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Abstract This paper examines the problems of learn- 
ing queries and dissemination thresholds from relevance 
feedback in a dynamic information filtering environment. 
It revisits the EG algorithm for learning queries, identi- 
fying several problems in using it reliably for information 
filtering, and providing solutions. It also presents a new 
algorithm for learning dissemination thresholds automat- 
ically, from the same relevance feedback information used 
to learn queries. 

1 Introduction 

An information filtering system monitors information 
sources, for example newswires, to find documents that 
satisfy a person’s information need. The central prob- 
lems in information filtering are creating an accurate 
representation of a person’s information need, and then 
det,ermining whether a given document satisfies the in- 
formation need. 

Past research has shown that it is difficult for people 
to state their information needs precisely, but easy for 
them to identify documents that satisfy their informa- 
tion needs. These results suggest that a person’s original 
statement, of the information need should be refined au- 
tomatically, by a supervised machine learning algorithm, 
based upon user feedback. A large body of research ad- 
dresses this problem, but does so based on assumptions 
that are becoming less relevant to current practice. 

The predominant approach is to learn a “Routing” 
query. Routzng queries are created by analyzing a large 
set of example documents that have been labeled relevant 
and non-relevant. The most accurate algorithms assume 
that documents can be examined repeatedly, usually in 
any order, or that potential changes can be tested on an 
archival collection [4, 15, 121. 

A related problem is deciding how well a document 
must satisfy an information need in order to be dissemi- 
nated. This problem of setting dissemznation thresholds 
is usually addressed with algorithms that assume access 
to a large set of labeled example documents [7, 81. 

These batch-oriented algorithms are becoming less rel- 
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evant to current practice. Information filtering is increas- 
ingly deployed in interactive computing environments, 
where its users expect the system to respond immediately 
to any feedback they provide. There may not be sufficient 
time to analyze a batch of several hundred documents, 
or to carefully test the effects of several different adjust- 
ments to each query weight. An immediate response is 
required, preferably before very many additional docu- 
ments are filtered. 

This paper addresses the problems of learning filtering 
queries and their corresponding dissemination thresholds, 
automatically and incrementally. The work reported here 
was done with InRoute, a document filtering system 
based on a Bayesian inference network model of infor- 
mation retrieval and filtering [5]. However, the results 
reported here apply also to most statistical models of IR, 
including other probabilistic and vector space models. 

2 Document Filtering 

There are many types of document filtering environ- 
ments, each with different assumptions and requirements 
[19, 14, 6, 18, 51. We begin by defining what is meant 
by document filtering in this paper, and discussing how 
previously published research relates to it. 

We are interested in a document filtering system that 
processes each document as soon as it arrives, deciding 
immediately whether it satisfies one or more information 
needs. Decisions can be influenced by information about 
documents already processed (“learning”); no informa- 
tion can be used from documents that have not yet, been 
processed. The system should learn all it can about its 
environment, its users, and their needs, and it should re- 
act quickly whenever it has the opportunity to become 
more effective. 

These requirements seem reasonable when viewed 
from the perspective of the filtering “consumer”, who 
we define as a person who wants to see important infor- 
mation immediately, and with a minimum of work. How- 
ever, these requirements present difficulties for many of 
the information filtering solutions proposed in the past. 

For example, it would not be acceptable to store doc- 
uments for some period of time, then index them and 
search the index with an information retrieval system 
[17, 61. This “slow filtering” approach is only acceptable 
when information can be disseminated slowly. 

When information must be disseminated quickly, one 
must use a filtering system that processes documents in- 
dividually, as they arrive. Filtering systems such as SIFT 
(181 and InRoute [5] satisfy this requirement. 

Some efficiency optimizations designed for large filter- 

224 



ing services cause problems. For example, it might not 
be acceptable to “compile” a set of profiles to improve 
filtering speed, if doing so meant that people could not 
easily change their profiles [3]. However, it is a common 
user-requirement that software must run faster than it 
does, so optimizations that maintain flexibility and re- 
sponsiveness are important. 

The current state-of-the-art for creating and modify- 
ing queries from large amounts of training data is the 
Rocchio algorithm, augmented with Dynamic Feedback 
Optimization (DFO) 141. Rocchio can be implemented as 
an incremental algorithm [I]. However, Dynamic Feed- 
back Optimization is a batch-oriented algorithm that 
iteratively tests a large number of weight adjustments 
against an archival database. It is not clear how DFO 
can be applied in a more interactive environment. 

Prior research suggested that the EG algorithm [lo] 
is as effective at creating queries for filtering and rout- 
ing tasks as Rocchio augmented with DFO 1121. This 
work was encouraging because EG is an incremental algo- 
rithm with well-defined theoretical properties. However, 
the algorithm was tested in a batch-oriented manner, in 
which training documents were examined repeatedly, and 
in random order. Later work on the TREC-5 Routing 
task produced less accurate results, raising doubts about 
the stability of the algorithm [2]. 

There is little published research on learning dissemi- 
nation thresholds, perhaps because filtering systems have 
only recently been based on statistical models. Most 
met,hods tested in the TREC-5 and TREC-6 Filtering 
tracks depended on having access to a large set of train- 
ing documents, and a cost function defining the user’s 
requirements for precision vs recall [7, 81. It is not clear 
how well these methods would work in a more interac- 
tive environment, particularly initially, when little train- 
ing data is available. Nor is it clear how these approaches 
to threshold-learning interact with query learning or idf 
adjustments. 

The state-of-the-art for meeting the requirements 
stated above can be summarized as follows. A few fil- 
tering systems are available that are based on statisti- 
cal models and also capable of disseminating documents 
quickly. The best algorithms for learning Routing queries 
are not applicable. The incremental Rocchio algorithm, 
and perhaps EG, can be used. There is little guidance 
on how to learn dissemination thresholds automatically. 

3 Learning Term Weights Incrementally With 
EG 

Prior research suggested that the EG algorithm might be 
as effective as Rocchio augmented with Dynamic Feed- 
back Optimization (DFO) [12], but the experiments were 
not truly incremental, and later work on a different cor- 
pus failed to support this result [2]. The best one can 
say is that EG appears to be a promising incremental 
alternative worth further examination. 

3.1 The EG Algorithm 

A detailed description and analysis of EG is beyond the 
scope of this paper. Details and in-depth analysis of the 
algorithm can be found in [lo], while [12] provides a de- 
tailed comparison of the Rocchio, EG, and Widrow-Hoff 
algorithms for IR tasks. We confine our attention here 
to a study of possible problems in applying EG to infor- 
mation filtering tasks. 

The EG algorithm, like Rocchio, attempts to find a 
linear classifier that minimizes the magnitude of classifi- 
cation errors [lo]. One can consider the classifier to be a 
weight vector that is applied to a set of query terms. EG 
imposes the restrictions that all weights must be positive, 
and sum to 1, neither or which is a problem for filtering 
queries. EG is trained on one example at a time, a(ljust,- 
ing the weights after seeing each example. The update 
rule for a weight vector ‘u)~ of d features is: 

Wi+l,j = 
Wi,J exp (-27 (Wi Xi - Yt) x2,3) 

C,“=, 
2u1,3 exp (-277 (Wi Xi - Vi) xcl.j) 

where zi is a vector of real-valued features representing 
the current document, and y, represents the desired value 
of the classifier for the current document. Initial weight,s 
are typically set to i. 

The learning rate q determines how rapidly EG learns 
from each example. Kivinen and Warmuth suggest set,- 
ting it to 71 = 2/(3R2), where R is a value that satisfies 
the constraint max;(max, z,,] - minj z,,~) 5 R. 

EG would appear to be a well-defined algorithm, with 
few opportunities for mistaken choices in how to apply 
it. However, such is not the case. Some choices that one 
must make in applying EG are listed below. 

Feature Representation: EG is most easily used for 
Boolean problems, but can also be applied to non- 
Boolean features. Should one use Boolean features, 
or features based on tf.idf weights? 

Target Values: What value should the classifier re- 
spond with for relevant and nonrelevant document,s? 
Should 0 and 1 be used, or other values? 

Learning Rate: Kivinen and Warmuth suggest one way 
of setting the learning rate. However, they also 
state that other choices may be more appropriate 
for noisy problems. What learning rate should one 
choose? 

Answering these questions is our first priority. 

3.2 Hypotheses 

Several decades of IR research show that tf.idf features 
are consistently more effective than Boolean features. 
While it is important to verify that this remains true 
for the EG algorithm, our first hypothesis is that it. does 
indeed remain true. This hypothesis is tested using In- 
Route’s tf.idf features [5J, which incorporate Robertson’s 
tf weighting formula [16] and a scaled idf. 

Our second hypothesis is that EG is sensitive to the 
choice of target values intended to signify relevant and 
nonrelevant documents. Some algorithms, for example 
the Perceptron algorithm [13], are insensitive to the val- 
ues chosen; all that matters is the direction of the error 
gradient. However, EG follows an ezponentiated yradi- 
ent; small variations in how the gradient is determined 
might have large effects on algorithm behavior. 

What, then, are the proper scores to assign relevant 
and nonrelevant documents? It is impossible for most 
tf.idf classifiers to produce document scores of either 0 
or 1, so these may be poor choices. We note, for example, 
that Lewis, et al, were careful to choose target values of 
0.42 and 0.49, which were roughly comparable to “low” 
and “high” scores in INQUERY [12]. When weights sum 
to 1.0, as they do for EG, the maximum score a linear 
classifier can achieve is equal to its highest feature; the 
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1 Number of 1 
Corpus Name Use Queries Collection Size Documents 
TREC-2 Routing Train 50 CDs 1& 2 2.1 GB 741,856 
TREC-2 Routing Test 50 CD 3 1.1 GB 336;310 
TREC-6 Filtering Train 47 FBIS volumes 3 & 4 493 MB 130,471 
TREC-6 Filtering Test 47 FBIS volume 6 452 MB 120,653 

Table 1: Characteristics of training and testing corpora. 

minimum score is equal to its lowest feature. Our third 
hypothesis is that the feature values with maximum and 
minimum values represent better target values than 1 and 
0 for relevant and nonrelevant documents, respectively. 

Finally, how should the learning rate be determined? 
Kivinen and Warmuth provide one option, but suggest 
that it may be too high for noisy problems. Document 
filtering is a noisy problem, so one might conclude that a 
lower rate make sense. However, the Kivinen and War- 
muth suggestion is very conservative for real-valued fea- 
tures that cluster in a narrow range, as tf.idf features 
often do. For example, if the difference between the max- 
imum and minimum features is 0.1, v = 66.67, yielding 
a learning rate of exp(-133.346zi,j), where b is the dif- 
ference between the current document score and the de- 
sired document score. In other words, the learning rate 
converges to 0, and nearly no learning occurs on that 
example. 

Our fourth hypothesis is that R = 1.0, the method 
suggested for Boolean features, is a reasonable way to 
set the learning rate for problems with tf.idf features. 

3.3 Data 

Two sets of queries and corpora were used for testing: the 
TREC-2 Routing queries and corpus, and the TREC- 
6 Filtering queries and corpus. These are referred to 
as the “TREC-2” and “TREC-6” corpora and queries 
throughout the paper. Corpora characteristics are shown 
in Table 1. 

The initial queries for the TREC-2 task were the topic 
Description fields, with only stop words and leading stop 
phrases removed (“description-only” queries). 

The initial queries for the TREC-6 task were the topic 
Description and Title fields, with only stop words and 
leading stop phrases removed, and expanded with 70 re- 
lated words and phrases. 

3.4 Experimental Methodology 

The TR.EC-2 Routing task was converted into a filtering 
task by presenting judged documents to EG in a random 
order, without replacement; each judged document was 
seen just, once. 

Although we are interested eventually in the feature 
selection capabilities of EG, we confined our attention 
to learning query-term weights in these experiments. 
EG was able to eliminate query terms, by driving their 
weights to 0, but it could not add features selected from 
relevant documents. 

Dissemination thresholds were not used. Every judged 
document was available for training. 

Experiments were evaluated using average precision, 
calculated by the treceval program available from Cor- 
nell, as is common for TREC Routing-style tasks without 
dissemination thresholds. (We argue in Section 4.2 that 

other metrics are appropriate for filtering tasks involving 
dissemination thresholds.) 

3.5 Experimental Results 

The EG hypotheses discussed above would be difficult to 
test independently. For example, an experiment intended 
to compare Boolean and tf.idf features must train on 

target values using some learning rate. It only makes 
sense to hold independent variables constant when “rea- 
sonable” values are known, or when there is reason to 
believe that the specific choice of values doesn’t mat- 
ter. Such is not the case with this learning algorithm. 
A poor choice about learning rate, for example, could 
cripple learning irrespective of other choices. 

The EG hypotheses can be mapped to three variables, 
representing feature type, method of setting target val- 
ues, and method of setting learning rate. 

Feature Type: 
l Boolean. 
l tf.idf. 

Target Values: 
l Boolean targets (0, 1). 
l (0.42, 0.49}, as used in [12]. 
l {MinFeature, MaxFeature}, from hypothesis 3. 

Learning Rate: 
l R = max;(max, z~,~ - minj xl,j), as suggested in 
[lo] (called KW, in this paper). 
,R=l. 

There are 12 possible combinations of feature values, but 
only 7 are unique and make sense. All 7 combinations 
were tested. The experimental results are summarized 
in Table 2. The baseline values were obtained with un- 
weighted queries. 

The best combinations of parameter settings all used 
tf.idf features. However, the worst combination also 
used t f .idf features. One can conclude that t f .idf fea- 
tures do lead to more effective classifiers, as proposed 
by the first hypothesis, when other parameters are set 
appropriately. 

Boolean target values were a poor choice for the t f .idf 
representation, as expected. The target values of 0.42 
and 0.49 performed well, confirming previously published 
results [12]. Target values set dynamically, based on 

the minimum and maximum feature values, performed 
poorly with the KW learning rate, but performed well 
when the learning rate was calculated with R = 1. This 
result is consistent with our expectations; when the tar- 
get values are farther from “typical” document scores, a 
larger learning rate is required. 

In five out of six pairs of tests it was better to set the 
learning rate with R = 1 than to set it with the Kivinen 
& Warmuth method. We view this as confirming the 
fourth hypothesis, although we are puzzled by the one 

exception. 
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Test Description TREC-2 TREC-6 
Feature Targets R AvgPrec AvgPrec 

N/A N/A N/A 0.1900 0.2631 
Boolean 0 / 1 KW, 1 0.1901 0.2294 

tf.idf 0 / 1 KW 0.1355 0.1751 

Table 2: Results from an experiment comparing differ- 
ent methods of selecting feature type, target values, and 
learning rate. Each Average Precision (AvgPrec) figure 
represents an average of the tree_eval Average Precision 
(XvgPrec) from five tests. TREC-2 Routing queries (51- 
100) trained on TREC volumes 1 & 2 data, tested on 
TREC volume 3 data. TREC-6 Filtering queries, trained 
on TR.EC FBIS 3 & 4 data, tested on TREC FBIS 6 data. 

The most consistent combinations of parameter set- 
tings were the one corresponding to our hypotheses (tf.idf, 
Min/Max, R = l), and the one used in (121 (tf.ia!f, 
0.42/0.49, KW). This experiment confirms each of the 
hypotheses presented in Section 3.2, but also confirms 
that the KW method of setting learning rates is appro- 
priate when reasonable target values are known a priori. 

The tested values for feature type and target values 
cover the space of possible choices well, but the same is 
not true for the tested values of learning rate. R could 
be set to other constant values, or it could be set as some 
multiple of the value suggested by Kivinen and Warmuth. 
We have no hypotheses about what might be best, so 
tests were conducted to explore a range of possible values. 

For brevity, we focus only on tests using the tf.i# 
representation and the MinFeature / MaxFeature target 
values. Two types of tests were conducted. In one type, 
R was set to a constant value. In the other type, the 
value 7 = 2/(3R’) was multiplied by a constant. 77 and 
the learning rate are inversely correlated; reducing 7 in- 
creases the learning rate, and vice versa. 

The experimental results are summarized in Table 3. 
In general, EG performs well and is stable over a wide 
range of learning rates. R = 0.6 and R = 0.8 were slightly 
better than R = 1.0. However, as the learning rate con- 
verges to 0.0 (l.Oq), effectiveness falls off. There appears 
to be no advantage to setting R to a constant versus mul- 
tiplying 71 by a small constant. One must make the choice 
based on other criteria. For example, one might prefer 
setting R to a constant because it is simpler and faster. 

4 Learning Dissemination Thresholds Incre- 

mentally 

Deciding whctber a document matches a query is simple 
under a Boolean model, but complex under statistical 
models. In a vector space. any document has a (possibly 
small) similarity to any query. In a probabilistic model, 
any document has a (possibly small) probability of sat- 
isfying any information need. The important question is 
whether the similarity or probability is high enough that 
the document is worth showing to someone. 

The question of whether a document is “good enough” 
is expressed as a problem of setting a dissemination 
threshold. Documents with a score (similarity, probabil- 

Test Description I TREC-2 

E Feature Targe& R 
N/A N/A N/A 
tf.idf Min/Max 0.4 
tf.idf Min/Max 0.6 
tf.idf Min/Max 0.8 
tf.idf Min/Max 1.0 
tf.idf Min/Max 1.2 
tf.idf MiniMax 1.4 
tf.idf MinIMax 0.02 R 
tf.idf 
tf.idf 
tf.idf 
tf.idf 
tf.idf 
tf.idf 
tf.idf 
tf.idf 
tf.idf 

MinjMax 
Min/Max 
Min/Max 
MinIMax 
Min/Max 
MinIMax 
MiniMax 
Min/Max 
Min/Max 

0.04 1; 
0.06 q 
0.08 77 
0.1 7) 

0.2 7 
0.4 I] 
0.6 17 
0.8 77 
1.0 q 

AvgPrec 
0.1900 
0.2413 
0.2426 
0.2421 
0.2399 
0.2403 
0.2398 
0.2429 
0.2418 
0.2407 
0.2411 
0.2411 
0.2393 
0.2338 
0.2336 
0.2202 
0.2124 

TREC-6 
AvgPrec 
0.2631 
0.2657 
0.2775 
0.2785 
0.2728 
0.2610 
0.2483 
0.2315 
0.2532 
0.2671 
0.2752 
0.2779 
0.2776 
0.2711 
0.2617 
0.2572 
0.2535 

Table 3: Results from an experiment comparing differ- 
ent methods of setting the EG algorithm’s learning rate. 
The first figures (with N/A entries) are baseline values 
obtained with unweighted queries. Each subsequent Av- 
erage Precision (AvgPrec) figure represents the average 
of five tests. 

ity) that exceeds the threshold are disseminated (shown 
to someone); documents with scores below the threshold 
are discarded. 

The problem is complicated by the users, of course. 
Some people don’t want to be bothered with material 
unless it is highly likely to be relevant (“high precision 
user”). Others want to see anything that might be rel- 
evant (“high recall user”). Most fall somewhere in be- 
tween. 

A system can require people to specify dissemination 
thresholds manually, but few people can select a good 
threshold for a new query without significant effort. Even 
after observing several relevant and nonrelevant docu- 
ments (obtained how?), it would be difficult for the av- 
erage person to understand that a score of 0.429129 is 
predictive of relevance, but a score of 0.417535 is not. 

A better choice is to let an algorithm set dissemina- 
tion thresholds, for example based upon the same type 
of relevance information used for improving queries. Sev- 
eral batch-oriented solutions require a cost function de- 
scribing a person’s preferences, and then find a threshold 
that optimizes for it by testing different thresholds on a 
training set of relevant and nonrelevant documents [7, 81. 

Our interest is a solution for interactive environments. 
“Corpus” statistics such as idf may be adjusted as each 
document passes through the system, making it less clear 
what a “good” document score might be. Training is in- 
terleaved with filtering, and the system must actually dis- 
seminate a document before obtaining a relevance judge- 
ment. In this already complex environment the problem 
of setting dissemination thresholds must be addressed 
at the same time that the relevance feedback algorithm 
is adding/deleting query terms or adjusting query term 
weights. 

4.1 An Algorithm 

The requirements for an algorithm are stated simply. 
The filtering system only has access to relevance judge- 
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ments for documents that it has disseminated. In its ini- 
tial state: no documents have been disseminated, so the 
threshold must start low enough to actually disseminate 
documents. The threshold rises over time, to exclude 
nonrelevant documents that only marginally match the 
query. How high it rises should be a function of com- 
IIIOU relevant and nonrelevant document scores, and of 
the user’s preferences concerning recall and precision. 

One simple solution, adopted here, is to track the 
average scores of disseminated relevant and nonrelevant 
documents, and then to place the threshold somewhere 
between the two averages. The user’s preferences with re- 
spect to precision and recall can influence where between 
these averages to place the threshold. 

The algorithm is most at risk of setting a poor thresh- 
old when the number of disseminated documents is low. 
For example, if the first disseminated document hap- 
pened to have a very high score, the threshold could 
hc set, so high that, no other documents would be dis- 
seminated. The risk can be reduced by learning more 
slowly from the first ten relevant and ten nonrelevant 
documents. 

The algorithm is complicated, slightly, by its interac- 
tion with other learning that may occur simultaneously, 
for example query term additions and deletions, query 
term weight adjustments, and idf adjustments. All of 
these changes alter document scores, making the averages 
an outdated view of the previously disseminated relevant 
and nonrelevant documents. Therefore it is important to 
compensate for these changes, by enabling the averages 
to reflect the new information. 

The document scores computed for vector-space queries 
and most probabilistic queries are a product of a weight 
vect,or and a vector of tf.icZf scores. (The weight vector 
is included because of the presumed use of a relevance 
feedback algorithm such as Rocchio or EG.) The average 
of a set, of relevant document scores can be decomposed 
as follows: 

ilvgRelevant 

= $ (Doc_Scorel + . + DocScore,) 

= ;(( WI Tl,l I1 + Wn Tl,, In) + 

(Wl Tn,l II + Wn T,,, In)) 

wn zrz i (Tl,, + . Tn,n)) 

= ~1 II Avg-T, + + w,, Z, Avg_T, 

where T,,, is the term weight for the j’th term in docu- 
ment i, Zj is the idf weight for the j’th term, and w, is 
the query term weight for the j’th term. 

Instead of storing the average relevant document score 
as a single number, it can be stored as a vector of aver- 
age relevant tf scores, one per query term. Whenever 
the average relevant document score is needed, it can be 
recomputed quickly using this vector, the current query 
term weights, and the current idf values. This approach 
requires slightly more effort, but keeps the average rele- 
vant and nonrelevant scores accurate during idf fluctu- 
ations, query term weight adjustments, and query term 
deletion. As long as dissemination thresholds are not 
recomputed often, the overhead is low. 

The algorithm proposed above has the following char- 
acteristics: 

l tolerant of changes to“corpus” statistics; 

l tolerant of changes to query terms, and query weights; 

l somewhat responsive to user preferences with re- 
spect to precision vs recall; and 

l not misled by the occasional low-scoring relevant 
document or high-scoring nonrelevant document, 

These characteristics make it well-suited to most inter- 
active filtering environments. 

4.2 Metrics 

It is generally accepted that metrics for ranked retrieval 
are not adequate for measuring filtering systems that USC 
dissemination thresholds [ll]. The TREC-5 and TREC-6 
Filtering tracks adopted set-based measures of the form: 

where Rf is the number of relevant documents found, 
Nf is the number of nonrelevant documents found, and 
R, is the number of relevant documents missed. The 
TREC-6 Fl measure, for example, set a = 3, /3 = 2, and 
y = 0, to simulate a person interested in high precision. 
The TREC-6 F2 measure set Q! = 3, ,B = 1, and y = 1, 
to simulate a person interested in high recall. 

The Fl and F2 measures reflect the cost/benefit ratio 
of reading the entire set of documents. However, because 
the components are not scaled, the numbers can be dif- 
ficult to interpret. A score of -20 could reflect a system 
doing well on a large set, or a system doing poorly on a 
small set. 

Precision and recall over a set of disseminated docu- 
ments are easier for most people to understand. When a 
single metric is required for comparing results, a weighted 
average of precision and recall can be used. For example: 

(a. P + P RI/(& + P) 

where (Y and p reflect the relative importance of precision 
and recall to a particular person. 

In this paper, filtering experiments are measured by 
several metrics: TREC-6 Fl, TREC-6 F2, precision, re- 
call, and two weighted averages of precision and recall. 
We hope that one or more of them will be useful to the 
reader. Table 4 illustrates how each metric behaves on 
four artificial examples. 

4.3 Experimental Methodology 

The TREC-6 Filtering methodology [8, 91 was adopted 
for these experiments. The filtering system starts with an 
“Ad-hoc” query, and receives relevance feedback when- 
ever it disseminates a document during the training 
phase. Queries and thresholds are then frozen and tested 
on the test set. This methodology is not ideal for simulat- 
ing an interactive environment, but it is to some extent 
an accepted methodology. Using it makes the work cle- 
scribed here comparable to work reported at TREC. 

The default relevance feedback algorithm in InR.oute. 
an incremental Rocchio algorithm [l], was used to learn 
queries. The default settings were used, which allowed 
up to 10 query terms to be added to the query. 
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Small Set, Small Set, Large Set, Large Set, 
Medium Recall High Recall Medium Recall High Recall 

Retrieved: 20 30 200 300 
Relevant: 8 8 80 80 
Relret: 4 6 40 60 
Set Precision: 0.2000 0.2000 0.2000 0.2000 
Set Recall: 0.5000 0.7500 0.5000 0.7500 
TR.EC-6 Fl: -20 -30 -200 -300 
TREC-6 F2: -8 -8 -80 -80 
3P,lR: 0.2750 0.3375 0.2750 0.3375 
lP,2R: 0.4010 0.5685 0.4010 0.5685 

Table 4: The behavior of four metrics on different types of experimental results. 

Tests were conducted with the thresholds set at 0%, 
25%, 50%, and 75% of the difference between the aver- 
age nonrelevant and average relevant document scores. 
(A threshold at 0% is set at the average nonrelevant doc- 
ument score.) The goal was to investigate the results the 
system would produce when the threshold was placed at 
different points between the “High Precision” (75%) and 
“High Recall” (0%) ends of the spectrum. 

A “batch-oriented” R.outing query was also created, 
as a state-of-the-art reference point against which to com- 
pare the incremental queries. The Routing query con- 
tained 50 additional terms, and 50 proximity operators 
each for distances 1, 5, and 20 [2]. For this comparison 
only, filtering output, using thresholds, was converted to 
a ranked list by sorting on document score. The usual 
Routing output (no thresholds, top 1,000 documents per 
query) was used. Results were evaluated using the Aver- 
age Precision metric. 

Two sets of queries and corpora were used for test- 
ing purposes: the TREC-2 queries and corpus, and the 
TREC-6 queries and corpus. The corpora characteristics 
are described in Section 3.3. 

4.4 Experimental Results 

The experimental results are shown in Figures 1 and 2. 
The precision of the learned thresholds for the TREC-6 
queries is 28% to 35%, while recall is 10% to 43%. The 
thresholds for the shorter TREC-2 “description only” 
queries yield precision of 17% to 24%, and recall of 24% 
to 42%. 

These results indicate that reasonable dissemination 
thresholds were learned, in spite of the constant adjust- 
ment of idf values, the tuning of query term weights, 
and the addition/deletion of query terms. The results for 
the TREC-6 queries are preferable to the results for the 
TREC-2 queries, which may be due to the improved ini- 
tial ad-hoc queries (recall that the TREC-6 queries were 
expanded with query expansion, whereas the TREC-2 
queries were not). 

Weak correlations between lower thresholds and im- 
proved recall -were apparent in both tests; in each test, 
three out of four lower thresholds produced higher recall. 
Lower thresholds were also weakly correlated with lower 
precision on the TREC-2 data, but not on the TREC-6 
data. The results can be viewed as weak support for the 
hypothesis that precision and recall vary depending upon 
how the threshold is placed, but they do not confirm the 
hypothcsls. 

It is unclear why precision is not affected more strongly 
by lower thresholds. Lower thresholds result in more 
documents being used for relevance feedback, which may 

result in more accurate queries. 
Thresholds for several queries were so high that no 

documents were disseminated for those queries. For ex- 
ample, the 75% and 50% thresholds on the TREC-6 test 
disseminated no documents for one query (the “Num 
Queries” row in Figure 1). Disseminating no documents 
is the appropriate response when the system is unable to 
learn an accurate query. Recall on the overall test set is 
lower when no documents are disseminated for a query, 
but precision is unaffected. 

The queries that were learned incrementally com- 
pared favorably with the batch Routing queries in both 
tests. Most of the incremental tests on the TREC-6 
data produced average precision within 10% of the batch 
Routing queries. Ranked results at recall up to 100 
documents (not shown) always favored the incremental 
queries by a substantial margin. 

The TREC-2 batch queries were much more effective 
than their incremental counterparts, presumably because 
of the shorter, “description-only” queries used in the in- 
cremental tests. However, much of this difference oc- 
cured at high recall in ranked tests. At low recall, the 
incremental queries were only 10-200/o worse than batch 
queries (not shown). 

One can conclude from this comparison that the fil- 
tering queries learned incrementally were not “crippled” 
with respect to the state-of-the-art Routing queries. It, 
would be a mistake to conclude much more than that, 
given the many differences in how the queries were formed, 
and in how they were intended to be used. 

5 Conclusions 

Information filtering is becoming common in interactive 
computing environments, where people expect the sys- 
tem to respond quickly to any feedback they provide. 
One challenge for the research community over the next 
few years will be to shift from batch-oriented query- and 
threshold-learning algorithms to equally effective incre- 
mental algorithms suitable for dynamic environments. 

This paper represents a first step down that path. It 
revisits the EG algorithm for learning queries, identify- 
ing several problems in using it reliably for information 
filtering, and providing solutions. It also presents a new 
algorithm for learning dissemination thresholds automat- 
ically, from the same relevance feedback information used 
to learn queries. Collectively, these results represent an 
“end-to-end” solution to problems encountered in real- 
istic, dynamic, and responsive information filtering sys- 
tems 

Although the work presented here is encouraging, 
much remains to be done. There is not yet a direct 
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1 Threshold: Batch 75% 50% 25% 0% 
TrainedOn: 41,476 9,623 13,441 21,313 42,185 
Train Prec: 0.1398 0.1047 0.1492 0.1405 0.0852 
Train Recall: 1.0000 0.1739 0.3460 0.5164 0.6200 

Testing: Total number of documents over all queries 
Num Queries: 47 46 46 47 47 
Retrieved: 47,000 2,342 6,060 5,053 10,085 
Relevant: 6872 6.872 6.872 6.872 6.872 
Rel_ret: 4350 

Testing: Filtering Metrics 
‘665 11970 11780 2,932 

0.0926 0.2839 0.3251 0.3523 0.2907 
0.6330 0.0968 0.2867 0.2590 0.4267 

Figure 1: Effectiveness when thresholds are set at different points between the average relevant and average non- 
relevant document scores. (TREC-6 Filtering data.) 

Training: 
Threshold: Batch 75% 50% 25% 0% 
TrainedOn: 89,179 14,179 24,192 48,948 277,381 
Train Prec: 0.1837 0.1502 0.2028 0.1579 0.0312 
Train Recall: 1.0000 0.1300 0.2994 0.4716 0.5284 

Testing: Total number of documents over all queries 
Num Queries: 50 48 48 47 47 
Retrieved: 50,000 10,843 19,081 25,818 19,020 
Relevant: 10,981 10,981 10,981 10,981 10,981 
Relret: 6,722 2,545 3,481 4,313 3,839 

Testing: Filtering Metrics 
Set Precision: 0.1344 0.2347 0.1824 0.1671 0.2018 
Set Recall: 0.6121 0.2383 0.3259 0.4165 0.3573 
TREC-6 Fl: -66,390 -8,961 -20,757 -30,071 -18,845 
TREC-6 F2: -27,371 -8,800 -12,358 -14,609 -10,570 
3P,lR 0.2539 0.2340 0.2161 0.2235 0.2388 
lP,2R 0.4545 0.2327 0.2726 0.3183 0.3008 

Testing: Average precision (non-interpolated) 
I 0.3494 0.1727 0.2216 0.2851 0.2350 i 

Figure 2: Effectiveness when thresholds are set at different points between the average relevant and average non- 
relevant document scores. (TREC-2 Routing data.) 

comparison of the effectiveness of incremental versions of 
Rocchio and EG. It is not clear how many query terms 
and proximity operators to add, nor when to add them, 
when relevance judgements occur only occasionally. The 
algorithm for learning dissemination thresholds was in- 
tended to be sensitive to user preferences with respect 
to precision and recall, but the experimental results sug- 
gest that it is only partially successful in this respect. 
Finally, we have still not shown how to satisfy a truly 
high precision user. 
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