
A Textual Object Management System*

Scott C. Deerwester T

Keith Waclena

Michelle LaMar

University of Chicago

Center for Information and Language Studies

Abstract

Computer programs that access significant

amounts of text usually include code that manipu-

lates the textual objects that comprise it. Such pro-

grams include electronic mail readers, typesetters

and, in particular, full-text information retrievals ys-

tems. Such code is often unsatisfying in that access

to textual objects is either efficient, or flexible, but

not both. A programming language like Awk or

Perl provides very general facilities for describing

textual objects, but at the cost of rescanning the text

for every textual object. At the other extreme, full-

text information retrieval systems usually offer

access to a very limited number of kinds of textual

objects, but this access is very efficient. The system

described in this paper is a programming tool for

managing textual objects. It provides a great deal

of flexibility, giving access to very complex docu-

ment structure, with a large number of constituent

kinds of textual objects. Further, it provides access

to these objects very efficiently, both in terms of

time and auxiliary space, by being very careful to

access secondary storage only when absolutely nec-

essary.

Permission to oopy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and tha

title of the publication and its date appear, and notice ie given

that copying is by permission of tha Association for Computing

Machinery. To copy otherwisa, or to rapublish, requirea a fee

and/or specific permission.

15th Ann Int’1 SIGIR ‘92/Denmark-6/92

@ 1992 ACM 0-89791-524-0/92/0006/01 26...$1.50

1. Introduction and Motivation

In thk paper we present a system for manag-
ing textual objects called TOMS (Textual Object

Management System). Textual Objects are the

structural components of texts, such as words, para-
graphs, chapters, or mail headers. The management

of these objects includes the description of struc-

tural relationships between them, their recognition
within the text files that contain them, and the effi-
cient access of the bytes of text that comprise them.
The system that provides these features is available
in several forms: as a library of C functions, as
primitives in several programming languages, and

as a server that can be accessed from other pro-
grams across a network.

Text has logical structure, but for the vast

majority of texts stored on most computer systems,

this structure is represented in files as a flat
sequence of bytes. Writing computer programs that
operate on the structure of text is difficult because
of the requirement to continually write programs to

parse this flat encoding. For example, the Unix

operating system provides many text manipulation

tools that operate solely in terms of lines, and per-
haps words (typically naively defined as a sequence
of non-whhespace characters).

In addition, there are many encodings of text
structure in use. Encodings range from simple con-

* This research was supported by a State of II1inois
Technology ChsUenge Grant.

~ Author’s current affiliation: The Hong Kong Univer-
sity of Science end Technology, Department of Computer
Science.

126

ventions used for data files, to complex markup lan-

guages used for text. Markup languages for docu-

ment production can be procedural (e.g., the Troff
and T= typesetting languages) or structural (e.g.,
SGML), and in both cases are typically very com-
plex. Structured text that is usually thought of as
relatively simple often reveals surprising complex-

ity. For example, the structure of electronic mail

messages on the Internet and other networks has

been rigorously defined for years by the grammar in

the Internet standard RFC-822 [5]. Yet some mail-

ers don’t correctly parse or generate legal mail mes-
sages, and many mail utilities are written to make
simplifying assumptions about the structure of mail,

assumptions that are frequently violated.

There are a number of text-scanning program-
ming languages, such as Awk [2], Perl[14], and
Icon[8], which provide language features, such as

regular expressions and other kinds of pattern
matching, for easy manipulation of flat files. We

would like to be able to use these kinds of lan-
guages in preference to a low-level language like C,
but they are inappropriate for the following reasons:

●

●

●

When used most naturally, these tools are
line-oriented. ‘His line-orientation often

bears no relationship to text structure.

These languages are designed primarily to

scan text: that is, text structure is recognized

by performing pattern matching in a linear

scan of the text. For large collections of text
this approach is too inefficient.

Any structure recognized by a program in a

text-scanning language is represented implic-
itly by the algorihrzs, and these algorithms

are written by a programmer, rather than a
database administrator — a programmer who
may not be fully aware of the actual complex-

ity of the text structure. Any new program

written to manipulate the same structures can,

at best, share the algorithm or, at worst, reim-
plement the structure recognition. If there are
any bugs in any of these algorithms, textual
objects will be incorrectly identified.

Rather than rely on structure recognition algo-

rithms in several programs all being correct, it
would be better if a database administrator could

describe the structure of a given collection of texts

beforehand, in an auxiliary data file much like a
grammar for a language. Then all the programs

could be written using a tool that used the grammar

to recognize textual objects. If there is albug in the

grammar, it can be corrected without all the pro-

grams being rewritten (or even so much as recom-
piled). Ideally, this tool could be made accessible
from both high- and low-level languages. The
TOMS was designed to be such a tool.

The TOMS was developed and used as part of

our research on full-text information retrieval sys -

tems[6]. The focus of the group’s work was to
develop a coherent information system archhecture
for making accessible the information resources of

a loosely coupled, widely distributed network of
computers. Thk system will be used to replace the
current retrieval system used by the ARTFL (Amer-
ican and French Research on the Treasury of the
French Language) Project, which provides access tc)

the Tr&or de la Langue Franqaise[lO] (TLF), a 700
megabyte database of French literary texts. ARTFL

subscribers currently access the TLF approximately
150 times per month by login connections to the

host system.

1.1. A Primary Xndexing Tool

In order to understand the design of the

TOMS, it is important to distinguish two forms or

representatives of abstract textual objects, and twct

varieties of indexes. We use the term token to refer

to representatives of occurrences of particular

objects: the total number of word tokens in a docu-
ment is what’s usually meant by the phrase “total

number of words in a document. ” The term type
refers to those sets of tokens that all have the same

content: the number of-word types in a document is
what’s usually meant by the phrase “total number

of unique words in a document. ”

A token representative, or token for short, is

some form of identifier appropriate to an indexing
technique. It may be as simple as a sequence num-

ber, or a pair (oflset, length), or it may be something
more complex. A primary index is a function that

maps tokens to text. A list of tokens is called a con-

cordance, and a function that maps types to concor-
dances (a list of their occurrences) is a secondary

index. These distinctions become important inl

viewing the differences between the approach the
TOMS takes to text and that of most other text pro-
cessing tools.

Most information retrieval systems assume
only rudimentary structure for documents. This is
because early information retrieval systems dealt

127

almost entirely with bibliographic databases. Full-

text information retrieval systems are relatively
recent. Most commonly, retrieval systems deal only
with two kinds of textual objects: the word, and the

document containing it—any intermediate structure
is left unrepresented, and therefore inaccessible.

When there are only two types of textual
objects, the temptation is to “hard-wire” them into

the application. After all, one may say, words and
documents are quite different, sharing few charac-
teristics. Documents contain words, but words

don’t contain anything of interest, and word tokens

are searchable by their types while documents

aren’t usually divided into document-types and doc-

ument-tokens.

The relatively few systems that represent any

structure beyond the document and the word do so

either by hard-coding a particular structure (see, for
example, Smith, Weiss, and Ferguson[12]) or by
adapting a traditional structured database approach,
treating textual objects as though they were
fields[7].

Sophisticated applications demand the ability
to manipulate many more sorts of textual object
than these approaches allow. This means that each
sort of textual object deserves its own primary

index (at least conceptually), thus allowing the
application to handle queries such as:

● What is the text of the third sentence in this

paragraph?

● How many sentences does this paragraph con-

tain?

● What words are contained in this chapter?

Common user queries, such as proximity searches,
require the retrieval engine to pose these questions.

The TOMS is designed to be a primary index-

ing toozkit. It abstracts the notion of primary index

so that it can be readily applied to any sort of tex-
tual object, and provides a language for describing:

● the textual objects in a given set of texts

● the relationships between these objects

● how to recognize these objects within a text

Finally, the TOMS provides tools for efficiently
indexing these objects.

It’s important to note that the TOMS isn’t

intended to handle secondary indexing at all. There

is no shortage of secondary indexing tools avail-

able, such as the standard Unix DBM family of
disk-based hash tables[1], or any of a number of

commercial B-tree packages. Also, few textual

objects other than words seem to generalize to
require seconda~ indexes of object-types. At any

rate, TOMS objects of any kind can be readily used
with any secondary indexing scheme.

The TOMS also provides a facility to associ-

ate with a textual object information not present in
the text. Each object can have associated with it a
list of attribute/value pairs. Both the attribute and

the value are arbitrary strings of text, though the
attribute is expected to be a short identifier. For
example, a document object might have associated

with it an AUTHOR attribute, with the value identi-
fying the author. Attribute values can be computed
from information in the text, such as summary sta-

tistical information, or come from another source
entirely.

The TOMS provides fmctions to associate

values with attributes, and to retrieve attributes of

an object. Retrieval is fast because hash tables are

used.

1.2. Users of the TOMS

The TOMS is intended for two groups of

users: database administrators and programmers
who write TOMS client applications; see Figure 1.

Note that when we say “database administra-

tor” we are not implying that the TOMS must be

used with a conventional database management sys-

tem. The database referred to is simply a collection

of online texts. The administrator is the person who
describes the structure of the documents and textual
objects and provides resources for the database: that
is, disk space for the texts and indexes.

The client programmer writes application pro-

grams that manipulate text. These applications use

TOMS functions or services which work with the
grammars and recognizes specified by the database

administrator.

2. Defining Documents

Before an end user can access documents in a
database, a database administrator must use the

TOMS to register definitions of the documents. In

thk section, we discuss how this is done. Briefly,

the administrator uses the TOMS to perform the

following three steps:

128

Database
Administrator

Grammar

Marking

#

“.. !r.pfl ‘m
(...* w, mlD,
(-, ,.,

* :.& *,P

[?.raur.,b RCP
[.”’$. Em mm’) I

Wr., hi. B1?S! Functions

TC)MS

1%3

&P-w@ gmql’,c

w
S4nknlce t+% czl-‘TOMS TONE

“front end” client

End User

02

“Text

Figure 1: An Overview of the TOMS

129

● Define what kinds of textual objects occur in

each class of documents

● Define how these objects fit together to form

the structure of documents of this class

● Map this structure onto an individual docu-

ment or set of documents

These steps correspond to these TOMS fea-

tures:

Recognize functions — The TOMS uses recog-

nize functions to find instances of textuaI objects of
a particular class in text.

Document grammars — A document grammar

defines the structure of a class of documents (e.g.,
letters, technical reports, etc.).

Markings — The TOMS combines a set of recog-
nize functions and a document grammar to create a
marking, through which end users may access indi-
vidual documents and their components in terms of

their structure.

We present these three features in more depth

in the remainder of this section.

2.1. Recognizing Instances of Textual Objects

A key innovation in the TOMS is the role of
recognize functions. The job of these fimctions is
to find instances of a particular textual object class
in text, assuming a particular markup language.
The TOMS calls a recognize function, in response

to a client request, to find a textual object in the

stream of text that makes up a document.

A recognize function is given nothing more

than a string of characters within a document. It
returns a list of offset and length pairs of all of the

objects of its class that begin and end within that
text.

Recognize fimctions are something like

parsers, but do not actually correspond to any par-
ticular parsing technology. This is because of the
generality of recognizes; many are trivially simple,
being not much more than scanners or lexers, while
others may actually invoke complex parsers as
external programs. The entire complex of recogniz-
es that makes up a TOMS database description,
taken as a whole, constitutes something like a

parser for that database.

Although all recognize functions are func-

tionally equivalent — all take a string of characters

and return a list of offset and length pairs — the

TOMS allows several different ways of defining
them. This allows for a wide range of textual object

classes with a minimum of effort on the part of the

database administrator, while retaining efficiency.
In fact, it’s not necessary that the database adminis-

trator be a C programmer.

The types of recognize functions are:

Regular Expressions — The TOMS automatically

constructs a recognize function by using a pattem-
matcher driven by a user’s regular expression[13].
Quite complex textual objects can be specified by
regular expressions.

Internal — Recognize functions can be written as

C functions and linked into TOMS clients along

with the TOMS library. These recognizes can be
very efficient and powerful, but are somewhat com-
plicated to write and maintain. Several basic inter-
nal recognizes for simple words, sentences, and
paragraphs are provided with the TOMS. We have
also developed internal recognizes for some of the

macro packages used by the Unix typesetter Troff.

Enumerations — Object classes that are difficult or

impractical to recognize algorithmically can be enu-

merated by the specification of the exact offsets and

lengths of its objects. This allows database admin-

istrators to specify objects in a completely ad hoc

fashion. The enumeration might be the result of
manual corrections of a heuristic parser, or it might

simply be a tile of offset/length pairs resulting
from the markup of a document by a human editor.

Any tool can be used to generate the enumeration a

programmable editor could be used to allow objects

to be specified via mouse sweeps, for example.
Certain distinguished object classes (documents and
files) are automatically enumerated by the TOMS.

2.2. Document Grammars — Describing Classes
of Documents

A document grammar specifies the stmcture
of documents of a particular class. Examples of

document classes could include letters, scholarly

papers, USENET articles, etc. Each grammar spec-

ifies what textual object classes occur and how they

are related to each other within documents.

Document grammars are composed of object

class references and structuring constructs. An

object class reference is a label used in a grammar

to stand for an object class. When a document

grammar is compiled, object class references are

130

bound to particular recognize functions that find
instances of objects of their respective class in text.

Structuring constructs, describe how objects
are knit together to form higher level objects, and
ultimately entire documents. The structuring con-

structs of the TOMS are a superset of those defined
in the 1S0 Office Document Architecture

(ODA)[3].

The structuring constructs are:

REP

CHO

SEQ

PAR

CHO,

A repetition of similar objects (series). A
paragraph, for example, might be defined as
a repetition of sentences using REP.

A choice between objects (disjoint union).
To define the components that make up a

chapter as eifier figures, paragraphs or

tables, one would use CHO.

A fixed sequence of different object classes

(cartesian product). A letter, for example,
could be as defined as a sequence containing
a greeting, a body, and a closing using

SEQ.

A set of conjoint, or parallel, objects

(union). The markings indicated by PAR
all apply. As an example, a Bible chapter
might be defined to be a list of paragraphs

and a list of verses using PAR.

SEQ and PAR are indicated in a grammar

by the object class reference, the symbol for the
structuring construct, and a parenthesized list of
subtrees, separated by commas, e.g.,

figure CHO (graphic, table)

The REP construct, because it occurs so frequently,

has a special shorthand: the object name is enclosed

in square brackets, e.g., [word] to indicate a list

of words.

The PAR structure is an addition to the con-

structs provided by the ODA, and is one of the most
interesting features of the TOMS. It allows a text to

be seen from a number of different views, which
need not share a clear hierarchical relationship. A
good example is a parallel marking with one branch

describing the document in terms of pages and
lines, while a second branch describes the hierarchi-

cal structure of words, sentences, paragraphs, etc.
Text lines don’t contain sentences; nor do sentences

contain lines: they overlap each other. The TOMS
can map between the two branches, however, and
find which lines a sentence spans. Parallel mark-

ings can be much more complex than tlis; for

example, they could be used to record and relate

different linguistic parses of a text.

2.3. Describing Individual Documents

Given a grammar and a set of recognize

functions, the TOMS compiles them and produces a

marking. Once a marking exists, the database

administrator simply tells the TOMS which tiles

make up a document, and which marking should be

used to access it. The TOMS stores a reference to

both, and gives the administrator an ID that must be
used as a unique key to identify the document in all
future interactions.

2.4. An Example: Electronic Mail Messages

As mentioned earlier, standard e-mail has a

complex structure which must be parsed by any

programs which interact with it. Mail handlers in

particular must be able to effectively parse the vari-

ous fields and structure of an e-mail message. In
addition to such applications, it is easy to imagine
how a database of e-mail could be interesting for

purposes of information retrieval. Thus e-mail pro-
vides an interesting case of a document structure
which, once defined by the TOMS, can be used by

many different kinds of applications.

In the remainder of this section, we use this

example to show how a database administrator
defines documents: in this case, Internet electronic
mail messages. A sample message is shown below:

From daemon Sun Jan 5 17:30:25 1992

Return–Path: <michelle@ti ra. uchicago. edu>

To: michelle

cc: keith@curry .uchicago. edu,

scott(?uxmai l.ust.hk

Subject : Your TOWS paper section

Date: Sun, 05 Jan 92 17:32:33 –0600

From: scott(?tir a.uchicago.edu

Please hurry up with your section of the

paper. All other sections are done and

we’ d like to get the thing put together

and formatted ASAP !

Scott

In the next section we continue the example to

show how the TOMS could facilitate several IR

tasks using an e-mail database. Our example pro-

grams are written in C.

131

2.4.1. Electronic Mail Message Grammar

As we have stated, the first task of a database

administrator is to define the structure of documents

by providing a grammar and a set of recognize
functions. The grammar file, ema il. mk, shown in
Figure 2, describes the structure of e-mail mes-

sages.

doc PAR (

file,

[
message SEQ

status,

headers [

CHO (

adhead

label

SEQ (

,

[address]

)/
nahead SEQ (

label,

value [valword]

)

)
1,
body [sentence [word]]

)

1
)

Figure 2: Grammar File

Documents may span several files; the pres-
ence of the parallel tile branch allows documents to

be related to the files that contain them. Next, the
grammar indicates that documents are a series

(REP) of messages (note the square brackets),
each of which is defined as a sequence of status,
headers, and body objects. The headers are a
series of either adhead (address headers, which
are composed of address ‘s) or nahead (non-
address headers, which are composed of words,
here called valwords), while the body contains

sentences which, in turn, contain words.

2.4.2. Corresponding Recognize Functions

The recognize function file corresponding to
the e-mail grammar is emai 1. rf, shown in Figure
3.

The object class references in the first column

(being the same labels that were used in the gram-
mar) are matched with a description of their recog-

nize functions in the thhd column. “ ENUM” indi-

do C

file

message

status

headers

adhead

label

address

nahead

value

body

valword

sent ence

word

1
1

1

1
1
1
1
1
1
1
1
0
1
0

ENUM

ENUM

message rec—
status rec

header;_rec

addrhead rec

label_re;

address rec—
nonaddrhead rec—
value rec

body_;ec

vword rec

/[A-Z7[- .?!] *[.?!]/

/[a-zA-ZO-9-’]+/

Figure 3: E-mail Message Recognize Functions

cates an enumerated recognize. do c and f i 1 e are

special object classes, internally enumerated by the
TOMS. Regular expression recognizes are written

between slashes. The regular expression for word

specifies a non-empty sequence of alphanumerics,
hyphens or apostrophes, while the sentence rec-

ognize simply looks for a terminating period, ques-
tion mark, or exclamation point. All the other
classes use internal recognize functions. The tags
such as mes sage_rec are keys into a table of
intemd recognize functions: corresponding to each
is a C function written by the database administra-

tor. The second column is the memorization flag. A
“ 1” tells the TOMS to memoize that object class

while a “O” tells it not to. This flag allows the

database administrator flexibility in balancing the

space vs. time trade off. In a large database high
frequency objects (such as words) can be left
unrnemoized saving a great deal of index space

while only slightly decreasing the TOMS efficiency
since the object’s parent (e.g., sentence) remains
memoized.

2.4.3. Creating a Marking

The installation of a document into our
database is carried out by the simple TOMS client
program shown in Figure 4. We assumed the docu-
ment to be contained in a file named rebox. (In all

sample code, error checking is omitted for clarity.)

The program begins by calling the TOMS

function Toms I nit which reads in some auxiliary
data files. Then Mark In it compiles the grammar

and recognize files with the base name ‘ ‘em ail”

132

#include <stdio.h>

#include <toms.h>

int main ()

{
long mid, rid;

char *docfiles[] = { “rebox”];

TomsInito ;

mid = MarkInit (’’email”);

rid = DocInit(mid, 1, docfiles, NULL);

printf(stderr, “rid\t%lu\n”, rid);

TomsExito;

exit(0);

1

Figure 4: Initialization Function

(i,e, the files email .mkandemail.rf in Fig-

ures2and 3), and retumsthe unique marking iden-
tifier, mid. This identifier is then passed to
DocIni-t along with the number of tiles (1) and
the array offilenames that makeup this document,
docjile.s. DocInit returnstherootID— aniden-

tifier which is required for further access to this

document; in thk example program it is simply
printed.

When this initialization is complete, the
TOMS database is ready to be used by TOMS client
programs.

3. Using Documents

Once a document is registered with a marking
in the TOMS database, any TOMS client can access

the structure, the textual objects, and the actual text

of the document using functions in the TOMS
library. Continuing our example from the previous

section, we now look at TOMS client programs
written for the e-mail database whose grammar and
recognize functions were defined above.

3.1. Creating Secondary Indexes with the
TOMS

The first application that we describe here is a
very common one for any information retrieval sys-

tem — using the TOMS in the creation of a sec-

ondary index.

We maintain the abstraction barrier between

primary and secondary indexes by using a separate

program to actually create the latter. (Depending on

the secondary indexing package used, this program

can be as short as two or three lines of cocle.) We
will assume that this indexing program reads a file

of lines, each containing the text of a word (i.e., a
word type), a tab character, and a token representa-

tive. Of course we use TOMS object IDs as token
representatives.

So, the TOMS client we write must create the
file that maps types to tokens. Since the more com-

plicated details of structure and object recognition
have already been taken care of by the grammar and
recognize functions, this program is easy to write

and maintain.

For our e-mail database we are interested in

the words actually written by the sender of the mes-

sage, thus we ‘ve chosen to index the words con-

tained in the “Subject” header and in the body of

the message. The processing is carried out by the

function List Words, which takes the root ID as
an argument and prints, for each word of interest,
the text of the word and the TOMS object that it
corresponds to. This function is sketched below:

ListWords (id_t rootid)

{

/* Identify the cursors needed. */

/* Output the words of the body. */

I* Output the words of the Subject line. *I’

}

The rest of this section will describe in greater

detail how List Words uses the TOMS to accom-

plish this task. The full code of all example func-

tions are included in the appendix,

3.1.1. Finding Cursors of Interest

The first job of any TOMS client is to identify

the object classes of the marking which are of inter-
est to the program. A client program can keep track
of any number of positions in a marking using data
structures called cursors. Each cursor represents a

particular class of textual objects in a particular
location in the document structure. Any client will

need access to the root of the marking (the top node

of the cursor tree), so we refer to this important
position as the root cursor. The root cursor gener-

133

ally corresponds to the document object class.
Even though common types of textual objects such

as “words” usually occur in more than one place in

the grammar (and thus the marking), each occur-

rence can have a separate and distinct cursor. This

means that words in a sentence in the body of a
mail message and words in the Subject line of the
message can be distinguished by the TOMS. The
root cursor is returned by the TOMS function
marking, which takes the root ID as it’s only

argument.

root_cur = marking (rid) ;

Given the root cursor, all other cursors can be
accessed either by position using tree traversal
functions (Next, Prev, Parent, and Child) or

by label using the Project function. Project
returns the first cursor which is a descendant of the
given cursor and which matches the given label.
Li stWords retrieves only those cursors needed to

find the object classes we wish to index:

body_cur = Project (root_cur, “body”) ;

word cur = Project (body_cur, “word”) ;

nahead_cur = Project (root_cur, “nahead”) ;

label_cur = Project (nahead_cur, “label”) ;

val_cur = Project (nahead_cur, “value”) ;

vw_cur = Project (val_cur, “valword”) ;

3.1.2. Using Context to Find Textual Objects

The heart of the TOMS’ functionality lies in

the Cent ext function. It is Cent ext that drives

the recognize functions, identifying instances of
object classes and determining the relationships
between various textual objects. Context can be
thought of as “converting” a given textual object to
some set of other objects of another class which is
an ancestor or descendent of the first. That is,

Cent ext describes a containment relation
between objects in the grammar. Given a sentence
object for example, Context can tell you all the
word objects which are contained in it, or which

paragraph object it is itself contained in.

The Cent ext function takes an object and a

cursor as arguments and returns a list of objects
which contain or are contained by the given objec~
the cursor determines the type of object returned. If

Cent ext is given the document itself as the

object, it returns all instances of the given cursor in

the text. In order to start using Context in any
way, however, the client needs at least one object as

a reference. Thus TOMS provides the bootstrap-
ping function RootOb j ect.

root_obj = Root Object (root_cur) ;

List Words is now ready to find the words
in the bodies of the e-mail messages of our

database. Since we want all the instances of the

cursor word_cur — all the words in the message
bodies — we can call Context with root_obj as

the reference object.

word_ol = Context (root_obj, word_cur) ;

Context returns an object list, in thk case
word_ol, which is manipulated using special TOMS
object-list functions. Here we use Get Ob j e ct in
a while loop to retrieve the objects in the list
sequentially, and for each one, print the text of the
word, returned by the TOMS Get function, and an

external (string) form of the TOMS object, given by

Object Id.

while ((word_obj =

GetObject (word_ol)) . o_cursor
! = NULL)

{
printf (“%s\t%s\n”, Get (word obj) ,

IdtoStr (Object Id (word_obj~)) ;

1

Finding the words of the “Subject” header is
slightly more complicated as we must first find the

correct header line through comparison of the label
object, and then parse the value field of the match-
ing header. Since the header we are interested in is

not an address, we start by finding the list of non-
address headers in the document using Context:

nahead_ol = Context (root_obj, nahead_cur) ;

Now we iterate through the list much as we
did for word_o/, but for each header we must find

it’s corresponding label and compare it to our
desired label. In the case of a match we retrieve the
value field of that header and break it down into
value-words (valwords).

gram
With the words of the Subject line, the pro-
is complete. The resulting index can now be

while((nahead_obj =

GetObject (nahead_ol)) .o_cursor
!= NULL)

{
label_ol = Context (nahead_obj, label_cur);

label_obj = GetObject (label_ol);

if(strcmp(Get (label_obj), ’’Subject”) == O)

{
val_ol = Context (nahead_obj, val_cur);

val_obj = GetObject(val_ol);

vw 01 = Context (val_obj, vw_cur) ;

wh~le((vw_obj =

GetObject(vw_ol)) .o_cursor
!= NULL)

{
printf(’’%s\t%s\n”, Get(vw_obj),

IdtoStr(ObjectId (vw_obj)));

}

}

)

Figure 5: Indexing SubjectLine Words

used for retrieval purposes, butby using theTOMS
objects the index also provides the means to further
access the full structure of the texts.

3.2. Further Retrieval Tasks with the TOMS

Not only is the TOMS an aid to creating a sec-

ondary index, but now that our e-mail database is
indexed with TOMS objects, we can write further

clients with the TOMS to gain more information

about words ofinterest. If, forexample, wewishto
takealistofword tokens(i.e.,TOMS objects from

ourindex) and retrieve foreach thelistofall words
which occurin the same sentence, we could write a
TOMS function like our next example, Sen–

tenceOf. SentenceOf takes an external
TOMS object as it’s argument, finds the sentence

that contains it, and prints out the list of words in

that sentence. If the word is in a Subject line,
Sent enc eOf prints out the words contained in
that Subject.

In this case the object which our client pro-
gram starts with is not the document, but instead the
word object extw_obj (the hit) passed into it from

the outside. Thus Sent enceOf ’s first step is to
convert this external TOMS object back to it’s inter-

nal representation with OInternalize.

w_ob j = OInternalize (extw_obj , NULL) ;

Now we want to find the parent of the cursor of the

object -w_obj. parent_cur will either be a sentence

cursor (from the body) or a value cursor (from a
non-address header).

w_cur = CursorOf (w_obj) ;

parent_cur = parent (w_cur) ;

while (Get Label (parent_cur) == NULL)

parent_cursor = parent (parent_cur) ;

The while loop assures that we skip over any NULL

(purely structural) nodes.

With object and cursor in hand we are ready
to apply Cent ext again, this time going up the
marking to find the parent object (either a sentence
or a Subject header value).

parent_ol = Context (w_obj, parent_cur) ;

parent_obj = GetObject (parent_ol) ;

Since there is only one parent object, we only have
to call Get Ob j e ct once. Now we reverse the

Context to retrieve the list of words in the parent

and print them out.

w_ol = Context (parent_obj, w_cur) ;

while ((w_ob j = GetObject (w_ol)) . o_cursor
! = NULL)

{
printf (“%s\n”, Get (w_obj)) ;

}

The simplicity of this function (note that it is

only 12 lines long) points out the facillity with
which the TOMS allows application programmers
to access textual structure.

4. Implementation Considerations

The concept of a TOMS is innovative in itself.

The implementation of the TOMS, however, con-

tains several innovations that are worthy of men-
tion. In this section, we describe some of the more
important aspects of thk implementation, with par-
ticular attention to their impact on time and space

performance.

4.1. Memos

One of our most important design goals was
that access to indexed objects should be very fast.
Pragmatically, this means that the system is careful

to keep the number of disk accesses required to
access a textual object to a minimum — less than

135

one on the average. But another major goal was
that while textual objects will in general be indexed

thk indexing needn’t be done ahead of time. These
two goals together imply a dynamic, incremental
indexing scheme, akin to the programming lan-
guage optimization known as menmization.[9]

The rationale for memorization is simple:
indexes take up space on disk, and they also take

time to precompute. It may well be the case that,
for a collection with complex structure, certain

classes of textual objects may not be manipulated as
often as others. For these objects, it can save space

and initialization time to put off the indexing of

these objects until they are actually used.

If an unindexed object is referenced by a

client, the TOMS will have to find that object by
scanning text. Of course, we don’t want the system
to slow down by indexing all objects in the process
of finding the one that was referenced: hence the
incremental nature of the memorization. As. more
higher-level textual objects are memoized (either
incrementally or ahead of time), the TOMS needs to

do less scanning to find lower-level objects.

For example, if chapters have been memoized

but words haven’t been, and the last sentence in the

document is requested, text scanning will start at
the beginning of the last chapter rather than at the
beginning of the text. In addition, all objects of the
type being searched for which are recognized in the
process will be memoized: that is, the next time any

one of them is requested by the client, it will be

retrieved as quickly as if it had been preindexed.

Because of this behavior, a database administrator

may want to precompute high-level memos even if
most memorization is left to be done incrementally;
the highest level memos also tend to be very small.

For this reason we give the database adminis-
trator a lot of flexibility in determining exactly how
to index her collection for each class of textual
object, she must choose:

. to preindex all of these objects; or

● to leave them unindexed, but allow indexes to

be built dynamically, in response to client
actions, via memorization; or

● to specify that this class of objects never be
indexed — that they should always be
scanned for.

Finally, individual

designed to occupy at most
TOMS indexes are

a fraction of the size of

the text. This is achieved partially by only storing
compressed versions of memos on disk. Memos are
read and written in blocks, and compression (or

decompression) is applied when an individual block
is written (or read). The TOMS comes configured

to use LZW[15] compression, but since the com-
pression and decompression is performed by a sepa-
rate process, the database administrator can use any

compression method available.

4.2. The TOMS as Tool

We see the TOMS as a toolkit that can be used
in a number of different ways. The lowest level
interface to the TOMS is a library of C functions

which can be called directly from C programs and

other compiled languages. Using the TOMS in this
fashion is straightforward, but writing a simple
application does require the usual edit–compile--
debug cycle. TMs is especially inconvenient for a
TOMS database administrator who needs to write

(or use) many simple TOMS applications to create,
maintain, and test TOMS collections.

Because of this inconvenience, we have com-

piled the TOMS library into a customized inter-

preter for the Perl programming language. Each

TOMS function appears as a Perl primitive, some

slightly modified.

Perl is an interactive, high-level language that
provides many facilities for both systems program-

ming and text manipulation. Useful features
include persistent associative arrays (lookup tables)

which are implemented as disk-based hash tables,

regular expression pattern matching, and interpro-

cess communication (IPC) and networking primi-
tives. Perl’s dynamic memory management means
that the programmer need not bother with storage
allocation and deallocation and its consequent bugs.

However, Perl still encourages the use of text-

scanning for the recognition of text structure. Since
our version of Perl allows us to use the TOMS for
this purpose, we can exploit Perl’s other features

and still be assured of efficient access to large vol-

umes of text. This special Perl interpreter has

proved useful for many tasks; we have used it
already to write a number of applications to support
our retrieval system. For example, the IPC facili-
ties allowed us to write prototype and production
versions of a server that provides Intemet-wide
access to the text of the TLF, stored on a CD-ROM
and mounted on a local machine. Also, the persis-

136

tent associative arrays of Perl have been used to

write the short secondary indexing programs men-

tioned in $3.1.

5. Future Work

One 17.Kuredirection for the TOMS, inspired
by our success with Perl, is to integrate it into other
high level languages such as Tcl[11], Icon, and

Alfonzo[16] — each of which would benefit from

the TOMS primitives themselves while providing
more programming flexibility to

grammers.

5.1. ATOMS Server

The text server described

TOMS client pro-

in Q4.2 provides

TOMS access to any client anywhere on the Inter-
net. In our current application it allows us to isolate

access to our database, which is important to us for
reasons of efficiency and security. The server lan-

guage is a simple line-oriented language that’s very

easy to parse; client programs that interact with the

server can be as short as 1 or 2 lines and can be
written in any language, even if it doesn’t support
linking with the TOMS library.

Currently the server only provides a limited
subset of TOMS functionality: it basically allows

contextualization to documents, and SubGet’s of

the documents’ text. We will be extending the
server language so that it provides complete access

to all TOMS facilities.

5.2. Graph Structure / Hypertext

There remain several interesting extensions
that can be made to the TOMS itself. At present,
the TOMS’ abstraction of document structure is
strictly hierarchical. Although hierarchical relation-
ships appear to account for a large portion of the
structure of most collections of documents, there

are certainly non-hierarchical relationships that we
would like to be able to describe using the TOMS.
Footnotes and recursive containment (e.g., an elec-

tronic mail message that contains a forwarded elec-
tronic mail message) are obvious examples. A
more modern example is hypertext, where text is

organized as nodes in a graph rather than as a tree.
In future work, we intend to explore the conse-
quences of such structures in the context of applica-
tions that require them.

5.3. Dynamicity

Although the TOMS is in many senses very

dynamic — the TOMS’ memorization makes use of

this dynamicity to achieve time and space efficient
access of textual objects — there are some areas in
which the TOMS would benefit from more dynam-
icity.

The most obvious such area is markings.

Once a marking is compiled, the TOMS assumes

that it never changes. The reason for this assump-

tion is that, once a document is known to the

TOMS, the TOMS guarantees to its clients that the

objects witiln it will persist. It is clear, however,
that markings should be allowed to change. One

can easily imagine a user wanting to addl a new
object class to an existing set of documents, for
example. For the TOMS to allow such evolution,

one of two things must be true.

● It must be able to either detect that objects

that were once part of a document no longer

exist, and be able to notify clients when they

ask for obsolete objects.

● It must be able to guarantee that no object
ever becomes obsolete, perhaps by effectively
limiting changes to markings to be only addi-

tive.

Either possibility entails further development.

Another area where TOMS could use greater

dynamicity is in the memorization itself. While the
memos are created dynamically, there are as yet no

facilities within the TOMS for deleting or altering
already created memos. Thus in order to use the
TOMS on a fully dynamic database like a newswire
feed, one where texts can be deleted and edited as
well as being added, these facilities need to be

added to the TOMS current memorization system.

6. Conclusions

In previous work[4, 6] our group focused on

the separation of the user interface from the
retrieval engine by using an interactive pro-

grammable language as the interface between the
two; current research extends this work to a more

powerful and expressive programming limguage
paradigm. [16] The TOMS represents an improve-
ment in information retrieval systems by identifying

a new level of abstraction and clearly separating the
representation of text stmcture from the algorithms

used to manipulate it. The importance of this divi-

137

sion is that it allows us to write retrieval engines
that are highly independent of the data representa-
tion. Secondary indexing programs can be written

with no knowledge of the format of the text, relying
solely on the TOMS to provide primary object

access. The retrieval software proper can ask the
TOMS about the structure of a given text, pose user

queries in terms of the revealed relations of textual

objects, and display results identified not in terms of
lines and file names, but in terms of the actual dis-

course elements used in the text. In addition, the
efficiency of the TOMS primitives we have added
to Perl has allowed us to use a higher level, interac-
tive programming language where previously we

were forced to use C to gain acceptable perfor-
mance.

We feel that the resulting system meets the

goals of efficiency and flexibility that we set for it.
It is quicker, easier, and much more efficient to

describe the structure of a textual database using the

TOMS than using any of the other tools that we had
previously used. It has especially had the effect of

making the clients that we have written subsequent

to developing the TOMS simpler, more coherent,

and better structured.

References

1.

2,

3.

4.

5.

Free Software Foundation, GNU dbm, Release
1.4, FSF, Cambridge, MA, 1989. Computer

software.

Aho, Alfred V., Brian W. Kernighan, and
Peter J. Weinberger, The AWK Programming
Language, Addison Wesley, Reading, MA.,
1988.

Ansen, Debra, “Document Architecture Stan-
dards Evolution,” AT&T Technical Jouurnal,

vol. 68, no. 4, pp. 33-44, July/August 1989.

Bookstein, Abraham, Scott Deerwester,
Robert Morrissey, Keith Waclena, and DonaId
Ziff, “A System for Integrated Bibliographic
and FulI-text RetrievaI in a Distributed Com-

puting Enviromnent, ” in Computers and the

Humanities: Today’s Research, Tomorrow’s
Teaching, pp. 285-291, University of Toronto,
Toronto, March, 1986.

Crocker, D., “Standard for the Format of

ARPA Internet Text Messages,” RFC-822,

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Network Information Center, 1982.

Deerwester, Scott C., Donald A. ZHf, and
Keith Waclena, “An Architecture for Full

Text Retrieval Systems,” DEXA 90: Database

and Expert Systems Applications, pp. 22-29,
Vienna, September 1990.

Goldstein, C. M., “Online Reference Works

and Full Text Retrieval,” National Online

Meeting Proceedings, pp. 171-177, Medford,
N. J., 1989.

Griswold, Ralph E. and Madge T. Griswold,
The Icon Programming Lunguage, Prentice-
Hall, Englewood Cliffs, New Jersey, 1983.

Michie, Donald, “’’Memo” Functions and

Machine Learning,” Nature, vol. 218, pp.

19-22,6 April 1968.

Morrissey, Robert and C. del Wgna, “A
Large Natural Language Data Base,” Educom

Bulletin, vol. 18, no. 1, pp. 10-13, Spring

1983.

Ousterhout, John K., “Tc1: An Embedded

Command Language,” USENIX Proceedings,
pp. 133-146, Winter 1990.

Smith, John B., Stephen F. Weiss, and Gordon
J. Ferguson, MICROARRAS: An Advanced
Full-Text Retrieval and Analysis System, Uni-

versity of North Carolina Department of
Comuter Science, Chapel Hill, N. C., [n.d.].

Thompson, Ken, “Regular Expression Search
Algorithm, “ CACM, vol. 11, no. 6, pp.
419-422, June 1968.

Wall, Larry and Randal L. Schwartz, Pro-
gramming Pert, A Nutshell Handbook,
O’Reilly and Associates, Sebastopol, CA,
1991.

Welch, Terry A., “A Technique for High-
Performance Data Compression,” Computer,

vol. 17, no. 6, pp. 8-19, June 1984.

Ziff, Donald A., Keith Waclena, and Stephen

P. Spackman, “Using a Lazy Functional Lan-
guage for Textual Information Retrieval,” TR
90-02, University of Chicago Center for Infor-

mation and Languages Studies, Chicago,
1992.

138

..

.. ..

4!

.:
.-

139

