
Partial Replica Selection Based on Relevance

for Information Retrieval

Zhihong Lu Kathryn S. McKinley

Department of Computer Science, University of Massachusetts, Amherst, MA 01003

fzlu, mckinleyg@cs.umass.edu

Abstract Partial collection replication improves perfor-
mance and scalability of a large-scale distributed information
retrieval system by distributing excessive workloads, reduc-
ing network latency, and restricting some searches to a small
percentage of data. In this paper, we �rst examine queries
from real system logs and show that there is su�cient query
locality in real systems to justify partial collection replica-
tion. We then present a method for constructing a hierar-
chy of partial replicas from a collection where each replica
is a subset of all larger replicas, and extend the inference
network model to rank and select partial replicas. We com-
pare our new selection algorithm to previous work on col-
lection selection over a range of tuning parameters. For a
given query, our replica selection algorithm correctly deter-
mines the most relevant of the replicas or original collection,
and thus maintains the highest retrieval e�ectiveness while
searching the least data as compared with the other ranking
functions. Simulation results show that with load balancing,
partial replication consistently improves performance over
collection partitioning on multiple disks of a shared-memory
multiprocessor and it requires only modest query locality.

1 Introduction

As information and users proliferate through the Inter-
net and intranets, distributed information retrieval systems
must cope with the challenge of scale. Distributing exces-
sive workloads and searching as little data as possible while
maintaining acceptable retrieval accuracy are two ways to
improve performance and scalability of a distributed IR sys-
tem. Partial collection replication serves these two purposes.
Replicating collections on multiple servers can distribute ex-
cessive workloads; replicating collections on servers that are
closer to their users can improve performance by reduc-
ing network tra�c and minimizing network latency. When
we replicate a small percentage of a collection and direct
queries to a relevant partial replica, we can further improve
performance by searching less data. However, since a partial
replica in a distributed IR system may contain all, some, or
none of the relevant documents for a given query, select-
ing a partial replica just based on load will not maintain
acceptable retrieval accuracy.

In this paper, we use the inference network model to rank
partial replicas and the original collection, and then select a
replica or the original collection to process the query based
on both relevance and load. We build a hierarchy of replicas
based on query frequency and available resources, and use
the InQuery retrieval system for the replicas and the origi-
nal collection. We examine queries from THOMAS [18] and
Excite [12] and �nd query locality su�cient to justify partial
replication. The evidence also indicates that partial replica-
tion will achieve better performance than caching queries,
because the replica selection algorithm �nds similarity be-
tween non-identical queries, and thus increases observed lo-
cality. We modify the collection selection mechanism devel-
oped by Callan et al. [6] to select relevant partial replicas
for a given query. We evaluate this new strategy using 300
TREC queries on the 2 GB TREC volumes 2+3 and 20
GB VLC collections. We compare our algorithm to Callan
et al.'s collection ranking function and vary the parameters
of each. The experiments demonstrate that our strategy is
better at maintaining retrieval e�ectiveness while searching
signi�cantly less data. We also present a new and surprising
performance result: partial replication is more e�ective at
reducing execution time than collection partitioning on the
same resources, even when only 12% of queries have locality
with the replica(s).

The remainder of this paper is organized as follows. The
next section describes related work. In Section 3, we char-
acterize the locality and access patterns of the THOMAS
and Excite logs. Section 4 and 5 describe the replication
architecture and how to use the inference network model to
rank replicas. Section 6 presents experiments that show our
replica selection algorithm is signi�cantly more e�ective than
previous work on collection selection for replicas. Section 7
shows the performance of partial replication signi�cantly im-
proves performance over partitioning the collection over the
available disks with modest query locality. Section 8 sum-
marizes our results and concludes.

2 Related Work

Distributed database systems (e.g. Oracle, Informix, and
Sybase) have used replication for a long time to improve sys-
tem performance and availability [1, 11, 20, 22]. Recently,
researchers have also used replication in the Web for docu-
ment access [2, 3, 4, 7]. Since records and documents have
well-de�ned names in all these systems, it is simply a name
membership test to determine if a partial replica can satisfy
a user request. Since partial replicas in IR systems may con-
tain all, some, or none of the relevant documents for a given
query, how to select a partial replica based on relevance for a
query where the answer is not well de�ned is a problem that
does not exist in these systems. As far as we know, the work
presented in this paper is the �rst that attacks this problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR '99 8/99 Berkley, CA USA
Copyright 1999 ACM 1-58113-096-1/99/0007 . . . $5.00

97

Num. Topics
Num. unique occurring more than more than one
queries queries total once once unique query

8143 (7703) 4876 (4651) 4069 2888 (71%) 1181 (29%) 412

percentages of queries that top topics account for
100 200 500 1000 2000
21.2% 28.7% 41.5% 54.1% 73.0%

(a) Query locality in the THOMAS log.

Num. Topics
Num. unique occurring more than more than one
queries queries total once once unique query

499836 (444899) 365276 (320987) 249405 196672 (79%) 52733 (21%) 32750

percentages of queries that top topics account for
500 1000 5000 10000 20000
12.3% 16.0% 27.9% 34.4% 42.0%

(b) Query locality in the Excite log.

Table 1: Query locality in THOMAS and Excite logs

The closest work to selecting a relevant partial replica which
is a subset of the original collection is collection selection, i.e.,
locating the most relevant collections [6, 8, 10, 13, 15, 21],
where collections are disjointed. Replica selection di�ers also
because it directs as many queries as possible to relevant
replicas in order to obtain performance improvements.

Danzig et al. [10] use a hierarchy of brokers to maintain
indices for document abstracts as a representation of the
contents of primary collections, and support Boolean key-
word matching to locate the primary collections. If users'
queries do not use keywords in the brokers, they have di�-
culty �nding the right primary collections.

Voorhees et al. exploit similarity between a new query
and relevance judgments for previous queries to compute the
number of documents to retrieve from each collection [21].
Netserf extracts structured, disambiguated representations
from the queries and matches these query representations to
hand-coded representations [8]. Voorhees et al. and Netserf
require manual intervention which limits them to relatively
static and small collections.

Fuhr proposes a decision-theoretic approach to solve col-
lection selection problem [13]. He makes decisions by using
the expected recall-precision curve, expected number of rel-
evant documents, and cost factors for query processing and
document delivery. He does not report on e�ectiveness.

GLOSS uses document frequency information for each
collection to estimate whether, and how many, potentially
relevant documents are in a collection [14, 15]. The ap-
proach is easily applied to large numbers of collections, since
it stores only document frequency and total weight informa-
tion for each term in each collection. However its e�ective-
ness remains unknown due to limited evaluation.

Callan et al. adapt the document inference network to
ranking collections by replacing the document node with
the collection node [6]. Similar to GLOSS, the information
stored in the collection ranking inference network is docu-
ment frequencies and term frequencies for each term in each
collection. Experiments using the InQuery retrieval system
and the 3 GB TREC 1+2+3 collection show that using this
method to select the top 50% of subcollections attains simi-
lar e�ectiveness to searching all subcollections.

None of the above collection selection algorithms consider
replicas and partial replicas. Among the approaches for col-
lection selection, the collection inference network model [6]
is the most thoroughly tested and e�ective. In this paper, we
modify this technique to rank partial replicas and the origi-
nal collection, propose a new algorithm for replica selection,

and show that it is e�ective and improves performance.

3 Access Characteristics in Real Systems

The most often used queries for evaluating IR systems are
the TREC queries [16]. However, each query in TREC is
unique. To evaluate partial collection replication, we in-
stead need typical sets of query locality patterns. Other
researchers have examined query locality in the context of
the Web [9, 17], but currently there exists no widely available
or standard set of queries with locality properties. We there-
fore obtained our own set of server logs from THOMAS [18],
and Excite [12]. The THOMAS system is a legislative in-
formation service of the U.S. Congress through the Library
of Congress. THOMAS contains the full text congressional
records and bills introduced from the 101st Congress to
105th Congress. We analyze the THOMAS logs between
July 14 and September 13, 1998. We obtained full day logs
for 40 days, and partial logs for remaining 22 days due to in-
su�cient disk space in the mailer at the library of Congress.
The Excite system provides online search for more than 50
million Web pages, and we obtained one day of log informa-
tion for September 16, 1997.

Since the logs do not contain document identi�ers re-
turned from query evaluation, we built our own test databases.
We de�ne a topic as all queries whose top 20 documents
completely overlap. For queries from the THOMAS log, we
reran all queries against a test database that uses the Con-
gressional Records for the 103rd Congress (235 MB, 27992
documents, a subset of the real database). For queries from
the Excite log, we reran all queries against a test database
using downloads of the websites operated by ten Australian
Universities (725 MB, 81334 documents).

Table 1 shows the statistics on query locality in the
THOMAS and Excite logs. We collect the average number
of queries, unique queries, topics, topics occurring once, top-
ics occurring more than once, and topics that contain more
than one unique query. We also present the percentages of
queries that correspond to the top topics. Table 1(a) shows
the average numbers in the THOMAS logs over 40 days
with full day logs. The numbers of queries that actually
�nd documents from our test database are in parentheses
in columns 1 and 2. Some queries do not �nd any docu-
ments, due to misspelling, or because query terms do not
exist in the test database. The statistics show that on the
average, 71% of topics occur once, and the remaining 29%
of topics account for 63% of queries. Among the topics that
occur more than once, 35% (412) contains more than one

98

Database n

Original Collection

Replica 1

Replica 1-1
Replica 1-p

Replica 1-p-1 Replica 1-p-m

User Cluster 2User Cluster 1 User Cluster n

Replica Selection
Database 1

Replica Selection
Database 2

Replica Selection

Figure 1: The replication hierarchy

D

D1 D2

r1

c1

r2

c2 c3

r3 Network

Query
Networkc

rm

Dn-1

m

Collection

n

..

..

Q

Figure 2: The collection retrieval inference network

unique query, which indicates that exactly matching queries
would not �nd this overlap, and caching queries may miss
queries that use di�erent terms but in fact return the same
top documents.

The Excite log on September 16, 1997, shown in Ta-
ble 1(b), demonstrates that the Excite queries also have high
query locality: 79% of topics occur once, and the remaining
21% of topics account for 56% of queries; among the topics
that occur more than once, 62% (32750) contain more than
one unique query, which is the overlap missed by exactly
matching queries.

We also examine the THOMAS logs for the ratio of query
processing to document access. For each query, on the av-
erage, the user views 1.9 documents. Since we do not have
system measurements of the THOMAS system, we estimate
the percentage of time used for query and document process-
ing by simulating the ratio of queries to documents obtained
from the logs, and rerunning the top 1000 unique queries is-
sued on July 14, 1998 against the test database. The system
measurements show that the query processing accounts for
44% of total processing time, and document access (retriev-
ing summaries and documents) accounts for 56%.

These statistics and other studies [9, 17] suggest that
there is su�cient locality to justify partial collection replica-
tion for information retrieval. Our partial collection replica
should be a searchable partial collection with replicated doc-
uments and their indices to speed up both query processing
and document access.

4 Replication Architecture

We determine which documents to replicate as follows: for a
given query, we tag all top n documents returned by query
processing as \accessed" and count their access frequencies,
regardless of whether the user requests the text of these doc-
uments. We keep the access frequency of each document
within a period of time, such as a week or a month, and
then replicate documents based on their access frequencies.

We organize replicas as a hierarchy, illustrated in Fig-
ure 1. The top node represents an original collection that
could be an actual collection residing on a network node or a
virtual collection consisting of several collections distributed
over a network. The bottom nodes represent users. We may
divide users into di�erent clusters, each of which corresponds
to a group of users that reside within the same domain, such
as an institution, or geographical area. The inner nodes
represent partial replicas. The replica in a lower layer is
a subset of the replicas in upper layers, i.e., Replica 1-1 �
Replica 1 � Original Collection. The replica that is closest
to a user cluster contains the set of documents that are most
frequently used by the user cluster. An upper layer replica
could contain frequently used documents for more than one

user cluster.
The solid lines illustrate data ows disseminated from

the original collection to replicas. Along the arcs from the
original collection, the most frequently used documents are
replicated many times. The replica selection database di-
rects queries to a relevant partial replica. User requests may
go to any replica or the original collection along the arcs
from the top node depending on relevance and other cri-
teria, such as server load. The dotted lines illustrate the
interaction between users and data. If we do not divide the
users into di�erent groups, the hierarchy is simply a linear
hierarchy. In this architecture, replica selection is a two-step
process: ranking replicas and the original collection based on
relevance, and then selecting one of the most relevant repli-
cas or the original collection based on load.

5 Ranking Replicas with the Inference Network
Model

We adapt the collection retrieval inference networks that
Callan et al. proposed to rank collections [6] to rank par-
tial replicas and the original collection. The collection re-
trieval inference network model consists of two component
networks: a collection and query network, illustrated in Fig-
ure 2. The Di nodes are collections, and the rj nodes are
concepts in the collections. The query node Q consists of ci,
the concept nodes from the query. By using the collection re-
trieval inference network, collection ranking becomes an esti-
mate of P (QjDi) from combining the conditional probabili-
ties through the network. When ranking replicas, we use Dn

to represent the original collection, andDi; i = 1; 2; :::n�1 to
represent partial replicas. We call this inference network the
replica selection inference network. As in the collection re-
trieval inference network model, P (ckjrj) is set to 1:0. The
central work of replica selection is to develop an e�ective
replica selection function to estimate P (rjjDi).

A document/collection ranking function is better than
others if and only if it can produce higher precision at the
selected numbers of documents/collections or at all levels of
recall. The replica selection function also needs to direct
as many queries as possible to relevant replicas in order to
obtain the largest performance improvement, but this may
degrade precision. We compare precision of functions when
they direct at least 80% of replicated queries to the replicas.

We �rst consider the InQuery collection ranking function,
illustrate in Figure 3 [6], but it directs too many replicated
queries to the original collection (> 70%), because it uses df
(the document frequency of each term) as the basic metric,
and thus favors the original collection with large df . Since a
partial replica contains the top documents of the most fre-
quently used queries, by examining the document ranking
function, we know that the top documents are ranked as the

99

T =
dfij

dfij + k � ((1� b) + b �
cwi

ave cw

I =
log(

jNj

cf
+ 0:5)

log(jNj+ 1:0)

P (rj jDi) = �+ (1� �) � T � I

where
dfij number of documents that contain

term rj in collection Di,
cwi number of words in Di,
ave cw average number of words,
N number of collections,
cf number of collections that contain rj .
k constant that controls the magnitude of df

(default is 200),
b constant varying from 0 to 1 which controls

the sensitivity of the function to cw
(default is 0.75), and

� default belief (set to 0.4).

Figure 3: The Collection Ranking Function in InQuery

ave tf =
ctfij

dfij

cuto�i = cuto�1

log(DNi)

log(DN1)

AT =

�
ave tf if dfij > cuto�i

ave tf �
dfij

cuto�i
otherwise

T =
AT

AT + k � ((1� b) + b �
ave docleni

ave ave doclen

I =
log(

jNj
rf

+ 0:5)

log(jNj+ 1:0)

P (rj jDi) = �+ (1� �) � T � I

where
ctfij number of occurrences of

term rj in
replica/collection Di,

dfij number of documents that
contain term rj in Di,

DNi number of documents in Di,
cuto�1 cuto� value for the smallest

replica D1, which we set as the
number of top documents for each
query,

cuto�i cuto� number of documents
in Di,

N number of replicas plus
the original collection,

rf number of replicas and
the collection that contain rj ,

ave docleni average document length in Di,
ave ave doclen average ave docleni,
k constant that controls the

magnitude of AT ,
b constant varying from 0 to 1

used to control the sensitivity of
the function to ave doclen, and

� default belief (set to 0.4).

Figure 4: The replica selection function

top, just because they contain these query terms more often
than the others. If a replica contains the top documents for
a query, the average term frequency of each query term in
the replica should be higher than in the original collection.
Based on this heuristic, we construct a replica selection func-
tion that uses the average term frequency and penalizes the
terms that occur in too few documents, as shown in Figure 4.

We implement the replica selection inference network as
a pseudo InQuery database, where each pseudo document
corresponds to a replica or collection, its index stores the df
(document frequency) and ctf (replica/collection term fre-
quency) for each term.

6 E�ectiveness of Partial Replica Selection

In this section, we evaluate the e�ectiveness of our replica
selection approach using the InQuery retrieval system [5],
and the 2 GB TREC volumes 2+3 collection and the 20
GB TREC VLC collection. We use queries developed for
TREC topics 51-350 in our experiments. We compare our
proposed replica selection function with the collection rank-
ing function. We measure their ability to pick the relevant
partial replica, and the precision of the resulting response as
compared with searching the original collection.

6.1 Experimental Settings

We use the 2 GB collection to compare the e�ectiveness of
our replica selection function with the InQuery collection
ranking function using short queries, and demonstrate the ef-
fectiveness of our replica selection function using both short
queries and long queries. A short query is simply a sum
of the terms in the corresponding description �eld of the
topic. Long queries are automatically created from TREC
topics using InQuery query generation techniques [5], which
consist of terms, phrases and proximity operators. Gener-
ally, a long query for a topic is more e�ective than the short
query [5]. The average number of terms per query is 8 for
short queries and 120 for long queries after removing the
stopwords. We further divide queries into replicated and
unreplicated queries, where the replicated queries are those
whose top documents are used to build the replicas. Since
only topics 51-150 and 202-250 have relevance judgment �les
for the 2 GB TREC collection, we use them to test precision.

We use the 20 GB collection to examine how the col-
lection size a�ects the e�ectiveness of our replica ranking
function. Since we do not have relevance judgments for top-
ics f51-150,202-250g against the 20 GB collection, but the 2
GB collection is a subset of the 20 GB collection, we use the
relevance judgments for the 2 GB collection to produce the
precision �gures.

Our experiments repeat the following procedure 5 times:
each trial uses a di�erent number as the seed to produce ran-
dom numbers, and thus picks di�erent queries for a query set,
in order to break the possible correlations between queries.
In each trial, we randomly choose 50 queries from queries
f51-150, 202-250g as our unreplicated query set T , and ran-
domly divide the remaining 250 queries into 5 sets such that
each set contains 50 queries, fQi; i = 1; 2; 3; 4; 5; jQij = 50g.
These queries are the replicated queries. We then build
a 6-layer replication hierarchy from the original collection.
For each query in Qi, we collect the resulting top n docu-
ments from the original collection to build 5 partial replicas
fDi; i = 1; 2; 3; 4; 5g, where Di contains at most n � i docu-
ments, consisting of the top n documents for each query in
query sets fQj ; j = 1; :::; ig. Clearly, the D1 � D2 � D3 �
D4 � D5 � the original collection.

100

Ranking Parameters Func. replica % to replicas
Function k, b code D1 D2 D3 D4 D5 C right smaller larger C

Expected E 18 16 25 21 19 0 100% 0% 0% 0%
Random Ran 17 17 17 16 16 16 16% 35% 33% 16%
InQuery 200, 0.25 I1 0 0 0 0 0 99 0% 0% 0% 100%
Collection 200, 0.75 I2 0 1 4 5 20 69 14% 0% 16% 70%
Ranking 200, 1 I3 28 14 22 14 10 11 65% 16% 8% 11%

100, 1 I4 28 15 22 14 10 10 65% 17% 8% 10%
400, 1 I5 29 14 23 14 8 11 64% 17% 8% 11%

2, 0 R1 22 12 10 12 32 11 59% 7% 23% 11%
Replica 2, 0.2 R2 20 15 11 17 24 12 57% 9% 22% 12%
Ranking 2, 0.8 R3 6 3 3 5 1 81 15% 1% 2% 82%
Func. 1, 0.2 R4 17 6 7 14 28 27 47% 5% 20% 27%

4, 0.2 R5 21 10 10 11 26 21 54% 7% 18% 21%

(a) Number of replicated queries replica selection sends to replicas (99 queries).

at m Precision of Unreplicated Queries (%)
docs C random I3 I4 I5 R1 R2
10 39.8 24.6 (-38.2) 30.0 (-24.6) 29.4 (-26.1) 30.0 (-24.6) 33.6 (-15.6) 35.9 (-9.6)
20 36.8 23.7 (-35.6) 27.2 (-26.1) 26.6 (-27.7) 27.3 (-25.8) 32.3 (-12.2) 34.4 (-7.9)
30 33.4 22.3 (-33.1) 24.9 (-25.4) 24.3 (-27.2) 24.9 (-25.4) 30.8 (-7.8) 31.9 (-4.6)
100 26.4 15.0 (-43.1) 16.9 (-35.9) 16.2 (-38.7) 16.9 (-35.9) 22.8 (-13.6) 23.5 (-10.8)
200 21.1 10.4 (-50.5) 11.7 (-44.7) 11.1 (-47.3) 11.7 (-44.7) 17.1 (-19.2) 18.1 (-14.5)

(b) Precision of 50 unreplicated queries

Table 2: Comparing ranking functions using short queries on the 2GB TREC volumes 2+3 collection

When we replicate the top 200 documents for each query,
the replica size ranges from 2% to 10%, and from 0.2% to 1%
of the original collection for the 2 GB and 20 GB collections,
respectively. We build a replica selection inference network
to rank these �ve replicas and the original collection.

For the 20 GB collection, we also use queries 301-350 as
our unreplicated query set, since these 50 topics are more
thoroughly judged against the 20 GB collection than topics
f51-150, 202-250g. We use queries 51-100 as Q1, 101-150 as
Q2, 151-200 as Q3, 202-250 as Q4, and 251-300 as Q5.

For both replicated and unreplicated queries, we expect
we will have to tolerate some loss in precision in order to
avoid searching the entire collection. We choose a drop in
precision between 0% and 10% for a query as our accept-
able range, i.e., searching the selected replica retrieves at
most one less relevant document for every 10 documents as
compared with searching the original collection.

6.2 Comparing Ranking Functions

In this section, we compare our replica selection function
(Figure 4) and the InQuery collection ranking function (Fig-
ure 3) by varying k and b for short queries in test trial 1 when
we replicate the top 200 documents for each query. We show
that our replica selection function is comparable in precision
and ability to pick the expected replica with some con�gura-
tions of the collection ranking function for replicated queries,
but that it signi�cantly improves precision for unreplicated
queries.

Table 2 lists the results of replica selection using di�er-
ent ranking functions. Table 2(a) lists the the number of
replicated queries and to which replica or collection each
function directs the queries, when the parameters, k and b,
vary. Columns 1 through 3 list the name of functions, the
values of parameters k and b, and the function abbrevia-
tions. Columns 4 through 9 contain the number of queries
that the replica selector sends to each of the replicas (Di)
as well as the original collection (C); columns 10 through 13
contain the percentages of queries that are directed to the
expected replica (right), smaller replica, larger replica, and
the original collection. The expected replica for a replicated
query is the smallest replica that is built with the top docu-

ments of the query. Note it is possible for a replica smaller
than the expected to contain all top documents for a given
query, since the top documents of other queries could include
the top documents for this query. The \expected" (E) row
lists the number of judged queries that we would expect the
replica selector to direct to each replica and to the original
collection, if it were perfect with respect to the queries used
to build the replicas.

For the InQuery collection ranking function, varying k
from 100 to 400 does not signi�cantly change performance
(compare I3-I5). When we set k to 200 (the default of the
InQuery collection ranking function) and increase the value
of b, the replica selector directs more queries to the replicas.
For the replicated queries, the default InQuery collection
ranking function (k=200,b=0.75) directs 70% of queries to
the original collection, which is not our choice.

For the replica selection function, k = 2 gets better re-
sults than k = 1 and k = 4 (compare the functions R3-R5).
When we decrease the value of b, the replica selector directs
more queries to the replicas. Among the functions listed in
Table 2(a), six functions random, I3, I4, I5, R1, and R2 di-
rect more than 80% of replicated queries to the replicas. We
need to compare their precision to determine which one is
best for replica selection.

We compare the precision of the functions for both repli-
cated queries and unreplicated queries. When we examine
the precision for replicated queries, all these functions except
random selection are acceptable, since the precision resulting
from these functions drops within 8.7%. However, when we
examine the precision for unreplicated queries listed in Ta-
ble 2(b), the precision di�erence is signi�cant. In Table 2(b),
the �rst column lists the average number of documents at
which we present the precision. Column 2 lists the precision
when all queries go to the original collection, i.e., what per-
cent is relevant to the top m documents when searching the
original collection. Columns 3 through 8 list the results using
random selection, and each ranking function. The numbers
in parentheses show the precision percentage di�erence as
compared with searching the original collection.

It is not surprising that random selection performs poorly,
because it has high probability of picking a replica with few

101

Query Avg. Queries to Replica % to Replica
Size Type D1 D2 D3 D4 D5 C right smaller larger C

Expected 21.6 16.6 21.4 20.6 18.8 0 100% 0% 0% 0%
2 GB short 20.0 13.2 14.2 17.0 21.0 13.6 59.8% 8.1% 18.4% 13.7%
2 GB long 18.0 17.4 12.6 14.4 28.2 8.4 57.0% 8.7% 25.8% 8.5%
20 GB short 15.4 13.2 12.0 15.4 24.6 18.4 56.5% 4.2% 20.4% 18.6%

Table 3: Average number of replicated queries replica selection sends to replicas (replicas built with the top 200 documents)

at m 2 GB + short 2 GB + long 20 GB + short 20 GB + 301-350
docs C Replica C Replica C Replica C Replica
10 42.8 39.4 (-8.0) 55.3 52.0 (-6.0) 12.8 12.6 (-1.6) 40.4 36.2 (-10.4)
20 39.4 36.1 (-8.4) 52.7 48.6 (-7.8) 12.3 11.9 (-3.1) 35.4 30.7 (-13.3)
30 35.5 32.7 (-7.8) 50.0 45.7 (-8.7) 11.8 11.9 (+0.8) 31.3 26.9 (-14.2)
100 27.2 24.0 (-11.6) 40.4 35.1 (-13.2) 10.0 9.6 (-4.2) 20.2 17.8 (-11.9)
200 21.8 18.3 (-16.5) 33.1 27.3 (-17.4) 8.4 7.7 (-7.9) 14.4 12.8 (-10.9)

Table 4: Average precision of unreplicated queries (each trial has 50 queries and replicas built with the top 200 documents)

relevant documents. For unreplicated queries, it causes pre-
cision percentage losses ranging from 38:0% to 50% com-
pared with searching the original collection, C.

Using InQuery collection ranking function I3 where we
set k = 200 and b = 1, the precision losses of unreplicated
queries range from 24.6% to 44.7%. We get our best result
using our replica selection function R2 with k = 2 and b =
0:2. The precision losses of unreplicated queries range from
4:8% to 14:5%. For the top 30 documents, the precision
losses of unreplicated queries range from 4:8% to 9:6%. In
the remaining experiments, we set k = 2 and b = 0:2.

6.3 E�ectiveness with Replicated Queries

This section evaluates our proposed replica selection func-
tion for replicated queries on a wider range of queries and
collections. We want to test whether the replica selector di-
rects most of replicated queries to an expected replica. Al-
though we use 250 queries to build replicas, we only present
the results for the 99 replicated queries which have relevance
judgment �les in this section.

We count the average number of replicated queries that
the replica selector directs to each of the replicas and the
original collection over 5 trails, as shown in Table 3. In
Table 3, columns 1 and 2 indicate the original collection size
and the query type. Columns 3 through 8 on the row of
\Expected" list the average number of judged queries that
are used to build a replica, but not used in a smaller one over
5 trials. Columns 3 through 8 on other rows list the average
number of queries the replica selector sends to each replica
and the original collection. Columns 9 through 12 contain
the average number of queries that the selector directs to
the expected replicas (right), smaller replicas, larger replicas,
and the original collection (C).

For short queries on the 2 GB collection, on the average,
our replica selector directs 86:3% (59.8%+8.1%+18.4%) of
replicated queries to the replicas, and 67:9% of queries to
the expected replica or a replica smaller than we expect.
For long queries on the 2 GB collection, on the average,
our replica selector directs 91:5% (57.0%+8.7%+25.8%) of
replicated queries to the replicas, and 65:7% of queries to the
expected or a smaller replica. For short queries on the 20 GB
collection, on the average, our replica selector directs 81:4%
(56.5%+4.2%+20.4%) of replicated queries to the replicas,
and 60:7% of queries to the expected or a smaller replica.

We also compare the precision of executing queries result-
ing from replica selection with searching the original collec-
tion. Even though some queries go to smaller replicas than
expected, precision is not compromised. Replica selection

results in precision percentage loss within 3:0% as compared
with searching the original collection when we use short and
long queries on 2 and 20 GB collections.

6.4 E�ectiveness with Unreplicated Queries

This section evaluates the replica selection function for un-
replicated queries. For the 2 GB collection, on the average
over 5 trials (each trial has 50 queries), 15.4 short queries and
16.6 long queries have a replica that causes the precision loss
within 5% as compared to searching the original collection,
and the replica selector directs 84:7% and 86:9% of these
queries to the replicas, respectively. Table 4 compares the
retrieval precision of executing unreplicated queries against
replicas or the original collection selected by our replica se-
lector with only searching the original collection. Column 1
lists the number of documents at which we present the preci-
sion �gures. Columns 2, 4, 6, and 8 list the precision �gures
when all queries go to the original collection. Columns 3, 5,
7, and 9 list the average precision of replica selection over 5
test trials. The numbers in the parentheses show the preci-
sion percentage di�erence.

For the 2 GB collection, using short and long queries
cause a precision loss ranging from 7:8% to 16:5%, and from
6:0% to 17:4%, respectively. For the top 30 retrieved docu-
ments, which is a retrieval level that concerns many online
users, our replica selector causes average precision percent-
age loss within 8:7% of searching the original collection.

For the 20 GB collection using short queries, when we
use the relevance �les for the 2 GB collection, the precision
ranges from improving by 0.8% to a loss of 7.9%. When we
use short queries 301-350 as our unreplicated queries, the
precision drop for is within 14.2%. Topics 301-350 were much
more thoroughly judged than topics f51-150, 202-250g for
the 20 GB VLC collection. Although additional judgments
are still under way, we think the results using topics 301-
350 are more accurate, which means our replica selection
performs slightly worse on the 20 GB collection than on the
2 GB collection. However, the precision percentage loss of
14.2% in our context only means that we retrieve one less
relevant document for the top 30 documents.

7 Performance of Partial Collection Replication

In this section, we compare the performance of partial repli-
cation to collection partitioning on the same server, and
show that replication is superior at improving performance
even given small percentages of query locality. We do a more
thorough evaluation elsewhere [19]. These results demon-
strate the potential for a lot of performance improvement.

102

We simulate performance of a parallel IR server using a sym-
metric multiprocessor. In previous work, we validated this
simulator against an implementation of InQuery running on
a multiprocessor Alpha, and demonstrated that the simula-
tor is accurate with respect to the implementation [19].

For this experiment, we model the command arrival as a
Poisson process, use short queries with an average of 2 terms
per query, and issue query, summary, and document com-
mands with a ratio of 1:1.5:2, as we found in the THOMAS
logs. We vary the number of CPUs from 1 to 4. The base
con�guration has 4 disks to which all CPUs have access.
Each disk stores up to a 4 GB collection and its associated
indices. The original collection in this case is 16 GB, we
therefore need at least 4 disks. In the base con�guration,
for a query command, the server assigns 4 threads, each of
which executes the query against a collection partition on
a disk in parallel, and then merges the results returned by
each thread; for a summary command, the server assigns
n(� 4) threads to execute and then merges the results; for a
document command, the server assigns one thread to fetch
the the document. We study the e�ects of an additional
disk, asking the following question: should we partition the
collection on the 5 disks, or should we partially replicate the
top query results on the 5th disk?

If we build a partial replica using the additional disk, the
replica can be as large as 4 GB, which is 25% of the original
collection. If query locality is high, the replica selector may
send more queries to the replica than the original collection,
which may result in load imbalance. We load-balance by pre-
dicting the response time of the replica (R) and the original
collection (C) using the average response time and the num-
ber of the outstanding commands. When the replica selec-
tor chooses the replica, we calculate the predicted response
time p respi; i = fR;Cg using ave respi � num wait mesi,
where ave respi is the average response time for last 200 re-
sponses for either the replica or the original collection, and
num wait mesi is the number of the outstanding commands
to which either the collection or the replica has not yet re-
sponded. When p respC is less than p respR, the command
is sent to the original collection.

Figure 5 shows the average response time versus the dis-
tracting percentage that represents the percentage of the
queries the replica selector sends to the replica, when com-
mands arrive at 10 per second for 1, 2, and 4 CPUs, each
with di�erent performance bottlenecks. In Figure 5(d), the
rows of \CPU" list the average utilization of the CPUs, the
rows of \DISK" list the average utilization over the disks
that store the original collection; the rows of \D repl" lists
the utilization of the disk that stores the partial replica.

In Figure 5(a), where one CPU is already overutilized
for 4 disks when the commands arrive at 10 per second,
partitioning the collection over 5 disks is actually worse than
over 4 disks, because it exacerbates the CPU bottleneck; i.e.,
partitioning adds a little more CPU overhead to merge the
results and disk delay of the slowest disk is exaggerated when
the CPU is busy. The performance of partial replication is
much better (usually a factor of 2) than partitioning at all
data points of the distracting percentage, because searching
the replica that uses one disk needs less CPU time than
searching the original collection which is distributed over 4
disks, and thus shortens the waiting time for the CPU. For
the same reason, the improvement increases as the replica
distracts increasingly many commands until the disk load
gets too high. At that point, load balancing is necessary.

For 2 and 4 CPUs as shown in Figure 5(b) and (c), the

0

20

40

60

80

100

120

0 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
(S

ec
on

ds
)

Distracting Percentage (%)

Partitioning (4 disks)
Partitioning (5 disks)

Replication (No Load balancing)
Replication (Load Balancing)

(a) NCPU = 1

0

20

40

60

80

100

120

0 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
(S

ec
on

ds
)

Distracting Percentage (%)

Partitioning (4 disks)
Partitioning (5 disks)

Replication (No Load balancing)
Replication (Load Balancing)

(b) NCPU = 2

0

20

40

60

80

100

120

0 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
(S

ec
on

ds
)

Distracting Percentage (%)

Partitioning (4 disks)
Partitioning (5 disks)

Replication (No Load balancing)
Replication (Load Balancing)

(c) NCPU = 4

partitioning partial replication
Num. 4 5 no with
CPUs Res. disks disks bal. bal.

CPU 99.3% 99.5% 99.0% 99.4%
1 DISK 48.1% 36.0% 35.6% 38.2%

D-repl 78.5% 53.3%
CPU 85.3% 95.1% 81.0% 88.9%

2 DISK 84.1% 68.7% 64.4% 70.8%
D-repl 97.0% 85.1%
CPU 46.9% 62.6% 40.0% 48.0%

4 DISK 90.6% 89.5% 50.1% 71.5%
D-repl 99.2% 86.6%

(d) hardware utilization when dp = 50%

Figure 5: Partitioning versus Partial Replication for a 16
GB collection when commands arrive at 10 per seconds

103

CPU and disk utilizations are better balanced. However,
the CPUs are a bottleneck for 2 CPUs and 5 disks, and the
disks are a bottleneck for 4 CPUs. For partitioning over 5
disks, using 2 CPUs limits its improvement due to the CPU
bottleneck, and using 4 CPUs reaches the largest improve-
ment for partitioning over one more disk. Partial replication
performs better than collection partitioning when the replica
distracts more than 5% and 12% of commands using 2 CPUs
and 4 CPUs, respectively. System improvements due to par-
tial collection replication are determined by query locality
and increase as the query locality increases until the replica
is overloaded. Replication with load balancing improves the
query response time by a factor ranging from 2 to 4 as com-
pared to partitioning over 5 disks, when the replica distracts
more than 20% of commands.

8 Conclusion

In this paper, we investigate how to select a relevant par-
tial replica using the inference network, which is the �rst
step towards to developing replication and partial replication
strategies to improve IR system performance while maintain-
ing the retrieval accuracy. Our approach enables a system to
rank partial replicas for relevance to a query, and automati-
cally selects a replica based on both relevance and load. We
examine real IR system logs and �nd that there is su�cient
query locality in real IR systems to justify partial collec-
tion replication for information retrieval. We demonstrate
the e�ectiveness of our approach using the InQuery retrieval
system and TREC collections and show that the inference
network model is a very promising approach for ranking par-
tial replicas. By using our new replica selection function,
our replica selector can direct more than 85% of replicated
queries to a relevant partial replica rather than the original
collection, and it achieves a precision percentage loss within
8:7% and 14.2% for the top 30 retrieved documents for those
unreplicated queries, when sizes of replicas range from 2% to
10% for the 2 GB collection, and 0.2% to 1% for the 20 GB
collection, respectively. Our performance experiments show
that partial collection replication signi�cantly improves per-
formance over collection partitioning for the same number of
disks when the replica satis�es a modest number of requests.

Acknowledgments

This material is based on work supported in part by the
National Science Foundation, Library of Congress and De-
partment of Commerce under cooperative agreement num-
ber EEC-9209623, and in part by Defense Advanced Re-
search Projects Agency/ITO under ARPA order number
D468, issued by ESC/AXS contract number F19628-95-C-
0235. Kathryn S. McKinley is supported by an NSF CA-
REER award CCR-9624209. We thank Ben Mealey and
Library of Congress for providing the THOMAS log. We
thank Doug Cutting and Excite for providing the Excite
log. Any opinions, �ndings and conclusions or recommenda-
tions expressed in this material are the authors and do not
necessarily reect those of the sponsors.

References

[1] M. Ahamad and M.H. Ammar. Performance characterization
of quorum-consensus algorithms for replicated data. IEEE
Transaction of Software Engineering, 15(4), April 1989.

[2] M. Baentsch, G. Molter, and P. Sturm. Introducing
application-level replication and naming into today's Web.
In Proceedings of 5th WWW Conference, Paris, France, May
1996.

[3] A. Bestavros. Demand-based document dissemination to re-
duce tra�c and balance load in distributed information sys-
tems. In Proceedings of SPDP'95, San Anotonio, Texas, Oc-
tober 1995.

[4] S. Bhattacharjee, M.H. Ammar, E.W. Zegura, V. Shah, and
Z. Fei. Application-layer anycasting. In Proceedings of IN-
FOCOM 97, 1997.

[5] J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY
retrieval system. In Proceedings of the 3rd International Con-
ference on Database and Expert System Applications, Valen-
cia, Spain, September 1992.

[6] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. In Proceedings of the
18th ACM SIGIR, Seattle, WA, July 1995.

[7] R.L. Carter and M.E. Crovella. Dynamic server selection
using bandwidth probing in wide-area networks. Technical
Report BU-CS-96-007, Boston University, March 1996.

[8] A.S. Chakravarthy and K.B. Haase. Netserf: Using semantic
knowledge to �nd internet information archives. In Proceed-
ings of the 18th ACM SIGIR, pages 4{11, Seattle, WA, July
1995.

[9] W. B. Croft, R. Cook, and D. Wilder. Providing government
information on the Internet: Experiences with THOMAS.
In The Second International Conference on the Theory and
Practice of Digital Libraries, Austin, TX, June 1995.

[10] P. B. Danzig, J. Ahn, J. Noll, and K. Obraczka. Distributed
indexing: A scalable mechanism for distributed information
retrieval. In Proceedings of the 14th ACM SIGIR, pages 221{
229, Chicago, IL, 1991.

[11] D. Dowdy and D. Foster. Comparative models of the �le
assignment problem. Computing Surveys, 14(2), June 1982.

[12] Excite. http://www.excite.com.

[13] N. Fuhr. A decision-theoretic approach to database selection
in networked ir. In Workshop on Distributed IR, Germany,
1996.

[14] L. Gravano and H. Garcia-Molina. Generalizing gloss to
vector-space databases and broker hierarchies. In Proceedings
of the 21st VLDB Conference, Zurich, Switchland, 1995.

[15] L. Gravano, H. Garcia-Molina, and A. Tomasic. The e�ec-
tiveness of gloss for the text database discovery problem. In
Proceedings of the SIGMOD 94, pages 126{137, September
1994.

[16] D. Harman, editor. The Fourth Text REtrieval Conference
(TREC-4). National Institute of Standards and Technology
Special Publication, Gaithersburg, MD, 1995.

[17] Vegard Holmedahl, Ben Smaith, and Tao Yu. Cooperative
caching of dynamic content on a distributed web server. In
Proceedings of HPDC-7, pages 235{242, Chicago, IL, 1998.

[18] THOMAS legislative Information on the Internet.
http://thomas.loc.gov.

[19] Z. Lu. Scalable Distributed Architectures For Informa-
tion Retrieval. PhD thesis, University of Massachusetts at
Amherst, May 1999.

[20] Oracle Company. Strategies and techniques for using Or-
acle7 replication. http://www.oracle.com/products/servers/
replication/html/collateral.html, May 1995.

[21] E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird. Learn-
ing collection fusion strategies. In Proceedings of the 18th
ACM SIGIR, Seattle, WA, 1995.

[22] O. Wolfson and S. Jajodia. An algorithm for dynamic repli-
cation of data. In Proceedings of 11th ACM Symposium on
the Principles of Database Systems, San Diego, California,
June 1992.

104

