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ABSTRACT
In this paper, we present a medical record search system
which is useful for identifying cohorts required in clinical
studies. In particular, we propose a query-adaptive weight-
ing method that can dynamically aggregate and score ev-
idence in multiple medical reports (from different hospital
departments or from different tests within the same depart-
ment) of a patient. Furthermore, we explore several infor-
mative features for learning our retrieval model.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

Keywords
medical record search; EMR; information retrieval; cohort
identification; language models

1. INTRODUCTION
The rich health information contained in electronic med-

ical records (EMR) is useful for improving quality of care.
One important application is to search EMR to identify co-
horts for clinical studies, which requires retrieval systems
specifically designed with medical domain knowledge.
To promote research on medical information retrieval, par-

ticularly for EMR retrieval, the Text REtrieval Conference
(TREC) organized a Medical Records track in 2011 and
2012 [11, 10]. The task is an ad hoc search task for patient
visits based on unstructured text in EMR. One particular
problem in EMR search is how to aggregate and score ev-
idence that distributes across multiple documents. This is
because a patient can have multiple medical reports gener-
ated from several hospital departments or even from differ-
ent tests within a single department.
In this paper, we propose a novel weighting method that

can adaptively weight evidence with respect to different queries.
We evaluate our algorithm on TREC test collections. The
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cross-validation results show that our weighting method is
better than a fixed-weighting method across several evalu-
ation metrics. Though the improvement is not statistically
significant, we believe that our method has the potential to
be further improved when more test collections are available.

Our work makes the following contributions: 1) we pro-
pose a novel adaptive weighting method for aggregating and
scoring evidence in medical records, 2) we propose and ex-
plore several features that are based on semantic similarity
between medical concepts for predicting the weights of our
adaptive weighting method.

2. RETRIEVAL TASK AND DATA
We use the official test collection of the TREC 2011 &

2012 Medical Records Track [11, 10] for our experiments.
The test collection contains 100,866 de-identified medical
reports, mainly containing clinical narratives, from the Uni-
versity of Pittsburgh NLP Repository.

The retrieval task1 is an ad hoc search task for patient
visits. A patient visit to the hospital usually results in mul-
tiple medical reports, meaning there is a 1-to-n relationship
between visits and reports.

ID Topic

107 Patients with ductal carcinoma in situ (DCIS)
118 Adults who received a coronary stent during an admission
109 Women with osteopenia
112 Female patients with breast cancer with mastectomies during admission

Table 1: Example topics of medical records track.

NIST released 81 information needs (or “topics” in TREC
terminology) which were designed to require information
mainly from the free-text fields (i.e., topics are not answer-
able solely by the diagnostic codes). Topics are meant to
reflect the types of queries that might be used to identify
cohorts for comparative effectiveness research [11]. Table 1
lists several TREC topics as examples. The topic specifies
the patient’s condition, disease, treatment, etc. Relevance
judgments for the topics were also developed by TREC as-
sessors based on the pooled results from TREC participants.

3. ADAPTIVE EVIDENCE AGGREGATION
Evidence in a visit can have different forms of distribution.

Generally, there are two extreme cases: 1) Strong evidence
exists in only one report of the visit; 2) Evidence spreads
almost evenly across the majority of reports associated with
the visit.

1
http://www-nlpir.nist.gov/projects/trecmed/2011/tm2011.html
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Report-based Retrieval

For the first case, we can estimate the relevance of a visit
based on its most relevant report. Thus, we use reports as
the initial retrieval units (i.e., building an index for reports
and applying the retrieval model to each report), and then
transform a report ranking into a visit ranking based on the
strongest report-level evidence, which is equivalent to using
the following report score merging method for ranking visits:

scoreR(V,Q) = MAX(score(RV
1 , Q), score(RV

2 , Q), ...), (1)

where RV
j is a report associated with visit V based on the

report-to-visit mapping, score(RV
j , Q) is the relevance score

of the report with respect to query Q.

Visit-based Retrieval

Eq.1 cannot handle case 2 well. For example, if visit V1 has
strong evidence in multiple reports and visit V2 has strong
evidence in only one report, V1 and V2 will have the same
relevance score by using Eq.1. To deal with this problem,
we aggregate evidence by merging reports from a single visit
field by field into a single visit document V , and then per-
forming retrieval from an index of visits.
Like report-based retrieval, this visit-based retrieval has

its own disadvantages since it cannot handle case 1 well.
For example, if visits V1 and V2 both have strong evidence
in only one of their reports but V1 has three times more
reports than V2, the strong evidence in V1 will be weakened
after merging, resulting in V1 receiving a lower relevance
score than V2.

3.1 A Novel Scoring Function
The comparison of the report-based and visit-based re-

trievals shows that these two strategies complement each
other. Thus, we propose a new query-adaptive scoring func-
tion as shown below:

score(V,Q) = αQ ·scoreR(V,Q)+(1−αQ)·scoreV(V,Q), (2)

where scoreR(V,Q) and scoreV(V,Q) are the relevance scores
of document V from report-based and visit-based retrievals
respectively, and αQ is the query-adaptive coefficient for
scoring merging. If we can adjust αQ appropriately, Eq.2
should be able to deal with all the evidence distribution
cases mentioned above.

3.2 Learning Algorithm
In this paper, we propose to adaptively set αQ with re-

spect to different queries by learning the weight αQ based
on a set of features.
In particular, we can view αQ as a mixing probability:

the probability that the evidence clusters in only one report
rather than spreads across multiple reports. Then, assuming
the log-odds of that probability can be expressed as a linear
combination of feature values, we may write:

log
αQ

1− αQ
= β0 +

m∑

i=1

βixi + εQ

where β0 is a model intercept (or bias term), xi is the value of
feature number i, βi is the weight coefficient of that feature,
and εQ is a slack variable.
This is essentially a logistic regression model2. Logistic

regression is fit using iteratively reweighted least squares to

2
While logistic regression is often used for 0/1 classification problems,

find the values of the β coefficients that are the best fit
to training data. Given feature values and their β coeffi-
cients, we can then predict the mixing probability αQ for
new queries.

3.3 Features
We propose 14 features that are possibly related to the ev-

idence distribution in visits, and can be used to predict the
weight αQ in Eq.2. All these features are based on charac-
teristics of the medical concepts contained in the query. We
detect these medical concepts using MetaMap [1], a medi-
cal NLP tool developed at the National Library of Medicine
(NLM) to map biomedical text to concepts in the Unified
Medical Language System (UMLS) Metathesaurus. The
concepts are represented by the Concept Unique Identifier
(CUI) in UMLS Metathesaurus. Thus, we use QC to repre-
sent a concept query that is converted from the original text
query Q and contains only CUIs. Next, we describe these
14 features in detail:

1. Length of the query

Intuitively, evidence is more likely to resides across reports
for long queries. Thus, we use the length of query |Q| as the
feature to estimate the evidence distribution. It is defined
formally as |Q| =

∑
w∈Q cnt(w,Q), where c(w,Q) is the

count of term w in Q.

2. Number of concepts in the query

Similarly, if a query contains more medical concepts, it is
more likely to find that the evidence distributes across mul-
tiple reports. We define this feature formally as |QC | =∑

w∈QC
cnt(w,QC), where cnt(w,QC) is the count of term

w in QC . QC a better feature than Q because if the query
contains a medical concept whose name is very long then Q
might not be a good indicator of the evidence distribution.

3. Broad/narrow query concepts

A text query can contain several medical concepts, for each
of which the MetaMap program will return 1 to 10 candi-
dates. We hypothesize that a concept with more candidates
is less specific, and thus more likely to be a broad concept
and appears in multiple reports. Thus, the average number
of returned MetaMap candidates for concepts in a query
may be a good indicator of evidence distribution. We define

this feature as RC =
∑

w∈QC
|Meta(w)|

|QC | , where |QC | the orig-
inal concept query length (i.e., the length before expansion),
|Meta(w)| is the number of concept candidates returned by
MetaMap for term w in concept query QC .

4. Semantic similarity among query concepts

Intuitively, if QC contains concepts that are semantically
close, the associated evidence in a visit may also co-occur
in a single report. However, if the concepts are semantically
distant, the corresponding evidence may tend to distribute
across reports. Thus, we use the semantic distance among
query concepts to estimate how the evidence distributes.

We use YTEX3 to measure semantic similarity. Given
a pair of UMLS concepts, YTEX can produce knowledge
based and distributional based similarity measures. The for-
mer uses knowledge sources such as dictionaries, taxonomies,

it can also be used when the target variable is a real number between

0 and 1. In this case it is sometimes called a “quasibinomial” model.
3
http://code.google.com/p/ytex/wiki/SemanticSim_V06
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Type Method Notation Name

Knowledge-based

Path-Finding

WUPALMER Wu & Palmer
LCH Leacock & Chodorow
PATH Path
RADA Rada

Intrinsic IC based

IC LIN Lin
IC LCH Leacock & Chodorow
IC PATH Jiang & Conrath
IC RADA Rada
JACCARD Jaccard
SOKAL Sokal & Sneath

Distributional-based Corpus IC based CIC LIN Lin

Table 2: Semantic similarity measures.

and semantic networks, while the latter mainly uses the dis-
tribution of concepts within some domain-specific corpus [3].
We use the 11 measures listed in Table 2 as our features.

Due to the limited space, we will not describe these features;
Garla and Brandt provide a detailed overview [3].
For each query and each specific measure, we take the

mean of the semantic similarity scores for all UMLS concept
pairs in the query. This averaged semantic similarity score
will be the feature score.

4. EXPERIMENTAL SETUP
We use the Indri4 retrieval system for indexing and re-

trieving. In particular, we use the Porter stemmer to stem
words in both text documents and queries, and use a stan-
dard medical stoplist [4] for stopping words in queries only.
Our retrieval model is a linear combination of the Markov

random field model (MRF) [8] and a mixture of external
collection-based relevance models (MRM) [2] for query ex-
pansion. Our collections for expansion are the ClueWeb09
Category B (excluding the Wikipedia pages) corpus, the
2009 Genomics Track corpus, 2012 Medical Subject Head-
ings (MeSH), and the medical records corpus itself. Both
report and visit-based retrievals use this system.
Because the focus of this work is to evaluate the adaptive

scoring function as shown in 2, we will set the parameters of
the MRF and MRM models to some default values. We use
the same set of parameter values for both the report and
visit-based retrievals. We set the Dirichlet smoothing pa-
rameter μ to 2500. For MRF model, we follow Metzler and
Croft [8] and set the feature weights (λT , λO, λU ) to (0.8,
0.1, 0.1). For MRM model, we take take the top-weighted
10 terms from the top-ranked 50 documents for each expan-
sion collection. More detail about our model is presented in
recent work [13].
To evaluate our learning algorithm as described in Sec-

tion 3, we first obtain the optimal coefficient αQ-opt for each
topic Q by sweeping [0, 1] at a step size of 0.1. Then we
conduct leave-one-out cross-validation (LOOCV), in each it-
eration of which the system predicts αQ for one new topic
based on αQ-opt’s for the other 80 topics. With limited
topics available for learning a relatively complex prediction
model, using LOOCV can maximize the size of training data
we can use in each iteration of the cross-validation, and lead
to a better estimate for each feature weight.
We train our systems on MAP. This is because: 1) train-

ing on MAP is most commonly used in IR to improve re-
trieval performance; 2) we find that training on MAP im-
proves the retrieval performance on other evaluation metrics
as well while training on other evaluation measures does not

4
http://www.lemurproject.org/indri/

Feature Significance Feature Significance

IC RADA 0.0112 RC 0.0654
WUPALMER 0.0299 SOKAL 0.0671

RADA 0.0368 IC LIN 0.0824
JACCARD 0.0647 IC PATH 0.0876

Table 3: Features in the pruned set using LOOCV,

sorted by their statistical significance scores.

improve the overall performance. Thus, MAP will be the
primary evaluation measure in this work. In fact, MAP cor-
relates well with other evaluation measures as we will show
in the Section 5.
To access the statistical significance of differences in the

performance of two systems, we perform one-tailed paired
t-test for MAP (since we train systems on MAP). We report
scores for MAP, R-precision (Rprec), bpref, and precision at
rank 10 (P10).

5. RESULTS AND ANALYSIS

5.1 Feature Selection
To choose a good feature combination, we use a greedy

feature elimination approach in which we start with a full set
of features and iteratively eliminate exactly one feature at a
time that has the greatest negative impact on the retrieval
performance until when further removing any feature will
degrade the performance.
After the above feature set pruning step, there are 8 fea-

tures left as shown in Table 3. We further study the im-
portance of each feature by analyzing the prediction model
trained in a randomly selected iteration of LOOCV using
these 8 features. Based on the statistical significance of each
feature as shown in Table 3, we can infer that:
1) All the intrinsic IC based features except IC LCH are in

the pruned feature set, indicating that these types of similar-
ity measures are generally more effective for predicting αQ

than other measures. In fact, the intrinsic IC similarity mea-
sure incorporates taxonomical evidence explicitly modeled in
ontologies (such as the number of leaves/hyponyms and sub-
sumers), which are not captured by the path-finding based
measure. Furthermore, the intrinsic IC similarity measure
avoids dependence on the availability of domain corpora,
thus is considered more scalable and easily applicable than
the distributional-based measure [9].
2) RC is a good feature though it only uses similarity infor-

mation about each query concept and its neighbors (rather
than other query concepts) in the semantic network.
3) Neither |Q| nor QC is in the pruned set, indicating

that non-semantic-similarity-related features are generally
not useful for estimating the evidence distribution.
4) RADA is a feature that might worth further exploration

because both the Path-finding based and the intrinsic IC
based RADA features are in the pruned set.

5.2 Adaptive Weighting
Fixed Weighting

We first evaluate the performance of Eq. 2 when α is fixed
(i.e., not adaptive). In each iteration of the LOOCV, we
obtain the best value setting for α on the 80 training topics
by sweeping [0, 1] at a step size of 0.1, and then apply the
trained α value to the single testing topic. We show the
results in the ‘Fixed-weighting’ row of Table 4. Note that
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System MAP R-prec bpref P10 Pred. MSE
Visit-based 0.4122 0.422 0.499 0.619 –
Report-based 0.4354V 0.435 0.511 0.607 –
Fixed-weighting 0.4472V,R 0.443 0.520 0.631 0.128
Adaptive-weighting 0.4485V,R 0.447 0.523 0.642 0.125
Optimal-weighting 0.4639V,R,F,A 0.457 0.539 0.656 0.000

Table 4: Performance comparison. A superscript

on the MAP score of system X corresponds to the

initial of system Y, and indicates statistical signifi-

cance (p < 0.05) in the MAP difference between X

and Y. The last column is the mean square error

of the predicted weights. ‘Fixed-weighting’ corre-

sponds to one of the top-ranked TREC systems as

mentioned in Sections 4 and 5.2.

this system is a better version of system udelSUM [13] which
is one of the top-ranked 2012 Medical Records track systems.

Optimal Weighting

We also obtain the optimal αQ-opt for each topic separately
by sweeping α from 0 to 1 with a step size of 0.1. Then, we
use the αQ-opt’s to compute the best retrieval performance
(i.e., an upper-bound) Eq. 2 can possibly achieve, as shown
in the ‘Optimal-weighting’ row of Table 4.

Performance Comparison

Table 4 shows performance comparison of our adaptive merg-
ing method with fixed-weighting, optimal-weighting, and
two other baselines (report-based retrieval and visit-based
retrieval). Our adaptive merging method is better than the
fixed weighting method on all the evaluation metrics. The
improvement is not statistically significant (p = 0.191), pos-
sibly because 81 topics may not be enough to train a good
prediction model for our adaptive weighting method. In ad-
dition, the data are slightly skewed as Figure 1 showing that
αQ-opt = 1 or 0.9 on about one third of the topics.

Figure 1: Distribution of topics against αQ-opt.

6. RELATED WORK
Due to the sensitivity of patient data, methods emerg-

ing from research on information retrieval for EMR retrieval
have not been well explored by academic researchers. For-
tunately, the Text REtrieval Conference (TREC) organized
the Medical Records track in 2011 & 2012 making a set of
real medical records and human judgments of relevance to
search queries available to the research community.
Some interesting work have been done using the TREC

collection. Limsopatham et al. [5] proposed an effective
term representation to handle negated phrases in clinical
text. They also incorporated dependence information of the
negated terms into the term representation and achieved
significant improvement over a baseline system that had no
negation handling mechanism.
More recently, Limsopatham et al. [7] proposed an ef-

fective representation for EMR retrieval, in which medical

records and queries are represented by medical concepts that
directly relate to symptom, diagnostic, test, diagnosis, and
treatment. We have built on their work, combining a con-
cept representation with text-based retrieval to improve on
both and provide a base in which additional medical knowl-
edge can be incorporated easily.

Among more relevant works, Limsopatham et al. [6] ex-
plored using the type of medical records for enhancing re-
trieval performance. They demonstrated that incorporating
department level evidence of the medical reports in their ex-
tended voting model and federated search model could im-
prove the retrieval effectiveness. Their work opens another
interesting direction for exploring evidence distribution and
score merging. Zhu and Carterette’s system [12] aggregated
report-level evidence and visit-level evidence, and achieved
significant improvement over a strong baseline.

7. CONCLUSION AND FUTURE WORK
In this paper, we present a medical record search system

which is useful for identifying cohorts required in clinical
studies. In particular, we propose a query-adaptive weight-
ing method that can dynamically aggregate and score evi-
dence within multiple medical reports. We show by cross-
validation that our weighting method is better than a fixed-
weighting method across several evaluation metrics. Though
the improvement is not statistically significant, we believe
that our method has the potential to be further improved
by incorporating other useful features or by using advanced
prediction models. Furthermore, we explore several informa-
tive features for weight prediction. We believe these features
might be useful for improving medical IR systems.
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