
Learning While Filtering Documents

Jamie Callan
Center for Intelligent Information Retrieval

Computer Science Department
University of Massachusetts

Amherst, MA 01003-4610, USA
callanQcs.umass.edu

www.cs.umass.edu/“callan/

Abstract This paper examines the problems of learn-
ing queries and dissemination thresholds from relevance
feedback in a dynamic information filtering environment.
It revisits the EG algorithm for learning queries, identi-
fying several problems in using it reliably for information
filtering, and providing solutions. It also presents a new
algorithm for learning dissemination thresholds automat-
ically, from the same relevance feedback information used
to learn queries.

1 Introduction

An information filtering system monitors information
sources, for example newswires, to find documents that
satisfy a person’s information need. The central prob-
lems in information filtering are creating an accurate
representation of a person’s information need, and then
det,ermining whether a given document satisfies the in-
formation need.

Past research has shown that it is difficult for people
to state their information needs precisely, but easy for
them to identify documents that satisfy their informa-
tion needs. These results suggest that a person’s original
statement, of the information need should be refined au-
tomatically, by a supervised machine learning algorithm,
based upon user feedback. A large body of research ad-
dresses this problem, but does so based on assumptions
that are becoming less relevant to current practice.

The predominant approach is to learn a “Routing”
query. Routzng queries are created by analyzing a large
set of example documents that have been labeled relevant
and non-relevant. The most accurate algorithms assume
that documents can be examined repeatedly, usually in
any order, or that potential changes can be tested on an
archival collection [4, 15, 121.

A related problem is deciding how well a document
must satisfy an information need in order to be dissemi-
nated. This problem of setting dissemznation thresholds
is usually addressed with algorithms that assume access
to a large set of labeled example documents [7, 81.

These batch-oriented algorithms are becoming less rel-

Permission to make digital/hard copy of all or part of this work
for pwso~~al or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
valltage, tile copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of
ACM. Inc. To cow otherwise. to reuubtish. to uost on servers or

.”

to redistribute to list,s, requirks prior specific permission and/or
fee. SIGIR’98, Melbourne, Australia @ 1998 ACM l-58113-015-5
E/98 $5 00

evant to current practice. Information filtering is increas-
ingly deployed in interactive computing environments,
where its users expect the system to respond immediately
to any feedback they provide. There may not be sufficient
time to analyze a batch of several hundred documents,
or to carefully test the effects of several different adjust-
ments to each query weight. An immediate response is
required, preferably before very many additional docu-
ments are filtered.

This paper addresses the problems of learning filtering
queries and their corresponding dissemination thresholds,
automatically and incrementally. The work reported here
was done with InRoute, a document filtering system
based on a Bayesian inference network model of infor-
mation retrieval and filtering [5]. However, the results
reported here apply also to most statistical models of IR,
including other probabilistic and vector space models.

2 Document Filtering

There are many types of document filtering environ-
ments, each with different assumptions and requirements
[19, 14, 6, 18, 51. We begin by defining what is meant
by document filtering in this paper, and discussing how
previously published research relates to it.

We are interested in a document filtering system that
processes each document as soon as it arrives, deciding
immediately whether it satisfies one or more information
needs. Decisions can be influenced by information about
documents already processed (“learning”); no informa-
tion can be used from documents that have not yet, been
processed. The system should learn all it can about its
environment, its users, and their needs, and it should re-
act quickly whenever it has the opportunity to become
more effective.

These requirements seem reasonable when viewed
from the perspective of the filtering “consumer”, who
we define as a person who wants to see important infor-
mation immediately, and with a minimum of work. How-
ever, these requirements present difficulties for many of
the information filtering solutions proposed in the past.

For example, it would not be acceptable to store doc-
uments for some period of time, then index them and
search the index with an information retrieval system
[17, 61. This “slow filtering” approach is only acceptable
when information can be disseminated slowly.

When information must be disseminated quickly, one
must use a filtering system that processes documents in-
dividually, as they arrive. Filtering systems such as SIFT
(181 and InRoute [5] satisfy this requirement.

Some efficiency optimizations designed for large filter-

224

ing services cause problems. For example, it might not
be acceptable to “compile” a set of profiles to improve
filtering speed, if doing so meant that people could not
easily change their profiles [3]. However, it is a common
user-requirement that software must run faster than it
does, so optimizations that maintain flexibility and re-
sponsiveness are important.

The current state-of-the-art for creating and modify-
ing queries from large amounts of training data is the
Rocchio algorithm, augmented with Dynamic Feedback
Optimization (DFO) 141. Rocchio can be implemented as
an incremental algorithm [I]. However, Dynamic Feed-
back Optimization is a batch-oriented algorithm that
iteratively tests a large number of weight adjustments
against an archival database. It is not clear how DFO
can be applied in a more interactive environment.

Prior research suggested that the EG algorithm [lo]
is as effective at creating queries for filtering and rout-
ing tasks as Rocchio augmented with DFO 1121. This
work was encouraging because EG is an incremental algo-
rithm with well-defined theoretical properties. However,
the algorithm was tested in a batch-oriented manner, in
which training documents were examined repeatedly, and
in random order. Later work on the TREC-5 Routing
task produced less accurate results, raising doubts about
the stability of the algorithm [2].

There is little published research on learning dissemi-
nation thresholds, perhaps because filtering systems have
only recently been based on statistical models. Most
met,hods tested in the TREC-5 and TREC-6 Filtering
tracks depended on having access to a large set of train-
ing documents, and a cost function defining the user’s
requirements for precision vs recall [7, 81. It is not clear
how well these methods would work in a more interac-
tive environment, particularly initially, when little train-
ing data is available. Nor is it clear how these approaches
to threshold-learning interact with query learning or idf
adjustments.

The state-of-the-art for meeting the requirements
stated above can be summarized as follows. A few fil-
tering systems are available that are based on statisti-
cal models and also capable of disseminating documents
quickly. The best algorithms for learning Routing queries
are not applicable. The incremental Rocchio algorithm,
and perhaps EG, can be used. There is little guidance
on how to learn dissemination thresholds automatically.

3 Learning Term Weights Incrementally With
EG

Prior research suggested that the EG algorithm might be
as effective as Rocchio augmented with Dynamic Feed-
back Optimization (DFO) [12], but the experiments were
not truly incremental, and later work on a different cor-
pus failed to support this result [2]. The best one can
say is that EG appears to be a promising incremental
alternative worth further examination.

3.1 The EG Algorithm

A detailed description and analysis of EG is beyond the
scope of this paper. Details and in-depth analysis of the
algorithm can be found in [lo], while [12] provides a de-
tailed comparison of the Rocchio, EG, and Widrow-Hoff
algorithms for IR tasks. We confine our attention here
to a study of possible problems in applying EG to infor-
mation filtering tasks.

The EG algorithm, like Rocchio, attempts to find a
linear classifier that minimizes the magnitude of classifi-
cation errors [lo]. One can consider the classifier to be a
weight vector that is applied to a set of query terms. EG
imposes the restrictions that all weights must be positive,
and sum to 1, neither or which is a problem for filtering
queries. EG is trained on one example at a time, a(ljust,-
ing the weights after seeing each example. The update
rule for a weight vector ‘u)~ of d features is:

Wi+l,j =
Wi,J exp (-27 (Wi Xi - Yt) x2,3)

C,“=,
2u1,3 exp (-277 (Wi Xi - Vi) xcl.j)

where zi is a vector of real-valued features representing
the current document, and y, represents the desired value
of the classifier for the current document. Initial weight,s
are typically set to i.

The learning rate q determines how rapidly EG learns
from each example. Kivinen and Warmuth suggest set,-
ting it to 71 = 2/(3R2), where R is a value that satisfies
the constraint max;(max, z,,] - minj z,,~) 5 R.

EG would appear to be a well-defined algorithm, with
few opportunities for mistaken choices in how to apply
it. However, such is not the case. Some choices that one
must make in applying EG are listed below.

Feature Representation: EG is most easily used for
Boolean problems, but can also be applied to non-
Boolean features. Should one use Boolean features,
or features based on tf.idf weights?

Target Values: What value should the classifier re-
spond with for relevant and nonrelevant document,s?
Should 0 and 1 be used, or other values?

Learning Rate: Kivinen and Warmuth suggest one way
of setting the learning rate. However, they also
state that other choices may be more appropriate
for noisy problems. What learning rate should one
choose?

Answering these questions is our first priority.

3.2 Hypotheses

Several decades of IR research show that tf.idf features
are consistently more effective than Boolean features.
While it is important to verify that this remains true
for the EG algorithm, our first hypothesis is that it. does
indeed remain true. This hypothesis is tested using In-
Route’s tf.idf features [5J, which incorporate Robertson’s
tf weighting formula [16] and a scaled idf.

Our second hypothesis is that EG is sensitive to the
choice of target values intended to signify relevant and
nonrelevant documents. Some algorithms, for example
the Perceptron algorithm [13], are insensitive to the val-
ues chosen; all that matters is the direction of the error
gradient. However, EG follows an ezponentiated yradi-
ent; small variations in how the gradient is determined
might have large effects on algorithm behavior.

What, then, are the proper scores to assign relevant
and nonrelevant documents? It is impossible for most
tf.idf classifiers to produce document scores of either 0
or 1, so these may be poor choices. We note, for example,
that Lewis, et al, were careful to choose target values of
0.42 and 0.49, which were roughly comparable to “low”
and “high” scores in INQUERY [12]. When weights sum
to 1.0, as they do for EG, the maximum score a linear
classifier can achieve is equal to its highest feature; the

225

1 Number of 1
Corpus Name Use Queries Collection Size Documents
TREC-2 Routing Train 50 CDs 1& 2 2.1 GB 741,856
TREC-2 Routing Test 50 CD 3 1.1 GB 336;310
TREC-6 Filtering Train 47 FBIS volumes 3 & 4 493 MB 130,471
TREC-6 Filtering Test 47 FBIS volume 6 452 MB 120,653

Table 1: Characteristics of training and testing corpora.

minimum score is equal to its lowest feature. Our third
hypothesis is that the feature values with maximum and
minimum values represent better target values than 1 and
0 for relevant and nonrelevant documents, respectively.

Finally, how should the learning rate be determined?
Kivinen and Warmuth provide one option, but suggest
that it may be too high for noisy problems. Document
filtering is a noisy problem, so one might conclude that a
lower rate make sense. However, the Kivinen and War-
muth suggestion is very conservative for real-valued fea-
tures that cluster in a narrow range, as tf.idf features
often do. For example, if the difference between the max-
imum and minimum features is 0.1, v = 66.67, yielding
a learning rate of exp(-133.346zi,j), where b is the dif-
ference between the current document score and the de-
sired document score. In other words, the learning rate
converges to 0, and nearly no learning occurs on that
example.

Our fourth hypothesis is that R = 1.0, the method
suggested for Boolean features, is a reasonable way to
set the learning rate for problems with tf.idf features.

3.3 Data

Two sets of queries and corpora were used for testing: the
TREC-2 Routing queries and corpus, and the TREC-
6 Filtering queries and corpus. These are referred to
as the “TREC-2” and “TREC-6” corpora and queries
throughout the paper. Corpora characteristics are shown
in Table 1.

The initial queries for the TREC-2 task were the topic
Description fields, with only stop words and leading stop
phrases removed (“description-only” queries).

The initial queries for the TREC-6 task were the topic
Description and Title fields, with only stop words and
leading stop phrases removed, and expanded with 70 re-
lated words and phrases.

3.4 Experimental Methodology

The TR.EC-2 Routing task was converted into a filtering
task by presenting judged documents to EG in a random
order, without replacement; each judged document was
seen just, once.

Although we are interested eventually in the feature
selection capabilities of EG, we confined our attention
to learning query-term weights in these experiments.
EG was able to eliminate query terms, by driving their
weights to 0, but it could not add features selected from
relevant documents.

Dissemination thresholds were not used. Every judged
document was available for training.

Experiments were evaluated using average precision,
calculated by the treceval program available from Cor-
nell, as is common for TREC Routing-style tasks without
dissemination thresholds. (We argue in Section 4.2 that

other metrics are appropriate for filtering tasks involving
dissemination thresholds.)

3.5 Experimental Results

The EG hypotheses discussed above would be difficult to
test independently. For example, an experiment intended
to compare Boolean and tf.idf features must train on

target values using some learning rate. It only makes
sense to hold independent variables constant when “rea-
sonable” values are known, or when there is reason to
believe that the specific choice of values doesn’t mat-
ter. Such is not the case with this learning algorithm.
A poor choice about learning rate, for example, could
cripple learning irrespective of other choices.

The EG hypotheses can be mapped to three variables,
representing feature type, method of setting target val-
ues, and method of setting learning rate.

Feature Type:
l Boolean.
l tf.idf.

Target Values:
l Boolean targets (0, 1).
l (0.42, 0.49}, as used in [12].
l {MinFeature, MaxFeature}, from hypothesis 3.

Learning Rate:
l R = max;(max, z~,~ - minj xl,j), as suggested in
[lo] (called KW, in this paper).
,R=l.

There are 12 possible combinations of feature values, but
only 7 are unique and make sense. All 7 combinations
were tested. The experimental results are summarized
in Table 2. The baseline values were obtained with un-
weighted queries.

The best combinations of parameter settings all used
tf.idf features. However, the worst combination also
used t f .idf features. One can conclude that t f .idf fea-
tures do lead to more effective classifiers, as proposed
by the first hypothesis, when other parameters are set
appropriately.

Boolean target values were a poor choice for the t f .idf
representation, as expected. The target values of 0.42
and 0.49 performed well, confirming previously published
results [12]. Target values set dynamically, based on

the minimum and maximum feature values, performed
poorly with the KW learning rate, but performed well
when the learning rate was calculated with R = 1. This
result is consistent with our expectations; when the tar-
get values are farther from “typical” document scores, a
larger learning rate is required.

In five out of six pairs of tests it was better to set the
learning rate with R = 1 than to set it with the Kivinen
& Warmuth method. We view this as confirming the
fourth hypothesis, although we are puzzled by the one

exception.

226

Test Description TREC-2 TREC-6
Feature Targets R AvgPrec AvgPrec

N/A N/A N/A 0.1900 0.2631
Boolean 0 / 1 KW, 1 0.1901 0.2294

tf.idf 0 / 1 KW 0.1355 0.1751

Table 2: Results from an experiment comparing differ-
ent methods of selecting feature type, target values, and
learning rate. Each Average Precision (AvgPrec) figure
represents an average of the tree_eval Average Precision
(XvgPrec) from five tests. TREC-2 Routing queries (51-
100) trained on TREC volumes 1 & 2 data, tested on
TREC volume 3 data. TREC-6 Filtering queries, trained
on TR.EC FBIS 3 & 4 data, tested on TREC FBIS 6 data.

The most consistent combinations of parameter set-
tings were the one corresponding to our hypotheses (tf.idf,
Min/Max, R = l), and the one used in (121 (tf.ia!f,
0.42/0.49, KW). This experiment confirms each of the
hypotheses presented in Section 3.2, but also confirms
that the KW method of setting learning rates is appro-
priate when reasonable target values are known a priori.

The tested values for feature type and target values
cover the space of possible choices well, but the same is
not true for the tested values of learning rate. R could
be set to other constant values, or it could be set as some
multiple of the value suggested by Kivinen and Warmuth.
We have no hypotheses about what might be best, so
tests were conducted to explore a range of possible values.

For brevity, we focus only on tests using the tf.i#
representation and the MinFeature / MaxFeature target
values. Two types of tests were conducted. In one type,
R was set to a constant value. In the other type, the
value 7 = 2/(3R’) was multiplied by a constant. 77 and
the learning rate are inversely correlated; reducing 7 in-
creases the learning rate, and vice versa.

The experimental results are summarized in Table 3.
In general, EG performs well and is stable over a wide
range of learning rates. R = 0.6 and R = 0.8 were slightly
better than R = 1.0. However, as the learning rate con-
verges to 0.0 (l.Oq), effectiveness falls off. There appears
to be no advantage to setting R to a constant versus mul-
tiplying 71 by a small constant. One must make the choice
based on other criteria. For example, one might prefer
setting R to a constant because it is simpler and faster.

4 Learning Dissemination Thresholds Incre-

mentally

Deciding whctber a document matches a query is simple
under a Boolean model, but complex under statistical
models. In a vector space. any document has a (possibly
small) similarity to any query. In a probabilistic model,
any document has a (possibly small) probability of sat-
isfying any information need. The important question is
whether the similarity or probability is high enough that
the document is worth showing to someone.

The question of whether a document is “good enough”
is expressed as a problem of setting a dissemination
threshold. Documents with a score (similarity, probabil-

Test Description I TREC-2

E Feature Targe& R
N/A N/A N/A
tf.idf Min/Max 0.4
tf.idf Min/Max 0.6
tf.idf Min/Max 0.8
tf.idf Min/Max 1.0
tf.idf Min/Max 1.2
tf.idf MiniMax 1.4
tf.idf MinIMax 0.02 R
tf.idf
tf.idf
tf.idf
tf.idf
tf.idf
tf.idf
tf.idf
tf.idf
tf.idf

MinjMax
Min/Max
Min/Max
MinIMax
Min/Max
MinIMax
MiniMax
Min/Max
Min/Max

0.04 1;
0.06 q
0.08 77
0.1 7)

0.2 7
0.4 I]
0.6 17
0.8 77
1.0 q

AvgPrec
0.1900
0.2413
0.2426
0.2421
0.2399
0.2403
0.2398
0.2429
0.2418
0.2407
0.2411
0.2411
0.2393
0.2338
0.2336
0.2202
0.2124

TREC-6
AvgPrec
0.2631
0.2657
0.2775
0.2785
0.2728
0.2610
0.2483
0.2315
0.2532
0.2671
0.2752
0.2779
0.2776
0.2711
0.2617
0.2572
0.2535

Table 3: Results from an experiment comparing differ-
ent methods of setting the EG algorithm’s learning rate.
The first figures (with N/A entries) are baseline values
obtained with unweighted queries. Each subsequent Av-
erage Precision (AvgPrec) figure represents the average
of five tests.

ity) that exceeds the threshold are disseminated (shown
to someone); documents with scores below the threshold
are discarded.

The problem is complicated by the users, of course.
Some people don’t want to be bothered with material
unless it is highly likely to be relevant (“high precision
user”). Others want to see anything that might be rel-
evant (“high recall user”). Most fall somewhere in be-
tween.

A system can require people to specify dissemination
thresholds manually, but few people can select a good
threshold for a new query without significant effort. Even
after observing several relevant and nonrelevant docu-
ments (obtained how?), it would be difficult for the av-
erage person to understand that a score of 0.429129 is
predictive of relevance, but a score of 0.417535 is not.

A better choice is to let an algorithm set dissemina-
tion thresholds, for example based upon the same type
of relevance information used for improving queries. Sev-
eral batch-oriented solutions require a cost function de-
scribing a person’s preferences, and then find a threshold
that optimizes for it by testing different thresholds on a
training set of relevant and nonrelevant documents [7, 81.

Our interest is a solution for interactive environments.
“Corpus” statistics such as idf may be adjusted as each
document passes through the system, making it less clear
what a “good” document score might be. Training is in-
terleaved with filtering, and the system must actually dis-
seminate a document before obtaining a relevance judge-
ment. In this already complex environment the problem
of setting dissemination thresholds must be addressed
at the same time that the relevance feedback algorithm
is adding/deleting query terms or adjusting query term
weights.

4.1 An Algorithm

The requirements for an algorithm are stated simply.
The filtering system only has access to relevance judge-

-7

ments for documents that it has disseminated. In its ini-
tial state: no documents have been disseminated, so the
threshold must start low enough to actually disseminate
documents. The threshold rises over time, to exclude
nonrelevant documents that only marginally match the
query. How high it rises should be a function of com-
IIIOU relevant and nonrelevant document scores, and of
the user’s preferences concerning recall and precision.

One simple solution, adopted here, is to track the
average scores of disseminated relevant and nonrelevant
documents, and then to place the threshold somewhere
between the two averages. The user’s preferences with re-
spect to precision and recall can influence where between
these averages to place the threshold.

The algorithm is most at risk of setting a poor thresh-
old when the number of disseminated documents is low.
For example, if the first disseminated document hap-
pened to have a very high score, the threshold could
hc set, so high that, no other documents would be dis-
seminated. The risk can be reduced by learning more
slowly from the first ten relevant and ten nonrelevant
documents.

The algorithm is complicated, slightly, by its interac-
tion with other learning that may occur simultaneously,
for example query term additions and deletions, query
term weight adjustments, and idf adjustments. All of
these changes alter document scores, making the averages
an outdated view of the previously disseminated relevant
and nonrelevant documents. Therefore it is important to
compensate for these changes, by enabling the averages
to reflect the new information.

The document scores computed for vector-space queries
and most probabilistic queries are a product of a weight
vect,or and a vector of tf.icZf scores. (The weight vector
is included because of the presumed use of a relevance
feedback algorithm such as Rocchio or EG.) The average
of a set, of relevant document scores can be decomposed
as follows:

ilvgRelevant

= $ (Doc_Scorel + . + DocScore,)

= ;((WI Tl,l I1 + Wn Tl,, In) +

(Wl Tn,l II + Wn T,,, In))

wn zrz i (Tl,, + . Tn,n))

= ~1 II Avg-T, + + w,, Z, Avg_T,

where T,,, is the term weight for the j’th term in docu-
ment i, Zj is the idf weight for the j’th term, and w, is
the query term weight for the j’th term.

Instead of storing the average relevant document score
as a single number, it can be stored as a vector of aver-
age relevant tf scores, one per query term. Whenever
the average relevant document score is needed, it can be
recomputed quickly using this vector, the current query
term weights, and the current idf values. This approach
requires slightly more effort, but keeps the average rele-
vant and nonrelevant scores accurate during idf fluctu-
ations, query term weight adjustments, and query term
deletion. As long as dissemination thresholds are not
recomputed often, the overhead is low.

The algorithm proposed above has the following char-
acteristics:

l tolerant of changes to“corpus” statistics;

l tolerant of changes to query terms, and query weights;

l somewhat responsive to user preferences with re-
spect to precision vs recall; and

l not misled by the occasional low-scoring relevant
document or high-scoring nonrelevant document,

These characteristics make it well-suited to most inter-
active filtering environments.

4.2 Metrics

It is generally accepted that metrics for ranked retrieval
are not adequate for measuring filtering systems that USC
dissemination thresholds [ll]. The TREC-5 and TREC-6
Filtering tracks adopted set-based measures of the form:

where Rf is the number of relevant documents found,
Nf is the number of nonrelevant documents found, and
R, is the number of relevant documents missed. The
TREC-6 Fl measure, for example, set a = 3, /3 = 2, and
y = 0, to simulate a person interested in high precision.
The TREC-6 F2 measure set Q! = 3, ,B = 1, and y = 1,
to simulate a person interested in high recall.

The Fl and F2 measures reflect the cost/benefit ratio
of reading the entire set of documents. However, because
the components are not scaled, the numbers can be dif-
ficult to interpret. A score of -20 could reflect a system
doing well on a large set, or a system doing poorly on a
small set.

Precision and recall over a set of disseminated docu-
ments are easier for most people to understand. When a
single metric is required for comparing results, a weighted
average of precision and recall can be used. For example:

(a. P + P RI/(& + P)

where (Y and p reflect the relative importance of precision
and recall to a particular person.

In this paper, filtering experiments are measured by
several metrics: TREC-6 Fl, TREC-6 F2, precision, re-
call, and two weighted averages of precision and recall.
We hope that one or more of them will be useful to the
reader. Table 4 illustrates how each metric behaves on
four artificial examples.

4.3 Experimental Methodology

The TREC-6 Filtering methodology [8, 91 was adopted
for these experiments. The filtering system starts with an
“Ad-hoc” query, and receives relevance feedback when-
ever it disseminates a document during the training
phase. Queries and thresholds are then frozen and tested
on the test set. This methodology is not ideal for simulat-
ing an interactive environment, but it is to some extent
an accepted methodology. Using it makes the work cle-
scribed here comparable to work reported at TREC.

The default relevance feedback algorithm in InR.oute.
an incremental Rocchio algorithm [l], was used to learn
queries. The default settings were used, which allowed
up to 10 query terms to be added to the query.

228

Small Set, Small Set, Large Set, Large Set,
Medium Recall High Recall Medium Recall High Recall

Retrieved: 20 30 200 300
Relevant: 8 8 80 80
Relret: 4 6 40 60
Set Precision: 0.2000 0.2000 0.2000 0.2000
Set Recall: 0.5000 0.7500 0.5000 0.7500
TR.EC-6 Fl: -20 -30 -200 -300
TREC-6 F2: -8 -8 -80 -80
3P,lR: 0.2750 0.3375 0.2750 0.3375
lP,2R: 0.4010 0.5685 0.4010 0.5685

Table 4: The behavior of four metrics on different types of experimental results.

Tests were conducted with the thresholds set at 0%,
25%, 50%, and 75% of the difference between the aver-
age nonrelevant and average relevant document scores.
(A threshold at 0% is set at the average nonrelevant doc-
ument score.) The goal was to investigate the results the
system would produce when the threshold was placed at
different points between the “High Precision” (75%) and
“High Recall” (0%) ends of the spectrum.

A “batch-oriented” R.outing query was also created,
as a state-of-the-art reference point against which to com-
pare the incremental queries. The Routing query con-
tained 50 additional terms, and 50 proximity operators
each for distances 1, 5, and 20 [2]. For this comparison
only, filtering output, using thresholds, was converted to
a ranked list by sorting on document score. The usual
Routing output (no thresholds, top 1,000 documents per
query) was used. Results were evaluated using the Aver-
age Precision metric.

Two sets of queries and corpora were used for test-
ing purposes: the TREC-2 queries and corpus, and the
TREC-6 queries and corpus. The corpora characteristics
are described in Section 3.3.

4.4 Experimental Results

The experimental results are shown in Figures 1 and 2.
The precision of the learned thresholds for the TREC-6
queries is 28% to 35%, while recall is 10% to 43%. The
thresholds for the shorter TREC-2 “description only”
queries yield precision of 17% to 24%, and recall of 24%
to 42%.

These results indicate that reasonable dissemination
thresholds were learned, in spite of the constant adjust-
ment of idf values, the tuning of query term weights,
and the addition/deletion of query terms. The results for
the TREC-6 queries are preferable to the results for the
TREC-2 queries, which may be due to the improved ini-
tial ad-hoc queries (recall that the TREC-6 queries were
expanded with query expansion, whereas the TREC-2
queries were not).

Weak correlations between lower thresholds and im-
proved recall -were apparent in both tests; in each test,
three out of four lower thresholds produced higher recall.
Lower thresholds were also weakly correlated with lower
precision on the TREC-2 data, but not on the TREC-6
data. The results can be viewed as weak support for the
hypothesis that precision and recall vary depending upon
how the threshold is placed, but they do not confirm the
hypothcsls.

It is unclear why precision is not affected more strongly
by lower thresholds. Lower thresholds result in more
documents being used for relevance feedback, which may

result in more accurate queries.
Thresholds for several queries were so high that no

documents were disseminated for those queries. For ex-
ample, the 75% and 50% thresholds on the TREC-6 test
disseminated no documents for one query (the “Num
Queries” row in Figure 1). Disseminating no documents
is the appropriate response when the system is unable to
learn an accurate query. Recall on the overall test set is
lower when no documents are disseminated for a query,
but precision is unaffected.

The queries that were learned incrementally com-
pared favorably with the batch Routing queries in both
tests. Most of the incremental tests on the TREC-6
data produced average precision within 10% of the batch
Routing queries. Ranked results at recall up to 100
documents (not shown) always favored the incremental
queries by a substantial margin.

The TREC-2 batch queries were much more effective
than their incremental counterparts, presumably because
of the shorter, “description-only” queries used in the in-
cremental tests. However, much of this difference oc-
cured at high recall in ranked tests. At low recall, the
incremental queries were only 10-200/o worse than batch
queries (not shown).

One can conclude from this comparison that the fil-
tering queries learned incrementally were not “crippled”
with respect to the state-of-the-art Routing queries. It,
would be a mistake to conclude much more than that,
given the many differences in how the queries were formed,
and in how they were intended to be used.

5 Conclusions

Information filtering is becoming common in interactive
computing environments, where people expect the sys-
tem to respond quickly to any feedback they provide.
One challenge for the research community over the next
few years will be to shift from batch-oriented query- and
threshold-learning algorithms to equally effective incre-
mental algorithms suitable for dynamic environments.

This paper represents a first step down that path. It
revisits the EG algorithm for learning queries, identify-
ing several problems in using it reliably for information
filtering, and providing solutions. It also presents a new
algorithm for learning dissemination thresholds automat-
ically, from the same relevance feedback information used
to learn queries. Collectively, these results represent an
“end-to-end” solution to problems encountered in real-
istic, dynamic, and responsive information filtering sys-
tems

Although the work presented here is encouraging,
much remains to be done. There is not yet a direct

229

1 Threshold: Batch 75% 50% 25% 0%
TrainedOn: 41,476 9,623 13,441 21,313 42,185
Train Prec: 0.1398 0.1047 0.1492 0.1405 0.0852
Train Recall: 1.0000 0.1739 0.3460 0.5164 0.6200

Testing: Total number of documents over all queries
Num Queries: 47 46 46 47 47
Retrieved: 47,000 2,342 6,060 5,053 10,085
Relevant: 6872 6.872 6.872 6.872 6.872
Rel_ret: 4350

Testing: Filtering Metrics
‘665 11970 11780 2,932

0.0926 0.2839 0.3251 0.3523 0.2907
0.6330 0.0968 0.2867 0.2590 0.4267

Figure 1: Effectiveness when thresholds are set at different points between the average relevant and average non-
relevant document scores. (TREC-6 Filtering data.)

Training:
Threshold: Batch 75% 50% 25% 0%
TrainedOn: 89,179 14,179 24,192 48,948 277,381
Train Prec: 0.1837 0.1502 0.2028 0.1579 0.0312
Train Recall: 1.0000 0.1300 0.2994 0.4716 0.5284

Testing: Total number of documents over all queries
Num Queries: 50 48 48 47 47
Retrieved: 50,000 10,843 19,081 25,818 19,020
Relevant: 10,981 10,981 10,981 10,981 10,981
Relret: 6,722 2,545 3,481 4,313 3,839

Testing: Filtering Metrics
Set Precision: 0.1344 0.2347 0.1824 0.1671 0.2018
Set Recall: 0.6121 0.2383 0.3259 0.4165 0.3573
TREC-6 Fl: -66,390 -8,961 -20,757 -30,071 -18,845
TREC-6 F2: -27,371 -8,800 -12,358 -14,609 -10,570
3P,lR 0.2539 0.2340 0.2161 0.2235 0.2388
lP,2R 0.4545 0.2327 0.2726 0.3183 0.3008

Testing: Average precision (non-interpolated)
I 0.3494 0.1727 0.2216 0.2851 0.2350 i

Figure 2: Effectiveness when thresholds are set at different points between the average relevant and average non-
relevant document scores. (TREC-2 Routing data.)

comparison of the effectiveness of incremental versions of
Rocchio and EG. It is not clear how many query terms
and proximity operators to add, nor when to add them,
when relevance judgements occur only occasionally. The
algorithm for learning dissemination thresholds was in-
tended to be sensitive to user preferences with respect
to precision and recall, but the experimental results sug-
gest that it is only partially successful in this respect.
Finally, we have still not shown how to satisfy a truly
high precision user.

Acknowledgements

I thank Daniella Malin for her assistance in the work de-
scribed hcrc. This research was partially supported by
the NSF Center for Intelligent Information Retrieval at
the University of Massachusetts, Amherst, and by the
National Science Foundation, Library of Congress, and
Department of Commerce under cooperative agreement
number EEC-9209623. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are
the author’s and do not necessarily reflect those of the

sponsors.

References

PI

PI

131

J. Allan. Incremental relevance feedback. In Proceed-
ings of the Nineteenth Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 270-278, Zurich, 1996.
Association for Computing Machinery.

J. Allan, J. P. Callan, W. B. Croft, L. Ballesteros,
J. Broglio, J. Xu, and H. Shu. INQUERY at TREC-
5. In D. K. Harman and E. M. Voorhees, editors, The
Fijth Text REtrieval Conference (TREC-5), pages
119-132. National Institute of Standards and Tech-
nology, Special Publication 500-238, 1997.

T. A. H. Bell and A. Moffat. The design of a
high performance information filtering system. In
Proceedings of the Nineteenth Annual Internutional
ACM SIGIR Conference on Research and De*uelop-
ment in Injormatzon Retrieval, pages 12-20, Zurich,
1996. Association for Computing Machinery.

230

[4] C. Buckley and G. Salton. Optimization of relevance
feedback weights. In Proceedings of the Eighteenth
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 351-357, Seattle, 1995. Association for Com-
puting Machinery.

[5] J. P. Callan. Document filtering with inference net-
works. Iu Proceedings of the Nineteenth Annual
Internataonal ACM SIGIR Conference on Research
and Development in Informateon Retrieval, pages
262 .-269, Zurich, 1996. Association for Computing
Machinery.

[6] P. W. Foltz and S. T. Dumais. Personalized infor-
mation delivery: An analysis of information filtering
methods. Communications of the ACM, 35(12):51-
60, 1992.

[7] D. Harman, editor. Proceedings of the Fifth Text RE-
tricval Conference (TREC-5). National Institute of
Standards and Technology Special Publication 500-
238, Gaithersburg, MD, 1997.

[8] D. Harman, editor. Proceedings of the Sixth Text
REtrieval Conference (TREC-6). National Institute
of Standards and Technology Special Publication,
Gaithersburg, MD, (in press).

[9] D.A. Hull. The TREC-6 Filtering track: Descrip-
tion and analysis. In D. K. Harman and E. M.
Voorhees, editors, The Sixth Text REtrieval Con-
ference (TREC-6). National Institute of Standards
and Technology, Special Publication, (in press).

[lo] J. Kivinen and M. K. Warmuth. Exponentiated gra-
dient, versus gradient descent for linear predictors.
Technical Report UCSC-CRL-94-16, Baskin Center
for Computer Engineering and Information Sciences,
University of California, Santa Cruz, CA, 1994.

[ll] D. D. Lewis. The TREC-5 filtering track. In D. K.
Harman and E. M. Voorhees, editors, The Fifth
Text REtrieval Conference (TREC-5), pages 75-96,
Gaithersburg, MD, 1997. National Institute of Stan-
dards and Technology, Special Publication 500-238.

[12] D. D. Lewis, R. E. Schapire, J. P. Callan, and
R. Papka. Training algorithms for linear text classi-
fiers. In Proceedings of the Nineteenth Annual Znter-
nataonul ACM SIGIR Conference on Research and
De‘velopment an Information Retrieval, pages 29%
306, Zurich, 1996. Association for Computing Ma-
chinery.

[13] N. J. Nilsson. Learning machines. McGraw-Hill,
1965.

[14] K.H. Packer and D. Soergel. The importance of SD1
for current awareness in fields with severe scatter of
information. Journal of the American Society for
Information Science, 30(3):125-135, 1979.

1151 S. E. Robertson, S. Walker, M. M. Hancock-
Beaulieu, M. Gatford, and A. Payne. Okapi at
TREC-4. In D. K. Harman, editor, The Fourth
Text REtritwal Conference (TREC-I), pages 73-96,
Gaithersburg, MD, 1996. National Institute of Stan-
dards and Technology, Special Publication 500-236.

[16] S.E. Robertson and S. Walker. Some simple effective
approximations to the 2-Poisson model for proba-
bilistic weighted retrieval. In Proceedings of the Sev-
enteenth Annual International A CM SIGIR Confer-
ence on Research and Development in Information
Retrzeval, pages 232-241, Dublin, Ireland, 1994. As-
sociation for Computing Machinery.

[17] M. F. Wyle and H. P. Frei. Retrieving highly dy-
namic, widely distributed information. In Praceed-
ings of the ACM SIGIR International Conference OR
Research and Development in Information Retrieval,
pages 108-115, Boston, MA, 1989. Association for
Computing Machinery.

[18] T. Yan and H. Garcia-Molina. SIFT - A tool
for wide-area information dissemination. In Proc.
USENIX Winter 1995 Technical Conference, New
Orleans, January 1995.

[19] J. A. Yochum. A high-speed text scanning algorithm
utilizing least frequent trigraphs. In Proceedings
of the IEEE International Symposium on New Da-
rections in Computing, pages 114--121, Trondheim.
Norway, 1985. IEEE.

