previous reports on the training of end-
users [Haines 821.

In contrast to many previous expert intermediary systems, we
have not tried to model domain knowledge. Instead, we
leave the domain knowledge in the hands (or head) of the user,
and concentrate on supporting him in interacting with the
system and teaching how to translate his domain knowledge to
the system’s representation. We also try to exploit some of the
more sophisticated facilities of the host systems, e.g.
frequency analyses, with the aim of triggering the user’s
domain knowledge. Thus, our system is rather domain indepen-
dent, but only suitable for users who are experts in a limited
domain, covered by a few databases, who are willing and
capable of quickly learning online searching.

Our system provides a fairly complex set of search
strategies. These have been based on one of the authors
comprehensive knowledge of the strategies of human inter-
mediaries. Resources were not available for a more extensive
form of knowledge acquisition, such as interviewing a repre-
sentative set of human intermediaries. Using these strategies,
the system can, when appropriate, automatically reformulate
queries and supply a user with a set of alternative results that
may be closer to his true information need than his possibly
inaccurate expression of that need as a query. Of course, a
computer-based intermediary has certain disadvantages in
comparison wit? a human intermediary. However, within its
limitations, its search strategies can be more systematic and
comprehensive than a human intermediary, since it can retrieve
a large number of complex sets quickly, it can keep track of a
large number of alternative strategies and it can pursue all
relevant possibilities.

The EUROMATH expert intermediary consists of the following
facilities.

Access to appropriate data that may be browsed in order
to find suitable terms for queries.

The sequence of windows shown to the user and their
exact content will vary according to the user’s character-
istics and information need.

There is a comprehensive, context-sensitive online
help document available to users, on their own initiative,
at all times.

Under certain circumstances inferred by the system,
appropriate parts of the online help document, and other
relevant data are automatically shown.

Under certain circumstances inferred by the system, the
query specified by the user is reformulated to retrieve
alternative result sets, which are presented to the user.

The basis for these facilities is a stereotype classification of a
user, a description of his information need (in addition to his
query) and a set of rules for inferring situations in which active
help or automatic reformulation may be appropriate.

3.1. Modelling of Users

Users are modelled simply by dividing them into the following
user categories:

52

a) novice or casual users, i.e. searchers not familiar with
online information retrieval, query languages, search
strategies, etc;

b) semi-experts, i.e. searchers with some experience of
using query languages, but without detailed knowledge of
the different host languages and complex search
strategies;

c) full experts, i.e. searchers who have detailed
knowledge of the different host query languages and
complex search strategies.

These categories can be thought of as defining 3 different
modes of interaction between a user and the system. In
novice mode, the system will take the user through a
sequence of windows, some of which are skipped in the two
expert modes. However, in general, all of the facilities are
available in all modes. The difference is that in novice mode,
the user is forced through certain steps and the system will
more frequently automatically intervene. The content and
appearance of particular types of windows will also be tailored
to the system’s models of the user and his information need.
The described design makes it rather clear to novice users when
the system is intervening, and thus it should be easy for a user
to change over to the expert levels if he uses the system a lot.
In semi-expert mode, the same forms-based query language
is used, but a user is informed of certain extensions and the
system does not automatically intervene so frequently. In full
expert mode, queries are specified in the host query
language, i.e. the user can have a transparent dialogue with a
host.

Users may themselves define which category they belong to by
selecting the appropriate category from the Experience field of
an information need form, as illustrated below. The remainder
of this paper concentrates on describing the facilities provided
for novice users.

3.2. Modelling of Information Needs

A standard icon within each user’s desktop will be a folder
containing all shared databases both internal and external. As
for any other da&z, a user can create a query form by selecting
the appropriate database (i.e. class) followed by the Search
command. Automatic database selection is not necessary
in EUROMATH because there are only about 12 shared databases
within EUROMATH. When a novice user has invoked the Search
operation for a shared database, the information need form
illustrated below will be displayed instead of a query form. The
primary purpose of this form is to supply the system with
information about a user’s information need. In addition, it acts
as a means for the user to structure his information need in his
own mind.

Previous research [Ingwersen 861 has shown that three different
types of information needs (or problems) can be distinguished:

1. Verificative needs (called “Specific documents” in the
form): when a user searches for a single, well-known
document or a set of documents by the same author. Users
know certain specific data about the document, and want
to retrieve it in full detail.

2. Well-defined, topic needs (called “PRECISELY” in the
form): which are conscious problems, for which users

know about the gap of information they require (what
they don’t know) and are able to specify it as a set of
concepts.

3. Ill-defined, topic needs (called “VAGUELY” in the
form): where the users do not have specific ideas about
what they don’t know. They only have a few, rather broad
concepts in mind. Thus, they will require immediate
conceptual feedback from the system, e.g. automatic
support for browsing.

The information need category option of the informa-
tion need form attempts to accommodate these 3 types of
needs, as well as explicitly supporting situations where the
user has searched for a similar information need previously.

Information Need for Zentralblatt

Information need category:
0 Similar information need previously specified to Euromath
l Topic that you can describe PRJXISELY
0 Topic that you can only describe VAGUELY
0 Specific document(s), e.g. Author known

Number of documents you want to retrieve: From: m To: 130(

Display formats:
0 Title, Authors
0 Title, Authors, Source
0 Title, Index Terms
0 All fields, including Abstract

Experience in 0nIine retrieval:

pg (CCancel)

Users can further characterise their information need by
specifying what they expect to get back from the system. This
is done by simply entering the minimum and maximum number
of documents that the user wants to retrieve. The system can
compare what the user specifies for these threshold values
with the selection of an information need category. For
example, if the specified need is verificative, but the lower
threshold is greater than 5, then the system will later, if certain
other conditions are fulfilled, ask the user if either the category
or threshold is incorrect.

The sequence of windows shown to a novice user after the
Find command has been selected from the information need
form will depend on the information need category selected and
the result of the search with respect to the specified threshold,
as illustrated in the diagram below. If a user selects verifica-
tive need, then the system displays a query form suitable for
verificative searching, with fields for author name, title,
publication date and document type. While filling in the form,
users have access to all the support facilities described in the
next subsection. After a user has filled in this form, the system
searches the external database using a search strategy of a
similar kind to that described in the next subsection, i.e. which
retrieves, and sometimes displays result sets other than the
result set explicitly specified by the query. The most important
part of the strategy, which is described in detail in [Draper 881,
is the distinction of the following three cases:

53

1. If a user either fills in the author field or provides
sufficient criteria on the other attributes (e.g. 2 title
terms and the source), then direct online searching takes
place. In the latter case, the user presumably does not
remember the author, but is searching for a single
document about which he can specify some facts.

2. If a user neither specifies the author nor sufficient
alternative data and the specified upper threshold is less
than 5, then the system will explain to the user that he
must either specify more criteria or modify the category
or threshold in the information need form.

3. Otherwise (i.e. as for (2), except that the upper threshold
is at least S), the system replaces the verificative need
form with a topic need form, filled in with the attributes
the user has already supplied, and thereafter functions as
though the user had specified a well-defined topic need.

0 seu in threshold

If a user selects similar information need, then the
system will both display a query form suitable for all informa-
tion needs (i.e. with all the fields for both verificative and
topic needs) and a saved search index. The function of a saved
search index is to allow a user to retrieve data saved during
previous retrieval sessions and copy terms from them to the
new query form. It contains entries for queries, frequency
analyses, expand lists, sessions and results (all of which are
described in the next subsection). Each of these entries is in
turn an index, which can be opened and displayed as a table. To
aid users in retrieving these saved data, the system will
automatically assign index terms to a Keywords attribute of the
saved objects. For example, for queries, the keywords will be
all the terms entered in the query form,

The references stored as part of the saved results will be stored
in a manner that facilitates integration. Each saved biblio-
graphic record will be associated with a unique identifier
consisting of the name of the database, the record number
(accession number) and the update code (date of last change).
This information will make it possible to combine the sets of
records from various sessions in internd bibliographic
databases which do not contain duplicates. Further, these
internal databases can be searched in exactly the same way as
the external databases, using the same query forms. Thus, a user
can reuse an internal query on an external database, or browse
the internal database to find terms for an external query.
The unique identifier of an external document reference is also
used in the integration with the rest of the system: e.g. when a

user copies a reference to a document into an e-mail message, it
is stored as this unique identifier and displayed as a hypertext
box, to indicate that it may be displayed in a separate window.

3.3. Searching for Topics

If a user selects either a precise or vague topic need, then the
system displays a query form suitable for topic searching, as
illustrated below. The Terms field corresponds to the basic
index, except for certain cases described later. Expert users may
also add field codes, e.g. /AU or /CC to the terms in this field.
For novice users, text-valued attributes, e.g. Terms, are
displayed as a matrix of term boxes. A user can enter a phrase in
each term box. The boxes in each row are ORed together, while
the resulting row criteria are ANDed together. The reason for
using this matrix is to provide the user with a hint on how to
structure the combination of criteria on text-valued attributes.
The implied structure is a separate set of concepts, all of which
should occur in the retrieved documents, and which are therefore
ANDed together. Each concept can be expressed in different
ways, and is therefore specified by a set of alternative phrases,
which are therefore ORed together. A consequence of this
design is that novice users cannot use the NOT operator. This is
a deliberate decision: the NOT operator is hard to understand
and rarely necessary.

Query form for Zentralblatf

Help Other Fields Info. Need New Terms Search Logic

DOtt: 1980 - 1988
En ish

FGlE%ype: A”; Prepnnt 1 Conf. arklel Dlssertatlon 1 Heport

rerms: 11-l OR -1 OR -1

ANDlNumbertheory[oRIloRI-~

~O~oR(I

(FCindNext) (Find Previous) (Find) @x)

The first menu available along the top of a query form allows
the user to display a window showing an appropriate part of a
structured help document. The content of the help document is
tailored to the user category, e.g. expert users will require more
elaborate explanations of Fields and Codes and Display
Formats and explanations may include concepts like basic
index. Help documents are hierarchically structured and have
hypertext properties, i.e. whenever a topic described in more
detail elsewhere appears in a window, it is surrounded by a box
to illustrate that it can be opened. In accordance with our
principle of orthogonality, the help document may also be
searched just like any other object. The help menu provides
five different categories of help, including hints on what to do
next, an explanation of the current state and an explanation of
the currently selected item.

As for all query forms, the Other Fields command is
available if the user wishes to specify criteria for attributes
other than those displayed. The Info. Need command allows
a user to modify the specification of his information need at
any time. The Search Logic command allows users to
inspect the sequence of search commands that are sent to the

54

host as a result of the search strategy. Expert users may also
modify these commands.

In order to support querying as an iteruative process, in which a
user repeatedly reformulates his query to more accurately reflect
his information need, EUROMATH both facilitates users in
copying terms from the documents displayed in the previous
results (as described in the beginning of subsection 2.2) and
provides the New Terms menu. The New Terms menu gives
access to objects that may help the user find new terms to
narrow or broaden his query, i.e. expand lists, frequency
analyses, saved searches and a thesaurus or domain knowledge
base.

Expand lists are alphabetically ordered lists of values that a
particular attribute may take. The display of such a list is
focussed around the term in the query form that the user has
selected before invoking the Expand List command from the
New Terms menu.

A frequency analysis lists, in order of decreasing
frequency, the terms that occur in one or more specified fields
of the retrieved documents. It is generated using the Zoom
command on ESA or Select on STN. These commands provide
some of the information that is automatically used in certain
statistically based retrieval methods, and since their introduc-
tion in several public database hosts, have been found
extremely useful by human intermediaries [Ingwersen 881.

The thesaurus that is available from the hosts is the
Mathematics Classification Scheme, which represents 3 levels
of narrower/broader term relationships. In addition, if resources
permit, we intend to provide a knowledge base, in the form of a
term relationship network [Larsen 871, which can cover more
terms and relationships, which can be tailored by the individual
user to his area of interest, and which can also be used in
automatic query reformulation, as discussed later.

Returning to the query form: if a user has selected a vague
information need, then, as soon as the user has entered the
first term, the system will automatically display a
thesaurus, any saved frequency analyses that are indexed by the
specified term and a window informing the user that related
terms from either of these windows may be copied to the query
form. Regardless of whether the user actually copies terms or
not, selecting Find All will cause the system to go online and
perform the corresponding search, and replace the displayed
saved frequency analysis with a new one obtained from the
host. If the user is not satisfied with the fist search result, then
he may copy terms from the frequency analysis, or any of the
retrieved documents, into the query form and repeat the search.
(This can be likened to a kind of manual relevance feedback.) If
the search algorithm, as described below, still retrieves a
number of documents greater than the upper threshold, then the
cycle is repeated once more. If the result is still above the upper
threshold, then a specially tailored search hints window, which
explains the use of more specific terms and other fields, is
displayed instead of a frequency analysis. Thereafter, the
system functions as for a precise topic search.

Users will often find it difficult to correctly categorise their
information need. A general problem is that many users with
well-defined topic needs often formulate their problems as a
label, i.e. in the rather imprecise terms with which they briefly

characterise the problem for themselves [Ingwersen 881. Thus,
a user who has chosen the precise need option may actually
supply information in the query form that is more characteristic
of a vague need. In such a situation, the system infers that
the user actually has a vague information need and responds
correspondingly, as described above. This situation is inferred
if a user chooses the precise topic need option and only fills in
one or two search terms, and the number of documents retrieved
is higher than the specified upper threshold.

The basic search strategy used by the system to compose
a sequence of commands to be sent to the host is given below.
Thereafter it is also illustrated by means of an example. The
basic idea is that if the result that corresponds to the original
query retrieves too many documents, then the system uses a
search strategy to automatically narrow the query criteria, i.e.
make them more specific. In general, a set of alternative result
sets will be retrieved.

1) The subject criteria, i.e. the terms in the boxes of the
Terms field are combined using AND and OR in a free-text
search of the basic index. If a box contains more than one
word, e.g. “Lie group##“, then the words are connected
with the adjacency operator (W). We call the result Set
1.

2) If given, the Date criterion is searched for separately,
giving Set, 2.1. Document type, Language and any other
field criteria are then ANDed together in a separate search,
giving Set 2.2. This is to make it possible later to give
a greater weight to Date, which tends to be more
important than Document type and Language when a
threshold must be achieved. Sets 2.1 and 2.2 are then
ANDed together, the result being called Set 2, which
represents the so-called formal criteria.

3) Set 1 is ANDed together with each of the three sets
retrieved in step (2), giving Sets 3.1, 3.2 and 3.

4 a) If any of Sets 3.1, 3.2 or 3 are above the lower
threshold, then the system performs a new search in
which the terms in step (I) are linked by the field co-
occurrence operator (L). This retrieves a set of documents
(Set 4a) in which the specified terms are all in the same
field of the basic index, i.e. in Title, Abstract, Controlled
Terms or Uncontrolled Terms, and are therefore more
likely to be relevant to the user’s information need than
when terms are simply ANDed across all fields.

b) If Set 4u is under the lower threshold, then Set 3 (the
narrowest set above the lower threshold) should be
displayed to the user as a document result index, as
described later, in which it should be explained that an
attempt to automatically narrow the query produced a
result under the lower threshold. Set 4a is then still
available via the Other Results command.

c) If Set 4u is above the lower threshold, then it is ANDed
with Set 2.1 (Date), giving Set 4c.1, and if still above
the lower threshold with Set 2 (all formal criteria), giving
Set 4c.2.

5) a) If any of Sets 3.1, 3.2, or 3 are ubove the lower
threshold, then the results are displayed in one of three
ways:

If steps (3) and (4) have retrieved more than one set
between the upper and lower thresholds, then the

55

system displays an other results index, which is
described below.

If steps (3) and (4) have retrieved exactly one set
within the thresholds, then this set is displayed in a
document result index, and the other sets, if any, may
be explicitly displayed by means of the Other Results
command.

Otherwise, all retrieved sets were also above the upper
threshold, and instead of a search result, the system
explains that both the user’s original query and all
attempts to automatically narrow il: did not produce a
result less than the specified upper threshold. It also
states how many documents were in the smallest set
retrieved, and the user is given the choice of inspect-
ing either a specially tailored search hints or the
smallest search result.

b) If all of Sets 3.1, 3.2, 3 are below the lower threshold,
then a specially tailored search hints window is
displayed, which includes possible explanations as to
why the search may not have retrieved enough
documents, e.g. because one of the sets from steps (1) and
(2) is below the lower threshold. If any of the sets in step
(2) are empty then an expand list for the corresponding
term is automatically displayed. This search hints
window also explains the possibilities of misspellings,
singular/plural forms, and how these can be handled by
truncation and masking. We considered the possibility of
performing automatic truncation of terms, i.e. of
replacing words from the query terms by their stems
followed by the symbol that matches any number of
characters. Although this would generally improve recall,
this would be at the cost of precision. Since precision
will very often be of prime importance for mathemati-
cians, we believe it is better to try and teach them how
the truncation and masking symbols can be used, so that
they can decide how to use them most appropriately for
their specific information needs. Finally, the search
hints window also explains that the specified terms may
be two narrow, and that the New Terms menu can be used
to find broader terms or synonyms, e.g. from a frequency
analysis, which is automatically displayed if the user has
specified a vague information need.

There follows an example of the STN search commands in
which this strategy results when applied to the query previ-
ously illustrated in this subsection. The example is followed by
a Venn diagram which illustrates the relationships between the
most important of the result sets that may be retrieved by the
above strategy.

SEARCH Lie(W)grou AND number(W)the Set 1 (Ll)

S 1980-1988/PY Set 2.1 (L2)

S english/LA AND joumal/DT Set 2.2 (L3)

SL2ANDL3 Set 2 (L4)

S Ll AND L2 (terms AND period) Set 3.1 (L5)

S Ll AND L3 (terms, type AND language) Set 3.2 (L6)

S L4 AND L3 (terms, period, type & language 1 Set 3 (L7)

If L5, L6 or L7 is above the lower threshold, then:

SEARCH Lie(W)group#(L)number(W)theory Set 4a (L8)

If L8 is above lower threshold, then:

S L8 AND L2 (terms in single fields & period} Set 4c.l (L9)

If L9 is above lower threshold, then:

S L9 AND L3 [fields, period, type & lang.] Set 4c.2 (LlO)

Terms combined as in query
(Set I 1 I Ll)

fTexmsANDotbercriteti \
(Set 3 I L7)

/&) of Terms \
(Set 4a / L8)

Q of Terms AND Period Q of Temx AND other criteria
(Set 4c. 1 I L9) (Set4c.2/LlO)

\ I
L \ , //

We are aware that many alternative search strategies to
those described in this paper exist. For example, a domain
knowledge base, e.g. a term relationship network, could be
used to automatically reformulate queries. Techniques to do this
have been described in various expert intermediary systems,
e.g. [Larsen 871 and [Croft 861. The problem in using such
techniques in EUROMATH would be acquiring and maintaining
the domain knowledge. None of the expert intermediaries we
have read of have tackled this problem in a domain similar to
that of EUROMATH, and we do not believe that mathematicians
are the appropriate user group upon which to test these ideas in
practice. To facilitate the possibility of later introducing such
alternative techniques as well as the tailoring of the chosen
search strategy, it is important that the system is implemented
in flexible and easily modified way. The use of knowledge-
based system techniques can be appropriate in this connec-
tion, e.g. the architecture described in [Croft 861.

3.4. Display of Results

The result of a search may be displayed in three different
ways, as already described under point 5(a) of the search
strategy, and as illustrated in the second diagram of subsection
3.2. A document result index is displayed as a table, each
entry representing one of the documents from a particular result
set. A user can select any entry in the table and display the
corresponding document.

An other results index is also displayed as a table, each
entry representing one of the result sets retrieved during the
search. The default presentation for novice users displays a
description of what each set represents and the set’s cardinality.
The default presentation for expert users, which is illustrated
below, also includes the corresponding search command and
the corresponding set number. The entries that represent sets
within the specified thresholds are highlighted. The table is
ordered in increasing order of cardmality to indicate a form of
ranking. Any of the sets can be opened, and it is up to the user
to decide which sets are of relevance to his information need.
Note that the set difference operation is available to create sets
without duplicates, as suggested in [Vigil 831, in the case when

56

a user wishes to inspect a set that is a superset of a set he has
already inspected.

I 2 results were within the given thresholds.

(save)= I

4. Conclusions

Our design has demonstrated that it is feasible to integrate all
of the major requirements to the information retrieval facilities
of a comprehensive Knowledge Worker Support System in a
uniform and comparatively simple user interface. Currently, an
implementation of the interpersonal communication facilities
of the EUROMATH System is underway within Phase 1 of the
EUROMATH Project. Implementation of the remaining facilities,
including those described in this paper, is planned to
commence in the summer of 1989 and last approximately 2
years. When this implementation is completed, it will be
possible to empirically evaluate whether the functionality and
user interface that we have proposed provide an adequate
solution to supporting our target user group in performing the
target tasks.

5. References
[Barbie 8.51: “The Type Concept in Office Document Retrieval”,
F. Barbie & F. Rabitti, Proceedings 1985 International
Conference on Very Large Data Bases.

[Bertino 881: “Query Processing in a Multimedia Document
System”, E. Bertino et al., ACM Transactions on Office
Information Systems, Vol. 6, No. 1, January 1988.

[Croft 861: “13R: A New Approach to the Design of Document
Retrieval Systems”, W.B. Croft & R.H. Thompson, July 1986.

[Draper 881: “EUROMATH Functional Specification”, ed. D.
Draper, et al., December 1988.

[Furutu 881: “Interactively editing structured documents”, R.
Furuta, V. Quint & J. And& Electronic Publishing, Vol. 1, No.
1, April 1988.

[Greenblatt 781: “A Study of Three Database Query Languages”,
D. Greenblatt & J. Waxman, in Databases: Improving
Usability and Responsiveness, ed. B. Shneiderman, Academic
Press, 1978.

[Haines 821: “Experiences in Training End-User Searches”, J.S.
Haines, Online, November 1982.

[Harper 8.51: “MINSTREL-0DM: A Basic Office Data Model”,
D.J. Harper et al., Information Processing and Management,
Vol. 22, No. 2, 1986.

[Heiler 851: “G-WHIZ, a Visual Interface for the Functional
Model with Recursion”, S. Heiler & A. Rosenthal, Proceedings
1985 International Conference on Very Large Data Bases.

[Horuk 841: “An Object-Oriented Office Document Architecture
Model of Processing and Interchange of Documents”, W. Horak
& G. Kriinert, ACM-SIGOA Conference on Office Information
Systems, Toronto, June 1984.

[Ingwersen 861: “Cognitive Analysis and the Role of the
Intermediary in Information Retrieval”, P. Ingwersen, in
Intelligent Information Systems, ed. Roy Davies, Ellis
Hoi-wood, 1986.

[Ingwersen 881: “Means to Improve Subject Access and
Representation in Modern Information Retrieval”, P.
Ingwersen & I. Wormell, Libri, Vol. 38, No. 2, 1988.

[Larsen 871: “Knowledge Representation in IRIS, an Informa-
tion Retrieval Intermediary System”, H.L. Larsen, Proceedings
7th International Workshop on Expert Systems and their
Applications, Avignon, May 1987.

[McAlpine 8.51: “A Graphical User Interface to an Office Filing
Facility”, G. McAlpine t P. Hougaard, ESPRIT Technical
Week, North Holland, 1985.

[McAlpine 881: “Principles and Techniques for the Graphical
Presentation of Information for Browsing of Information
Bases”, G. McAlpine, NordData 88.

[Morrissey 821: “An Intelligent Terminal for Implementing
Relevance Feedback on Large Operational Retrieval Systems”,
J. Morrissey, Conference on Research and Development in
Information Retrieval, Berlin, 1982.

[Schmid 751: “On the Semantics of the Relational Data Model”,
H.A. Schmid & J.R. Swenson, Proceedings 1975 ACM
SIGMOD International Conference on Management of Data.

[Smith 821: “Designing the Star User Interface”, D.C. Smith et
al., Byte, Vol. 7, No. 4, 1982.

[van Rijsbergen 861 “A Non-ciassical Logic for Information
Retrieval”, Computer Journal, Vol. 29, No. 6, December 1986.

[Vigil 831: “Analytical methods for online searching”, P.J.
Vigil, Online Review, Vol. 7, No. 6, 1983.

[Wegner 871: “The Object-Oriented Classification Paradigm”,
P. Wegner, in Research Directions in Object-Oriented
Programming, B. Shriver & P. Wegner (ed.), MIT Press, 1987.

[Zloof 811: “QBE/OBE: A Language for Office and Business
Automation”, M. Zloof, Computer, Vol. 14, No. 5, May 1981.

57

